High-Speed TTL Optocouplers Datasheet
High-Speed TTL Optocouplers Datasheet
Data Sheet
Lead (Pb) Free
RoHS 6 fully
compliant
RoHS 6 fully compliant options available;
-xxxE denotes a lead-free product
Description Features
The 6N137, HCPL-26xx/06xx/4661, HCNW137/26x1 are • 15 kV/µs minimum Common Mode Rejection (CMR)
optically coupled gates that combine a GaAsP light emit- at VCM = 1 kV for HCNW2611, HCPL-2611, HCPL-4661,
ting diode and an integrated high gain photo detector. HCPL-0611, HCPL-0661
An enable input allows the detector to be strobed. The • High speed: 10 MBd typical
output of the detector IC is an open collector Schottky- • LSTTL/TTL compatible
clamped transistor. The internal shield provides a guar- • Low input current capability: 5 mA
anteed common mode transient immunity specification • Guaranteed AC and DC performance over temper
up to 15,000 V/µs at Vcm = 1000 V. ature: -40 °C to +85 °C
This unique design provides maximum AC and DC circuit • Available in 8-Pin DIP, SOIC-8, widebody packages
isolation while achieving TTL compatibility. The optocou- • Strobable output (single channel products only)
pler AC and DC operational parameters are guaranteed
• Safety approval
from -40 °C to +85 °C allowing troublefree system per-
UL recognized - 3750 Vrms for 1 minute and 5000 Vrms*
formance.
for 1 minute per UL1577 CSA approved
Functional Diagram IEC/EN/DIN EN 60747-5-5 approved with
6N137, HCPL-2601/2611 HCPL-2630/2631/4661 VIORM = 567 Vpeak for 06xx Option 060
HCPL-0600/0601/0611 HCPL-0630/0631/0661
VIORM = 630 Vpeak for 6N137/26xx Option 060
NC 1 8 V CC ANODE 1 1 8 V CC
VIORM = 1414 Vpeak for HCNW137/26x1
ANODE 2 7 VE CATHODE 1 2 7 V O1
• MIL-PRF-38534 hermetic version available
CATHODE 3 6 VO CATHODE 2 3 6 V O2 (HCPL-56xx/66xx)
NC 4 5 GND ANODE 2 4 5 GND
SHIELD SHIELD Applications
• Isolated line receiver
TRUTH TABLE TRUTH TABLE
(POSITIVE LOGIC) (POSITIVE LOGIC) • Computer-peripheral interfaces
LED ENABLE OUTPUT LED OUTPUT
ON H L ON L • Microprocessor system interfaces
OFF H H OFF H
ON L H • Digital isolation for A/D, D/A conversion
OFF L H • Switching power supply
ON NC L
OFF NC H • Instrument input/output isolation
• Ground loop elimination
A 0.1 µF bypass capacitor must be connected between pins 5 and 8.
• Pulse transformer replacement
• Power transistor isolation in motor drives
• Isolation of high speed logic systems
CAUTION: It is advised that normal static precautions be taken in handling and assembly
of this component to prevent damage and/or degradation which may be induced by ESD.
Selection Guide
Widebody
Minimum CMR 8-Pin DIP (300 Mil) Small-Outline SO-8 (400 Mil) Hermetic
Input Single
On- Single Dual Single Dual Single and Dual
dV/dt VCM Current
Output Channel Channel Channel Channel Channel Channel
(V/µs) (V) (mA) Enable Package Package Package Package Package Packages
1000 10 5 YES 6N137
5,000 1,000 5 YES HCPL-0600 HCNW137
NO HCPL-2630 HCPL-0630
10,000
1,000 YES HCPL-2601 HCPL-0601 HCNW2601
NO HCPL-2631 HCPL-0631
15,000
1,000 YES HCPL-2611 HCPL-0611 HCNW2611
NO HCPL-4661 HCPL-0661
1,000 50 YES HCPL-2602 [1]
Notes:
1. Technical data are on separate Avago publications.
2. 15 kV/µs with VCM = 1 kV can be achieved using Avago application circuit.
