Solnchap 02
Solnchap 02
Chapter 2, Solution 2
Chapter 2, Solution 3
Chapter 2, Solution 4
(a) i = 3/100 = 30 mA
(b) i = 3/150 = 20 mA
Chapter 2, Solution 5
n = 9; l = 7; b = n + l – 1 = 15
Chapter 2, Solution 6
n = 12; l = 8; b = n + l –1 = 19
Chapter 2, Solution 7
30 V
1 20 Ω 2 3
+++-
+ -
2A 30 Ω 60 Ω 40 Ω 10 Ω
4
Chapter 2, Solution 8
12 A
a
i1
8A b
i3
i2
12 A
c
9A d
At node a, 8 = 12 + i1 i1 = - 4A
At node c, 9 = 8 + i2 i2 = 1A
At node d, 9 = 12 + i3 i3 = -3A
Chapter 2, Solution 9
Applying KCL,
i1 + 1 = 10 + 2 i1 = 11A
1 + i2 = 2 + 3 i2 = 4A
i2 = i3 + 3 i3 = 1A
Chapter 2, Solution 10
2
4A -2A
i2
1 i1 3
3A
At node 1, 4 + 3 = i1 i1 = 7A
At node 3, 3 + i2 = -2 i2 = -5A
Chapter 2, Solution 11
-8 + v1 + 12 = 0 v1 = 4v
-12 - v2 + 6 = 0 v2 = -6v
10 - 6 - v3 = 0 v3 = 4v
-v4 + 8 - 10 = 0 v4 = -2v
Chapter 2, Solution 12
+ 15v -
loop 2
– 25v + + 10v - + v2 -
+ + +
20v loop 1 v1 loop 3 v3
- - -
Chapter 2, Solution 13
2A
I2 7A I4
1 2 3 4
4A
I1
3A I3
At node 2,
3 + 7 + I2 = 0
→ I 2 = −10 A
At node 1,
I1 + I 2 = 2
→ I 1 = 2 − I 2 = 12 A
At node 4,
2 = I4 + 4
→ I 4 = 2 − 4 = −2 A
At node 3,
7 + I4 = I3
→ I3 = 7 − 2 = 5 A
Hence,
I 1 = 12 A, I 2 = −10 A, I 3 = 5 A, I 4 = −2 A
Chapter 2, Solution 14
+ + -
3V V1 I4 V2
- I3 - + 2V - +
- + V3 - + +
4V
I2 - V4 I1 5V
+ -
For mesh 1,
−V4 + 2 + 5 = 0
→ V4 = 7V
For mesh 2,
+4 + V3 + V4 = 0
→ V3 = −4 − 7 = −11V
For mesh 3,
−3 + V1 − V3 = 0
→ V1 = V3 + 3 = −8V
For mesh 4,
−V1 − V2 − 2 = 0
→ V2 = −V1 − 2 = 6V
Thus,
V1 = −8V , V2 = 6V , V3 = −11V , V4 = 7V
Chapter 2, Solution 15
+ +
+ 12V 1 v2
- - 8V + -
v1
- 3 + 2 -
v3 10V
- +
For loop 1,
8 − 12 + v2 = 0
→ v2 = 4V
For loop 2,
− v3 − 8 − 10 = 0
→ v3 = −18V
For loop 3,
− v1 + 12 + v3 = 0
→ v1 = −6V
Thus,
v1 = −6V , v2 = 4V , v3 = −18V
Chapter 2, Solution 16
+ v1 -
+
+ loop 1
6V - 10V v1
-
+- +-
12V loop 2
+ v2 -
Applying KVL around loop 1,
–6 + v1 + v1 – 10 – 12 = 0 v1 = 14V
12 + 10 – v2 = 0 v2 = 22V
Chapter 2, Solution 17
+ v1 -
loop 1
+ - +
24V - v2 v3 +
- 10V
+ -
loop 2
-+
12V
v2 + v3 + 12 = 0 v2 = -22V
-24 + v1 - v2 = 0 v1 = 2V
Thus,
Chapter 2, Solution 18
Applying KVL,
8I = 32 I = 4A
Chapter 2, Solution 20
Chapter 2, Solution 21
P3 = i2R = 9 x 5 = 45W
5Ω
Chapter 2, Solution 22
4Ω
+ v0 -
6Ω 10A 2v0
v0
+ 10 + 2 v 0 = 0 v0 = –4.444V
4
i = 2V0 = -8.888A
v0
v = (6 + 4) i0 = 10 = −11.111
4
Hence,
p2 vi = (-8.888)(-11.111) = 98.75 W
