fle
Jubpero y bes Qipendent ventoble, bo Hye
au ind Jondent variables ctay we Shlain o
fineas. Allan 9 tafe an
N= ath +52% whieh is krowa
as rrucbhip Le Uneox, Ate ntss iow quahien
Te Jind ob, hha t9e tye Poe rtd
Lrast Aquat A heme vse gk Hh rimal eyual
Os JolDouns !
2y = no + ben, + be Sho
Shy = asa, +b ene A by SH Hr
| Sx2y = A224 tS ee
ft a aeyesslon plane of he Jum Y= fbn
dhode
Ido “How ee as "ofa
ot fal ea gna ny
Feu moved & “Ka dondge Of” goede tn
| Bnate bos Sows Ia “glitbrenk of 990k
km
fs moved do
walght 9 9, Ostan ce q
Cres tg) Ciecien) tas
f hs (go
° = (12
Le ho 9
i a0 qo
} $4 oe [28
| 4% ie 136| ———
Solu.
Given? Y= Bo + 1%, 4 Bars
Normal a
zy = npe +p =X) + fr Xo
Suyy = pe Sy + Pisa? + 8. Say
t
Exsy =p Sra t fy SM Pa Saat
mY yy
4 ics: Ibo 640 6 240 as
3 22 m2 33608 bE Ady 4.89
Ve ho 64 "og SEG 69 a
PD 2:0 Yo 108 144 a4 [So A
34 08 3 AI®D. USE 272 S40 84
4 ae Ge 4 892-6 23-04 9-68 = NFS ASE
| BH, = 18 SarU) Sy=o Siy-2906q en SH Day Sxu,>
: =Q6 209 =1181-49 = 18:24
Spot Bp, tI p, = 740
1B Po +62bp, FAAP, = 28064
Ul Po + 2p, + 1697 Pr = USI 4
Bor 14: S6/
Pi = 86-109
Po =12-160
ot %, =3-4 Me HS
T
= [tl + Oo hse et | be Mile
N= 159-58
Tt a Gatien floes o Y on A,X my from tor
ppt(3G;) = 39-4 lees
= (j)*= 24 i
SH, Yip = OU m1 =o]
sy 844 7
Sey ey ages
Soba.
y= pe + Bm 4 fae
OS y > pe'4 Ps 4 ot Po Xa
Sy = pla + oe)
= Gm y-¥) = p, 200) Ba Fem Owkg
= (nm yg) = py E0r%) Ce) tp 80%,
SS 20-76 = 88-4 Bt 46 Po
O44 = F-6P, + 84 By
Bi = o'4 Bo =lS
pom 7 Oi — Pe = Y - pit — pave
| pa. = $S-2 = va fo Us(6-4)
| Bo = 99-56
ea
|
js l= BAS6 + 0.4%) FISK.)classmate
Unét = ont Date
Probable el
slily Reo: ‘ |
ayy
Random frperiment } An enpeurent wlieoh predues mor,
than ont Cudoms — whtn perpoiraed under ame eondib'ong
Sompl dpaset- Te Aer of aU for Thle outcomes oh Q
_Aandor enberrtoaon fe known as [endl Apes denoted
by 'S
d
Gent i Ang Subst oO} S Fe brown -as an tent
metic iy A 6G. de
Probability : det a Aandom exPerinert haa 1 ro.
mutually — Lcbusive
ually Lire etkoushyre. 7
Also’ Tub 'A! be an an! rt of fe given rerden
expofiment such that ‘mo! obo uch opmes be pavourerble
dp A Ten P(A) = noe, urble euteo =m
Tetel no. of Otrtennes n
Noté ;
Li) Ay ony evint A i O€ Pla) &4 anol
PCA) = 1 - PCH)
eee explant QA
TH Maron Youy 1 Rr ony d& euendke ARR!