3. Enable is available for single channel products only, except for HCPL-193x devices.
To order, choose a part number from the part number column and combine with the desired option from the option
column to form an order entry. Combination of Option 020 and Option 060 is not available.
Example 1:
HCPL-2611-560E to order product of 300mil DIP Gull Wing Surface Mount package in Tape and Reel packag
ing with IEC/EN/DIN EN 60747-5-5 Safety Approval in RoHS compliant.
Example 2:
HCPL-2630 to order product of 300mil DIP package in tube packaging and non RoHS compliant.
Option datasheets are available. Contact your Avago sales representative or authorized distributor for information.
Notes:
The notation ‘#xxx’ is used for existing products, while (new) products launched since July 15, 2001 and RoHS compliant option will use ‘-xxxE‘.
Schematic
HCPL-2630/2631/4661
HCPL-0630/0631/0661
6N137, HCPL-2601/2611 ICC
HCPL-0600/0601/0611 VCC
IF HCNW137, HCNW2601/2611 8
ICC 1 IF1
VCC IO1
2+ 8 + VO1
7
IO
VO VF1
6
–
2
VF SHIELD
–
GND 3 IF2
3 SHIELD 5 IO2
IE 7 – VO2
VE 6
VF2
6N137 Schematic a
6N137 Schematic b
YYWW RU
UL
1 2 3 4 RECOGNITION
8-pin DIP Package with Gull Wing Surface Mount Option 300
(6N137, HCPL-2601/11/30/31, HCPL-4661)
LAND PATTERN RECOMMENDATION
9.65 ± 0.25 1.016 (0.040)
(0.380 ± 0.010)
8 7 6 5
1 2 3 4
2.0 (0.080)
1.27 (0.050)
1.080 ± 0.320
(0.043 ± 0.013) 0.635 ± 0.25
(0.025 ± 0.010)
0.635 ± 0.130 12° NOM.
2.54
(0.100) (0.025 ± 0.005)
BSC
DIMENSIONS IN MILLIMETERS (INCHES).
LEAD COPLANARITY = 0.10 mm (0.004 INCHES).
NOTE: FLOATING LEAD PROTRUSION IS 0.25 mm (10 mils) MAX.
8 7 6 5
5.994 ± 0.203
(0.236 ± 0.008)
XXX
3.937 ± 0.127 YWW TYPE NUMBER 7.49 (0.295)
(0.155 ± 0.005) (LAST 3 DIGITS)
DATE CODE
1 2 3 4
PIN ONE 1.9 (0.075)
0.406 ± 0.076
(0.016 ± 0.003) 1.270 BSC
(0.050) 0.64 (0.025)
3.175 ± 0.127
(0.125 ± 0.005) 0 ~ 7° 0.228 ± 0.025
1.524 (0.009 ± 0.001)
(0.060)
0.203 ± 0.102
(0.008 ± 0.004)
* TOTAL PACKAGE LENGTH (INCLUSIVE OF MOLD FLASH) 0.305 MIN.
5.207 ± 0.254 (0.205 ± 0.010) (0.012)
DIMENSIONS IN MILLIMETERS (INCHES).
LEAD COPLANARITY = 0.10 mm (0.004 INCHES) MAX.
YYWW
1 2 3 4
10.16 (0.400)
TYP.
1.55
(0.061) 7° TYP.
MAX. + 0.076
0.254 - 0.0051
+ 0.003)
(0.010 - 0.002)
5.10 MAX.
(0.201)
3.10 (0.122)
3.90 (0.154) 0.51 (0.021) MIN.
2.54 (0.100)
TYP.
1.80 ± 0.15 0.40 (0.016)
(0.071 ± 0.006) 0.56 (0.022) DIMENSIONS IN MILLIMETERS (INCHES).
11.23 ± 0.15
(0.442 ± 0.006) LAND PATTERN RECOMMENDATION
8 7 6 5
9.00 ± 0.15
(0.354 ± 0.006) 13.56
(0.534)
1 2 3 4
1.3 2.29
(0.051) (0.09)
4.00 MAX.
(0.158)
1.80 ± 0.15
(0.071 ± 0.006) 1.00 ± 0.15
0.75 ± 0.25 (0.039 ± 0.006) + 0.076
2.54 0.254 - 0.0051
(0.100) (0.030 ± 0.010)
BSC + 0.003)
(0.010 - 0.002)
DIMENSIONS IN MILLIMETERS (INCHES).