Chapter 2, Solution 23
ix 1Ω
+ vx -
6A 2Ω 3Ω
Applying current division,
2
ix = (6 A) = 2 A, v x = 1i x = 2V
2 + 1+ 3
The current through the 1.2- Ω resistor is 0.5ix = 1A. The voltage across the 12- Ω
resistor is 1 x 4.8 = 4.8 V. Hence the power is
v 2 4.8 2
p= = = 1.92W
R 12
Chapter 2, Solution 24
Vs
(a) I0 =
R1 + R2
αV0 R3 R4
V0 = −α I0 (R3 R4 ) = − ⋅
R1 + R 2 R3 + R4
V0 − αR3 R4
=
Vs (R1 + R2 )(R3 + R4 )
(b) If R1 = R2 = R3 = R4 = R,
V0 α R α
= ⋅ = = 10 α = 40
VS 2R 2 4
Chapter 2, Solution 25
5
I20 = (0.01x50) = 0.1 A
5 + 20
V20 = 20 x 0.1 kV = 2 kV
5
I20 = (0.01x50) = 0.1 A
5 + 20
V20 = 20 x 0.1 kV = 2 kV
Chapter 2, Solution 27
4
i1 = (20) = 8 A
4+6
6
i2 = (20) = 12 A
4+6
Chapter 2, Solution 28
15 10 = 6 Ω
14
v1 = (40) = 20 V
14 + 6
6
v2 = v3 = (40) = 12 V
14 + 6
Hence, v1 = 28 V, v2 = 12 V, vs = 12 V
Chapter 2, Solution 29
i2 = 0 = v2
12
v1 = 12, i1 = = 3A
4
Hence v1 = 12 V, i1 = 3 A, i2 = 0 = v2
Chapter 2, Solution 30
8Ω
i1
i
+
9A
6Ω v 4Ω
-
12
By current division, i = (9) = 6 A
6 + 12
i1 = 9 − 6 = 3A, v = 4i1 = 4 x 3 = 12 V
p6 = 12R = 36 x 6 = 216 W
Chapter 2, Solution 31
5
v= (20V) = 10 V
5+5
by ohm's law,
v 10
i= = = 1A
4 + 6 4+ 6
pp = i2R = (1)2(4) = 4 W
Chapter 2, Solution 32
20 x30
20 30 = = 12 Ω
50
10x 40
10 40 = = 8Ω
50
20
i1 = (8) = 3.2 A
50
30
i2 = (8) = 4.8 A
50
10
i3 = (12) = 2.4A
50
40
i4 = (12) = 9.6 A
50
Chapter 2, Solution 33
+ +
9A v 1S 9A v 1S
4S 2S
- -
6x3
6 S 3S = = 25 and 25 + 25 = 4 S
9
Using current division,
1
i= (9) = 6 A, v = 3(1) = 3 V
1
1+
2
Chapter 2, Solution 34
By parallel and series combinations, the circuit is reduced to the one below:
i1 8Ω
10 x15
10 ( 2 + 13 ) = = 6Ω
25
15 x15 +
15 (4 + 6) = = 6Ω 28V + v1
25 - 6Ω
-
12 (6 + 6) = 6Ω
28
Thus i1 = = 2 A and v1 = 6i1 = 12 V
8+6
i1 = 2A 8Ω 6Ω 1A
1A
+ +
+ 6V
28V
- 12V 12 Ω 6Ω
- -
i1 = 2A 8Ω 6Ω 1A 4Ω 0.6A
1A
+ + +
+ 6V 3.6V
28V
- 12V 12 Ω 15 Ω 6Ω
- -
-
13 v
Thus, v2 = (3 ⋅ 6) = 3 ⋅ 12, i2 = 2 = 0.24
15 13
Chapter 2, Solution 35
i
+
70 Ω V1 30 Ω
+ i1 - I0
50V a b
- +
20 Ω V0 5 Ω
i2 -
Combining the versions in parallel,
70x30 20x 5
70 30 = = 21Ω , 20 15 = =4 Ω
100 25
50
i= =2 A
21 + 4
vi = 21i = 42 V, v0 = 4i = 8 V
v v
i1 = 1 = 0.6 A, i2 = 2 = 0.4 A
70 20
Chapter 2, Solution 36
The 8-Ω resistor is shorted. No current flows through the 1-Ω resistor. Hence v0
is the voltage across the 6Ω resistor.
