ELECTRİC CİRCUİT FUNDAMENTALS
ASSİGNMENT - 1
       SİNAN BALÇI
        23014605
QUESTİON - 1
A)
Number of independent current equations = Number of nodes minus 1 (nic=nd - 1 )
There are 6 nodes in this electric circuit.
Thus, nic=5
EQUATİONS:
N1: i1 + i9 =0
N2:   i1 + i2 =i10
N3:   i2 + i4 =i3
N4:   i3 + i8 = i5 + i7
N5:   i4 + i8 + i6 + i10 = i7
B)
Number of independent voltage equations = Number of meshes (nm = 5) as you can
see on the photo given.
EQUATİONS:
M1:   v2 + v3 + v5 + v9 = v1
M2:   v3 + v4 + v7 = 0
M3:   v7 + v8 = 0
M4:   -v5 – v8 + v6 = 0
M5:   -v10 + v4 – v2 = 0
C)
N2:    i1 + 1 = 4 ⟹ i1 = 3A
N1:    3 + i9 = 0 ⟹ i9 = -3A
N3:    1 + i4 = 2 ⟹ i4 = 1A
N4:    2 – 3 = 4 + i7 ⟹ i7 = -5A
N5:    1 – 3 + i6 + 4 = -5 ⟹ i6 = -7A
D)
M3:    2 + v8 = 0     ⟹ v8 = -2V
M4:   -v5 + 2 – 1 = 0 ⟹ v5 = 1V
M2:    v3 + 1 + 2 = 0 ⟹ v3 = -3V
M1:    v2 – 3 + 1 + 3 = 2 ⟹ v2 = 1V
M5:    -v10 + 1 – 1 =0 ⟹ v10 = 0V
E)
P(t) = V(t) . I(t)
P1 = 2 . 3 = 6 Watt (Consumes power)
P2 = 1 .1 = 1 Watt (Consumes power)
P3 = -3 . 2 = -6 Watt (Provides power)
P4 = 1 .1 = 1 Watt (Consumes power)
P5 = 1 . 4 = 4 Watt (Consumes power)
P6 = -1 . -7 = 7 Watt (Consumes power)
P7 = 2 . -5 = -10 Watt (Provides power)
P8 = -2 . -3 = 6 Watt (Consumes power)
P9 = 3 . -3 = -9 Watt (Provides power)
P10 = 0 . 4 = 0 Watt   (Neither provides nor consumes power)
  According to Tellegen’s Theorem; “ In any network,the sum of instantaneous powers
consumed by various elements in various branches is always equals zero.”
  In this circuit , we can see that, the sum of powers equals to zero. That means, our
calculations are accurate.
F)
 i1 = -iç1
 i2 = iç1 – iç5
 i3 = iç1 – iç2     ⟹ iç1 = -3A
 i4 = -iç2 + iç5    ⟹ iç2 = -5A
 i5 = iç1 – iç4     ⟹ iç3 = -10A
 i6 = iç4           ⟹ iç4 = -7A
 i7 = iç3 – iç2     ⟹ iç5 = -4A
 i8 = iç3 – iç4
G)
 V9 = V0 – Vn1 = 0 – Vn1 = 3     ⟹ Vn1 = -3V
 V1 = Vn2 – Vn1 = Vn2 – (-3) = 2 ⟹ Vn2 = -1V
 V2 = Vn2 – Vn3 = -1 – Vn3 = 1 ⟹ Vn3 = -2V
 V3 = Vn3 – Vn4 = -2 – Vn4 = -3 ⟹ Vn4 = 1V
 V7 = Vn4 – Vn5 = 1 – Vn5 = 2    ⟹ Vn5 = -1V
QUESTİON – 2
A)   For 2 periods,graph is showed below.
B)
Average value of the signal:
F0=                         +               )=5A
Effective value of the signal:
   Feff =
    C)
         Energy:
        In this question :
            P(t)=i2(t)
        w(t) =
        =
QUESTİON – 3
  A)
  Last number of my student ID is=5 , so        =4.5
  STEP-1: KVL applies to each loop.
  FOR L1: V1 – V8 + V7 = 0
  FOR L2: V2 + V3 + V8 = 0
  FOR L3: V4 + V6 – V3 = 0
  FOR L4: V1 + V2 + V4 + V5 = 0
  STEP-2: The definition relations of the resistor element are
  written instead of the element voltages.
  FOR L1 : i1.R1 – V8 + V7 = 0
  FOR L2:   i2.R2 + i3.R3 + V8 = 0
  FOR L3:   i4.R4 + V6 – i3.R3 = 0
  FOR L4:   i1.R1 + i2.R2 + i4.R4 + i5.R5 = 0
    STEP-3: The equations of the element current in terms of loop
    currents are written instead.
    FOR L1 : iç1. R1 – iç4. R1 – V8 + V7 = 0
    FOR L2: iç2.R2 – iç4.R2 + iç2.R3 – iç3.R3 +V8 = 0
    FOR L3: iç3.R4 – iç4.R4 + V6 + iç3.R3 – iç2.R3 = 0
    FOR L : İç1.R1 – iç4.R1 + iç2.R2 – iç4.R2 +iç3.R4 – iç4.R5 = 0
    STEP-4: Additional equations must be written for all the elements
    except resistor elements and independent voltage sources.