7° NOM.
LEAD COPLANARITY = 0.10 mm (0.004 INCHES).
Regulatory Information
The 6N137, HCPL-26xx/06xx/46xx, and HCNW137/26xx have been approved by the following organizations:
UL IEC/EN/DIN EN 60747-5-5
Recognized under UL 1577, Component Recognition
Program, File E55361.
CSA
Approved under CSA Component Acceptance Notice
#5, File CA 88324.
Option 300 - surface mount classification is Class A in accordance with CECC 00802.
*Refer to the front of the optocoupler section of the current catalog, under Product Safety Regulations section, IEC/EN/DIN EN 60747-5-5, for a
detailed description.
Note: Isolation characteristics are guaranteed only within the safety maximum ratings which must be ensured by protective circuits in application.
10
*JEDEC registered data for the 6N137. The JEDEC Registration specifies 0 °C to +70 °C. Avago specifies -40 °C to +85 °C.
11
12
Notes:
1. Each channel.
2. Peaking circuits may produce transient input currents up to 50 mA, 50 ns maximum pulse width, provided average current does not exceed 20 mA.
3. Peaking circuits may produce transient input currents up to 50 mA, 50 ns maximum pulse width, provided average current does not exceed 15 mA.
4. Derate linearly above 80 °C free-air temperature at a rate of 2.7 mW/°C for the SOIC-8 package.
5. Bypassing of the power supply line is required, with a 0.1 µF ceramic disc capacitor adjacent to each optocoupler as illustrated in Figure 17. Total
lead length between both ends of the capacitor and the isolator pins should not exceed 20 mm.
6. The JEDEC registration for the 6N137 specifies a maximum IOH of 250 µA. Avago guarantees a maximum IOH of 100 µA.
7. The JEDEC registration for the 6N137 specifies a maximum ICCH of 15 mA. Avago guarantees a maximum ICCH of 10 mA.
8. The JEDEC registration for the 6N137 specifies a maximum ICCL of 18 mA. Avago guarantees a maximum ICCL of 13 mA.
9. The JEDEC registration for the 6N137 specifies a maximum IEL of –2.0 mA. Avago guarantees a maximum IEL of -1.6 mA.
10. The tPLH propagation delay is measured from the 3.75 mA point on the falling edge of the input pulse to the 1.5 V point on the rising edge of the
output pulse.
11. The tPHL propagation delay is measured from the 3.75 mA point on the rising edge of the input pulse to the 1.5 V point on the falling edge of the
output pulse.
12. tPSK is equal to the worst case difference in tPHL and/or tPLH that will be seen between units at any given temperature and specified test conditions.
13. See application section titled “Propagation Delay, Pulse-Width Distortion and Propagation Delay Skew” for more information.
14. The tELH enable propagation delay is measured from the 1.5 V point on the falling edge of the enable input pulse to the 1.5 V point on the rising edge
of the output pulse.
15. The tEHL enable propagation delay is measured from the 1.5 V point on the rising edge of the enable input pulse to the 1.5 V point on the falling edge
of the output pulse.
16. CMH is the maximum tolerable rate of rise of the common mode voltage to assure that the output will remain in a high logic state (i.e., VO > 2.0 V).
17. CML is the maximum tolerable rate of fall of the common mode voltage to assure that the output will remain in a low logic state (i.e., VO < 0.8 V).
18. For sinusoidal voltages, (|dVCM | / dt)max = πfCMVCM(p-p).
19. No external pull up is required for a high logic state on the enable input. If the VE pin is not used, tying VE to VCC will result in improved CMR
performance. For single channel products only.
20. Device considered a two-terminal device: pins 1, 2, 3, and 4 shorted together, and pins 5, 6, 7, and 8 shorted together.