4 4
I0 = = =1 A
2 + 3 16 4
v0 = I0 (3 6 ) = 2I 0 = 2 V
Chapter 2, Solution 37
Let I = current through the 16Ω resistor. If 4 V is the voltage drop across the 6 R
combination, then 20 - 4 = 16 V in the voltage drop across the 16Ω resistor.
16
Hence, I = = 1 A.
16
20 6R
But I = =1 4= 6R= R = 12 Ω
16 + 6 R 6+R
Chapter 2, Solution 38
Let I0 = current through the 6Ω resistor. Since 6Ω and 3Ω resistors are in parallel.
6I0 = 2 x 3 R0 = 1 A
Hence
vS = (2 + 4 + 2 3 ) (3 A) = 24 V
vS
I= = 2.4 A
10
Chapter 2, Solution 39
(a) Req = R 0 = 0
R R
(b) Req = R R + R R = + = R
2 2
(c) Req = (R + R ) (R + R ) = 2R 2R = R
1
(d) Req = 3R (R + R R ) = 3R (R + R )
2
3
3Rx R
= 2 =R
3
3R + R
2
R ⋅ 2R
(e) Req = R 2R 3R = 3R
3R
2
3Rx R
= 3R
2
R= 3 = 6R
3 2 11
3R + R
3
Chapter 2, Solution 40
Req = 3 + 4 (2 + 6 3) = 3 + 2 = 5Ω
10 10
I= = = 2A
Re q 5
Chapter 2, Solution 41
1 1 1 1
= + + Ro = 4
R o 12 12 12
R eq = 30 + 60 (10 + R 0 + R ) = 30 + 60 (14 + R )
60(14 + R )
50 = 30 + 74 + R = 42 + 3R
74 + R
or R = 16 Ω
Chapter 2, Solution 42
5x 20
(a) Rab = 5 (8 + 20 30) = 5 (8 + 12) = = 4Ω
25
Chapter 2, Solution 43
5x 20 400
(a) Rab = 5 20 + 10 40 = + = 4 + 8 = 12 Ω
25 50
−1
1 1 1 60
(b) 60 20 30 = + + = = 10Ω
60 20 30 6
80 + 20
Rab = 80 (10 + 10) = = 16 Ω
100
Chapter 2, Solution 44
20 x 20 + 20 x10 + 10 x 20 800
R1 = = = 80 Ω
10 10
800
R2 = = 40 Ω = R3
20
The circuit becomes that shown below.
R1
a
R3
R2 5Ω
11 Ω R1
R2 R3
30 Ω 21 Ω
21 Ω
11 Ω 10.5 Ω
21 Ω 140 Ω
21 Ω 21 Ω
11 Ω 10.5 Ω
R4
R5 R6
21 Ω
6321
R5 = = 45.15
140
10.5//301 = 10.15, 301//21 = 19.63
R5//(10.15 +19.63) = 45.15//29.78 = 17.94
Rab = 11 + 17 .94 = 28.94Ω
Chapter 2, Solution 45
(a) 10//40 = 8, 20//30 = 12, 8//12 = 4.8
(b) 12 and 60 ohm resistors are in parallel. Hence, 12//60 = 10 ohm. This 10 ohm
and 20 ohm are in series to give 30 ohm. This is in parallel with 30 ohm to give
30//30 = 15 ohm. And 25//(15+10) = 12.5. Thus
Rab = 5 + 12.8 + 15 = 32.5Ω
Chapter 2, Solution 46
30x 70 60 + 20
(a) Rab = 30 70 + 40 + 60 20 = + 40 +
100 80
= 21 + 40 + 15 = 76 Ω
(b) The 10-Ω, 50-Ω, 70-Ω, and 80-Ω resistors are shorted.