    ADD.EQUATİON-1: i7 = 1A ⇒ iç1 = 1A
    ADD.EQUATİON-2: i8 =            . i5 ⇒ iç2 - iç1 = -   . iç4
 B)
              Generalized loop equations :
R1 ( iç1 – iç4) + V7 – V8 = 0
R2 ( iç2 – iç4) + R3 ( iç2 – iç3 ) + V8 = 0
R4 ( iç3 – iç4 ) + R3 ( iç3 – iç2 ) + V6 = 0
R1 ( iç1 – iç4 ) + R2 ( iç2 – iç4 ) + R4 (iç3 – iç4) + R5 (-iç4) = 0
iç1 = 1
iç2 – iç1 +   . iç4 = 0
MATRİX FORM:
R                                         R
    R        R       R                    R
         R       R       R                R
                                                      =
R       R            R        R       R       R   R
         C)
         According to matrix above;
         İç1 = 1A
         İç2 = -0.0892 A
         İç3 = -0.3822 A
         İç4 = 0.2420 A
         V7 = -4.4841 V
         V8 = 3.0955 V
MATHLAB CODES:
D)
         STEP-1:KCL applies to nodes.
         FOR D1: i7 + i5 – i1 = 0
         FOR D2: i1 + i8 – i2 = 0
         FOR D3: i2 – i3 – i4 = 0
         FOR D4: i4 – i5 – i6 = 0
         STEP-2: The resistor element voltages are written in terms of node
voltages in the equations.
                             –
         FOR D1: i7 +                 -   =0
         FOR D2:                 + i8 –   = 0
         FOR D3:                          =0
         FOR D4:                          =0
         STEP-3: The equations are arranged so that the node voltage
expressions are on the left side of the equation.
            FOR D1:    Vd1 (              + Vd2 (       + Vd4 (       = - i7
            FOR D2:    Vd1 (      Vd2 (                 + Vd3 (       = -i8
            FOR D3:    Vd2( ) + Vd3(                         =0
            FOR D4:    Vd1 (    + Vd3 (       + Vd4 (                 = i6
        STEP-4:Additional equations must be written for all the elements except
      resistor elements and independent current sources.
              ADD.EQUATİON-1: V6 = Vd4
                                                                  –
              ADD.EQUATİON-2: i8 =             i5   =    (
       E)
                            Generalized loop equations :
               (-G1 – G5).Vd1 + G1. Vd2 + G5.Vd4 + i7 = 0
               G1.Vd1 + (-G1 – G2).Vd2 + G2.Vd3 + i8 = 0
               G2.Vd2 + (-G2 – G3 – G4).Vd3 = 0
               G5.Vd1 + G4.Vd3 + (-G4 – G5).Vd4 – i6 = 0
               V6 = Vd4
                 .G2.Vd4 – .G2.Vd1 – i8 = 0
MATRİX FORM:
F)    According to matrix above:
 Vd1 = 4.4841 V
 Vd2 = -3.0955 V
 Vd3 = 0.8790 V
 Vd4 = 4V
 i8 = -0,3822 A
 i6 = -1,0892 A
MATHLAB CODES:
G)
Circuit and the connections are showed below on Orcad Pspice:
                                     R5
               R1                                         R2                        R4
               10                                         12                        5
                                                                      R3                               V6
                                     i8
                                                                      3                       4V
     I7
1
                                     F
                                     GAIN = 4.5
First of all, I put current probes to measure elements currents.
                               R5
                               2
                                             I
              R1                                 R2                        R4
              10                                 12                        5
                   I                                  I                         I
                                                               R3                             V6
                                i8                                I
                                                               3                         4V
                                                                                                   I
     I7
1
                                F I
                                GAIN = 4.5
          I
                               0
And now we are going to run the simulation and see the results:
  1.0A
   0A
 -1.0A
 -2.0A
      0s              0.1us        0.2us        0.3us          0.4us   0.5us   0.6us   0.7us   0.8us   0.9us   1.0us
           I(R1) I(R2) -I(R5) I(R4) -I(R3) I(V6) I(i8:3) I(I7)
                                                                       Time
For details all the exact values of current are showed below:
  If we compare our results with the matlab results we can see that our simulation is
implemented correctly.
  In question C we found the loop currents. To compare the results,we should write
elements currents in terms of loop currents.
i1= iç1-iç4=0.758 A
i2 = iç2 – iç4 = -0.3312 A
i3= iç2 – iç3 = 0,293 A
i4 = iç3 – iç4 = -0,6242 A
i5 = -iç4 = -0,2420 A
i6 = iç3 = -0,3822 A
i7 = iç1 = 1A
i8 = - .iç4 = -4,5 . iç4 = -1,089 A
 Now,let’s take a look at node voltages:
                               R5
             R1                              R2                R4
             10                              12                5
                                                       R3                   V6
                                i8
                                                       3               4V
     I7
 1
                                F
                                GAIN = 4.5
                               0
To measure node voltages, we need voltage probes:
                                                          R5
                           R1                                           R2                      R4
                           10                                           12                      5
                V                                               V                         V                                   V
                                                                                        R3                               V6
                                                           i8
                                                                                        3                   4V
           I7
1
                                                           F
                                                           GAIN = 4.5
                                                          0     V
And now we are going to run the simulation and see the results:
    5.0V
      0V
    -5.0V
         0s                0.1us         0.2us         0.3us            0.4us   0.5us   0.6us       0.7us        0.8us            0.9us   1.0us
                V(0) V(R5:1) V(R2:1) V(R4:1) V(i8:1)
                                                                                Time
For details all the exact values of current are showed below:
  If compare our simulation results with the matlab results, we can clearly see that
we have found the node voltages exactly right.
  In question F ,we have found the values below and they are compatible with the
values that we have found.
  Vd1 = 4.4841 V
  Vd2 = -3.0955 V
  Vd3 = 0.8790 V
  Vd4 = 4V