21. In accordance with UL1577, each optocoupler is proof tested by applying an insulation test voltage ≥ 4500 Vrms for one second (leakage detection
current limit, II-O ≤ 5 µA). This test is performed before the 100% production test for partial discharge (Method b) shown in the IEC/EN/DIN EN 60747-
5-5 Insulation Characteristics Table, if applicable.
22. In accordance with UL 1577, each optocoupler is proof tested by applying an insulation test voltage ≥ 6000 V rms for one second (leakage detection
current limit, II-O ≤ 5 µA). This test is performed before the 100% production test for partial discharge (Method b) shown in the IEC/EN/DIN EN 60747-
5-5 Insulation Characteristics Table, if applicable.
23. Measured between the LED anode and cathode shorted together and pins 5 through 8 shorted together. For dual channel products only.
24. Measured between pins 1 and 2 shorted together, and pins 3 and 4 shorted together. For dual channel products only
13
15 6 6
VCC = 5.5 V VCC = 5 V VCC = 5 V
VO = 5.5 V TA = 25 °C TA = 25 °C
5 5
VO – OUTPUT VOLTAGE – V
VO – OUTPUT VOLTAGE – V
VE = 2.0 V*
IF = 250 µA
10 4 4
* FOR SINGLE RL = 350 Ω
RL = 350 Ω
CHANNEL
PRODUCTS 3 3
ONLY RL = 1 KΩ RL = 1 KΩ
5 2 2
RL = 4 KΩ RL = 4 KΩ
1 1
0 0 0
-60 -40 -20 0 20 40 60 80 100 0 1 2 3 4 5 6 0 1 2 3 4 5 6
TA – TEMPERATURE – °C IF – FORWARD INPUT CURRENT – mA IF – FORWARD INPUT CURRENT – mA
Figure 1. Typical high level output current vs. Figure 2. Typical output voltage vs. forward input current
temperature
6 6
VCC = 5.0 V VCC = 5.0 V
VO = 0.6 V VO = 0.6 V
5 5
4 4
RL = 350 Ω
3 3
RL = 1 KΩ RL = 350 Ω
RL = 1 KΩ
2 2
1 1
RL = 4 KΩ RL = 4 KΩ
0 0
-60 -40 -20 0 20 40 60 80 100 -60 -40 -20 0 20 40 60 80 100
TA – TEMPERATURE – °C TA – TEMPERATURE – °C
14
0.3 0.3
IO = 9.6 mA IO = 6.4 mA
IO = 9.6 mA IF = 5.0 mA
0.2 IO = 6.4 mA 0.2 40
0.1 0.1
0 0 20
-60 -40 -20 0 20 40 60 80 100 -60 -40 -20 0 20 40 60 80 100 -60 -40 -20 0 20 40 60 80 100
Figure 4. Typical low level output voltage vs. temperature Figure 5. Typical low level output current vs.
temperature
100 100
IF IF
+ +
10 VF 10 VF
– -
1.0 1.0
0.1 0.1
0.01 0.01
0.001 0.001
1.1 1.2 1.3 1.4 1.5 1.6 1.2 1.3 1.4 1.5 1.6 1.7
VF – FORWARD VOLTAGE – V VF - FORWARD VOLTAGE - V
-2.2
-2.2
-2.0
-2.1
-1.8
-2.0
-1.6
-1.9
-1.4
-1.2 -1.8
0.1 1 10 100 0.1 1 10 100
15
IF = 7.50 mA
INPUT
IF IF = 3.75 mA
t PHL t PLH
OUTPUT
VO 1.5 V
100 105
VCC = 5.0 V VCC = 5.0 V
IF = 7.5 mA
tP – PROPAGATION DELAY – ns
TA = 25°C
tP – PROPAGATION DELAY – ns
80 tPLH , RL = 4 KΩ 90 tPLH , RL = 4 KΩ
tPHL , RL = 350 Ω