20x30
20 30 = = 12Ω
50
40x 60
40 60 = = 24
100
Rab = 8 + 12 + 24 + 6 + 0 + 4 = 54 Ω
Chapter 2, Solution 47
5x 20
5 20 = = 4Ω
25
6x3
6 3= = 2Ω
9
10 Ω 8Ω
a b
2Ω
4Ω
Rab = 10 + 4 + 2 + 8 = 24 Ω
Chapter 2, Solution 48
Ra = 103.3 Ω, Rb = 155 Ω, Rc = 62 Ω
Chapter 2, Solution 49
RaRc 12 + 12
(a) R1 = = = 4Ω
Ra + Rb + Rc 36
R1 = R2 = R3 = 4 Ω
60x30
(b) R1 = = 18Ω
60 + 30 + 10
60 x10
R2 = = 6Ω
100
30x10
R3 = = 3Ω
100
R1 = 18Ω, R2 = 6Ω, R3 = 3Ω
Chapter 2, Solution 50
R
30mA 3R
3R 30mA 3R 3R/2
3R
R
3RxR 3
3R R = = R
4R 4
3R (3RxR ) /(4R ) = 3 /(4R )
3
3Rx R
3 3 3 2
3R R + R = 3R R =
4 4 2 3
3R + R = R
2
P = I2 R 800 x 10-3 = (30 x 10-3)2 R
R = 889 Ω
Chapter 2, Solution 51
a a
20 Ω 12 Ω
30 Ω
30 Ω 30 Ω 15 Ω
30 Ω
12 Ω
20 Ω
b b
25 Ω a’ 70 Ω b’
25 Ω 10 Ω 20 Ω a
a
15 Ω 17.5 Ω 35 Ω 15 Ω
5Ω
b
b c’ c’
Chapter 2, Solution 52
100 Ω
a 100 Ω
a
100 Ω 100 Ω 200 Ω
100 Ω 100 Ω
100 Ω
100 Ω R3
R1
100 Ω 200 Ω R2
100 Ω 100 Ω 100 Ω 100 Ω
100 Ω
b 100 Ω
b
R2 = R3 = 80000/(200) = 400
100x 400
But 100 400 = = 80Ω
500
We connect the ∆ to Y.
100 Ω Ra
100 Ω
a a
100 Ω 80 Ω 100 Ω
100 Ω Rb
800 Ω 100 Ω
100 Ω 80 Ω 100 Ω
100 Ω Rc
100 Ω
b b
80 x800 64,000 400
Ra = Rc = = = Ω
80 + 80 + 800 960 3
80x80 20
Rb = = Ω
960 3
We convert T to ∆ .
500/3 Ω 500/3 Ω
a a
100 Ω R2’
320/3 Ω
R1’
R3’
100 Ω
500/3 Ω 500/3 Ω
b b
320 320
100 x100 + 100 x + 100 x
R 1' = 3 3 = 94,000 /(3) = 293.75Ω
320 320 /(3)
3
94,000 /(3)
R '2 = R 13 = = 313.33
100
293.75x 217.6
Rab = 293.75 (2 x108.796) = = 125 Ω
511.36
b 100 Ω
100 Ω
100 Ω 100 Ω
a
100 Ω
100 Ω
100 Ω 100 Ω
b
300 100 = 300 x100 /(400) = 75, 300 (75 + 75) = 300 x150 /(450) = 100
Rab = 100 + 100 300 + 100 = 200 + 100 x 300 /(400)
Rab = 2.75 Ω
100 Ω
100 Ω
300 Ω
300 Ω
300 Ω 100 Ω
100 Ω
Chapter 2, Solution 53
30 Ω
a’
4Ω
20 Ω 20 Ω
a c’
60 Ω
5Ω 80 Ω
b’
b
30x 60
30 (30 + 30) = = 20Ω
90
10 Ω 10 Ω 20 Ω
b
Chapter 2, Solution 54
We convert the T to ∆ .
I0
a I0
a
24 V 20 Ω 60 Ω
40 Ω 140 Ω
+ 24 V 60 Ω
-
10 Ω 50 Ω + 35 Ω
-
20 Ω 70 Ω
70 Ω
b
Req b
Req
R R + R 2 R 3 + R 3 R 1 20 x 40 + 40 x10 + 10 x 20 1400
Rab = 1 2 = = = 35Ω
R3 40 40
Rac = 1400/(10) = 140Ω, Rbc = 1400/(40) = 35Ω
70 70 = 35 and 140 160 = 140x60/(200) = 42
Req = 35 (35 + 42) = 24.0625Ω
I0 = 24/(Rab) = 0.9774A
Chapter 2, Solution 56
We need to find Req and apply voltage division. We first tranform the Y network to ∆ .
30 Ω 30 Ω
16 Ω 15 Ω 10 Ω 16 Ω 37.5 Ω
a b
+ + 30 Ω 20 Ω
20 Ω
100 V 35 Ω 12 Ω 100 V 35 Ω
45 Ω
- -
c
Req Req
By voltage division,
11.672
v = 100 = 42.18 V
11.672 + 16
Chapter 2, Solution 57
4Ω a 2Ω
27 Ω
1Ω
18 Ω
36 Ω c
e
b
d 7Ω
14 Ω
10 Ω
28 Ω
f
280 36x 7
10 28 = = 7.368Ω, 36 7 = = 5.868Ω
38 43
27 x 3
27 3 = = 2.7Ω
30
4Ω
4Ω
1.829 Ω
18 Ω 2.7 Ω
3.977 Ω
0.5964 Ω
5.868 Ω 14 Ω
7.568 Ω
7.568 Ω 14 Ω
Chapter 2, Solution 58
40 Ω 2.25 A 1.5 A
+ 90 V - 0.75 A +
+ 160 Ω 80 Ω
VS - 120
Once the 160Ω and 80Ω resistors are in parallel, they have the same voltage 120V.
Hence the current through the 40Ω resistor is
Thus
vs = 90 + 120 = 210 V
Chapter 2, Solution 59
Chapter 2, Solution 60
p = iv i = p/(v)
i30W = 30/(100) = 0.3 A
i40W = 40/(100) = 0.4 A
i50W = 50/(100) = 0.5 A
Chapter 2, Solution 61
Note that cases (b) and (c) give p that exceed 70W that can be supplied.
Hence case (a) is the right choice, i.e.
R1 and R2
Chapter 2, Solution 62
Im 2 x10 −3 x100
Rn = Rm = = 0.04Ω
I − Im 5 − 2 x10 −3
In = I - Im = 4.998 A
p = I 2n R = (4.998) 2 (0.04) = 0.9992 ≅ 1 W
Chapter 2, Solution 64
110
When Rx = 0, i x = 10A R= = 11 Ω
10
110
When Rx is maximum, ix = 1A R + Rx = = 110 Ω
1
i.e., Rx = 110 - R = 99 Ω
Thus, R = 11 Ω, Rx = 99 Ω
Chapter 2, Solution 65
Vfs 50
Rn = − Rm = − 1 kΩ = 4 kΩ
I fs 10mA
Chapter 2, Solution 66
1
20 kΩ/V = sensitivity =
I fs
1
i.e., Ifs = kΩ / V = 50 µA
20
V
The intended resistance Rm = fs = 10(20kΩ / V) = 200kΩ
I fs
V 50 V
(a) R n = fs − R m = − 200 kΩ = 800 kΩ
i fs 50 µA
(b) p = I fs2 R n = (50 µA) 2 (800 kΩ) = 2 mW
Chapter 2, Solution 67
i0 = 5/(5 + 5) (2 mA) = 1 mA
V0 = (4 kΩ) i0 = 4 x 103 x 10-3 = 4 V
v 0 − v '0 1.143
(c) % error = x 100% = x100 = 28.57%
v0 4
(d) 4k 30 kΩ = 3.6 kΩ. By current division,
5
i '0 = (2mA) = 1.042mA