1 KΩ
60 4 KΩ 75
tPLH , RL = 350 Ω
40 tPLH , RL = 1 KΩ 60
tPLH , RL = 1 KΩ
tPLH , RL = 350 Ω
20 45
tPHL , RL = 350 Ω
1 KΩ
0 4 KΩ
30
-60 -40 -20 0 20 40 60 80 100 5 7 9 11 13 15
Figure 9. Typical propagation delay vs. tem- Figure 10. Typical propagation delay vs. pulse
perature input current
40
PWD - PULSE WIDTH DISTORTION - ns
30
VCC = 5.0 V
IF = 7.5 mA 300 RL = 4 kΩ
20 290
60
RL = 350Ω RL = 1 kΩ
10
40
0 RL = 350 Ω
20
RL = 1 kΩ
RL = 350 Ω, 1 kΩ, 4 kΩ
-10 0
-60 -40 -20 0 20 40 60 80 100 -60 -40 -20 0 20 40 60 80 100
TA - TEMPERATURE - oC TA – TEMPERATURE – °C
Figure 11. Typical pulse width distortion vs. Figure 12. Typical rise and fall time vs. tempera-
temperature ture
16
+5 V
1 VCC 8 3.0 V
INPUT
VE 1.5 V
7.5 mA 0.1 µF RL
IF 2 7 BYPASS
t EHL t ELH
OUTPUT VO
3 6 MONITORING OUTPUT
NODE VO 1.5 V
*C L
4 5
GND
*C L IS APPROXIMATELY 15 pF WHICH INCLUDES
PROBE AND STRAY WIRING CAPACITANCE.
120
tE – ENABLE PROPAGATION DELAY – ns
VCC = 5.0 V
VEH = 3.0 V
VEL = 0 V
90 IF = 7.5 mA
tELH, RL = 4 kΩ
60
tELH, RL = 1 kΩ
30
tELH, RL = 350 Ω
IF
SINGLE CHANNEL DUAL CHANNEL
IF B
1 VCC 8 +5 V 1 VCC 8 +5 V
A
B RL
0.1 µF OUTPUT VO
2 7 BYPASS RL 2 7 MONITORING
A
VFF NODE
OUTPUT VO
VFF MONITORING 0.1 µF
3 6 3 6
NODE BYPASS
GND GND
4 5 4 5
VCM VCM
+ – + –
PULSE PULSE
GENERATOR GENERATOR
Z O = 50 Ω Z O = 50 Ω
VCM (PEAK)
VCM
0V
SWITCH AT A: IF = 0 mA
5V CMH
VO
VO (MIN.)
SWITCH AT B: IF = 7.5 mA
VO (MAX.)
VO
0.5 V CML
Figure 15. Test circuit for common mode transient immunity and typical waveforms
17
300 400
300
200
200
100
100
0 0
0 25 50 75 100 125 150 175 200 0 25 50 75 100 125 150 175
TS – CASE TEMPERATURE – °C TS – CASE TEMPERATURE – °C
Figure 16. Thermal derating curve, dependence of safety limiting value with case temperature per IEC/EN/DIN EN 60747-5-5
NC
ENABLE
0.1µF
NC OUTPUT
18
VCC1 5V 8 5V
VCC2
470 Ω 390 Ω
IF 2 6
+
D1*
VF 0.1 µF
BYPASS
– 3 5
GND 1 GND 2
SHIELD VE 7
1 2
*DIODE D1 (1N916 OR EQUIVALENT) IS NOT REQUIRED FOR UNITS WITH OPEN COLLECTOR OUTPUT.
VCC1 5 V 8 5V
VCC2
470 Ω 390 Ω
IF
1 7
+
D1*
VF 0.1 µF
BYPASS
– 2 5
GND 1 GND 2
SHIELD
1 2
19
DATA
IF 50% INPUTS
CLOCK
VO 1.5 V
IF 50%
DATA
OUTPUTS t PSK
VO 1.5 V
CLOCK
t PSK
t PSK
Figure 19. Illustration of propagation delay skew - tPSK Figure 20. Parallel data transmission example
20
Avago, Avago Technologies, and the A logo are trademarks of Avago Technologies in the United States and other countries.
Data subject to change. Copyright © 2005-2013 Avago Technologies. All rights reserved. Obsoletes AV02-0170EN
AV02-0940EN - April 16, 2013