1 + 3.6 + 5
v '0 (3.6 kΩ)(1.042 mA) = 3.75V
v − v '0 0.25x100
% error = x100% = = 6.25%
v0 4
Chapter 2, Solution 68
(a) 40 = 24 60Ω
4
i= = 0.1 A
16 + 24
4
(b) i' = = 0.09756 A
16 + 1 + 24
0.1 − 0.09756
(c) % error = x100% = 2.44%
0.1
Chapter 2, Solution 69
100
(a) When R2 = 1 kΩ, R m R 2 = kΩ
101
100
V0 = 101 (40) = 1.278 V (with)
100
101 + 30
1
V0 = (40) = 1.29 V (without)
1 + 30
1000
(b) When R2 = 10 kΩ, R 2 R m = = 9.091kΩ
110
9.091
V0 = (40) = 9.30 V (with)
9.091 + 30
10
V0 = (40) = 10 V (without)
10 + 30
(c) When R2 = 100 kΩ, R 2 R m = 50kΩ
50
V0 = (40) = 25 V (with)
50 + 30
100
V0 = (40) = 30.77 V (without)
100 + 30
Chapter 2, Solution 70
+ 8k Ω 15k Ω
25 V
- a b
12k Ω 10k Ω
Chapter 2, Solution 71
R1
iL
Vs +
− RL
vs 30
v s = i L ( R1 + R L )
→ RL = − R1 = − 20 = 10Ω
iL 1
Chapter 2, Solution 72
9V R R ••• R
-
R 12 xR 12 x15
9 = 12 x
→ n= = = 20
n 9 9
Chapter 2, Solution 73
By the current division principle, the current through the ammeter will be
one-half its previous value when
R = 20 + Rx
65 = 20 + Rx Rx = 45 Ω
Chapter 2, Solution 74
+ 12 Ω
VS
-
Chapter 2, Solution 76
Chapter 2, Solution 77
(a) 5 Ω = 10 10 = 20 20 20 20
i.e., four 20 Ω resistors in parallel.
VS + +
- V0 (1-α)R
-
(1 − α)R
V0 = VS = (1 − α )R 0 VS
R + (1 − α)R
V0
= (1 − α)R
VS
Chapter 2, Solution 79
IRx = Vx = 9 - 6 = 3 V
Rx = 3/(I) = 3/(40 mA) = 3000/(40) = 75 Ω
Chapter 2, Solution 80
The amplifier can be modeled as a voltage source and the loudspeaker as a resistor:
V + V +
- R1 R2
-
Case 1 Case 2
V 2 p2 R1 R1 10
Hence p = , = p2 = p1 = (12) = 30 W
R p1 R 2 R2 4
Chapter 2, Solution 81
R eq = R 1 + R 2 5 (1)
V0 5 R2
= (2)
VS 5 R 2 + R 1
5 R1 5R 2
From (1) and (2), 0.05 = 2 = 5 R2 = or R2 = 3.33 kΩ
40 5+ R2
From (1), 40 = R1 + 2 R1 = 38 kΩ
Chapter 2, Solution 82
(a) 10 Ω
40 Ω
10 Ω
80 Ω
1 2
R12
50
R12 = 80 + 10 (10 + 40) = 80 + = 88.33 Ω
6
(b)
3
20 Ω
10 Ω
40 Ω
10 Ω R13
80 Ω
20 Ω
10 Ω
R14
40 Ω
10 Ω
80 Ω
Chapter 2, Solution 83
p1 45mW
I1 = = = 5mA
V1 9V
p 480mW
I2 = 2 = = 20mA
V2 24
60 mA i2 = 20 mA
iR1
R1
+ i1 = 5 mA
24 V
- R2
iR2
I R1 = 60 − 20 = 40 mA and I R 2 = 40 − 5 = 35 mA
15V
Hence, I R1 R1 = 24 - 9 = 15 V R1 = = 375 Ω
40mA
9V
I R 2 R 2 = 9V R2 = = 257.14 Ω
35mA