PCave) = pray Yece) — Plana)
si} AA one mud enclufre i Plana) vo
= PAVE) = pCAy+ F ved)
i ee
Auth Hak “ee euent A already pened Fen
—~|pobof Bk diokd b , plem) —;
{1 Hea Plaoay PiA)#0
p (A)
asec sessed eee eee eee EEERTO on prada Pa) = PCB)
Plana) = Prax P(e) eshte barton wy
Random Vartables
(onside, an expt of fowing 4 pate ef cod
Tuc Simple space! g
S = fan! ar, TH, 173
dapinaX= { Non Of beans)
we xed 21 Foy * 7
x ah 12.4
3 ta untghe seal no. | eae a punch
A v
he. X-is a Jemnehiory Ute mrapy cathe seems
‘, |
4
|
fe. called r0ndon vatable bey
Thr rove] Acal nos Aniyned 40 Cael, pnbeone
l
| a m i enperinede “ut lenown ak raage
al a vandpm vartable Aeecovole) ee lane
denn _Vartablis ar jobless te “4d iy
OFreute Rondom Vouabl (ORV) 1- TD te rar
athe wardens vartatle tc date or
‘hfluile hen TL fe Old Bey
[
|
oor: Towing a ein
fore > Nios Jonas aan head append
tom X= fi Fs 4 eae i
nal
——4
4Continuous Rowden Viet able Ceav ) 1 9) ~the van
hordum ver, is wneountabl, injinile bre. oa
bo an _interya) 0) real Sous “Hen it ts i 27-
Continuous Ral ene vartebles
Brobetit Distibubon of Bawden verfable
a Ka fa a Halle lay be a dfscrete random vertable
chen use can jind__POK= x1) = POX)
PO =*2) = POG) - ake,
Now we Atbrteen} Ayslem abcally the _rardem. vay.
XQ teedtspending parchobé thes in G dab as follows. | —
Vv
x | % Me - ee
PG | Ren Pot)
Whi ol. te known as prob distibuben Es x R ik sakshes
THe following 2 tendihong, | —
WP) o (oo
li) SOc) = 4
—__| ‘
ae ee hun, he
| pretabtlivy 6) X= x;
AW er
fnckh'ons 5
et POR) Ni grenar ag
=SPOj=eT
dineled by P=) o Plu) ov PO).
Prve ig it Aas es ce Jelleraing 2Doth, Anon [Pdf eet
: eke [aE] Be 8 ie ton ah
ae Conv) the ust Ane pistbily aM
ssl: POx=ti) ty wh mig rhted of 2d;
ob
he. PCx=xi) P(%) -Sx ox 4S;
P(v-6e Sn Z VEX
cD)
which is Brown oe PDP, it Adlbpies Yhe
plowing A eondthions | —
Woah
‘
}) Lo wm
_ fire =
3 |S
ee I
“Gomulatine Deikibuton Binchon CCE)
: Tp x is a_DRV hen P(x 2%) ele
7 Say ov FIX) js known gr COL ond #67 |
_ dipined a3! FUG) = lx) = = A(x) |
: ui) a CAV thon PLXEX;) — dincded
| F(X) FO) tc Known as coh Qe
anee difinad 0 FO) = Fl«) oo
|
[ Mean, Mean of a -ranclom vartabe KX fe 9
_ l _ (Emm. known 04 tts expectation bested 4
=.classmate
RE] = fede af 5 CRY
Voriente_: Vasiomee 8) a warden variable daredeol
pO defined by 2 ©n= C[ (x E09)*]
by © EA a= © (k=n)™)
ot= SUCH) pe), th x is DRV
x Fe ayy tae : 3 Sets OY
T Nore. * oe alo be wren o4 | —
oe = E(x )- feut
ots Efe) —
(1) the prob- mass uncon a4 aDRV is gin by t-
pbo_= 4 mel 2 --- --- YBa 1 —
ol
1) bbe even)
bet fle multe 93)
plt= even) = pws. ots - +
= plea) + plr4) + peed +-~-
= 4 + \ t1 t----
a 24 2s
= 4 jue + [ty aryy24 ] 6
ae 4 (47 (a7 =
= 1 1) = fy
—| 2 Uy] [3]
ba = ven) = lL)
CS)
a“Tepe r= Me
Vg
GA person fag toda Z balls ak jandam fer |
Tine ene
rooney =F J) :
=
i oc 4 whtle & 8rd bells Buk
J €70 foi tach_unhile ball Weak
ee f “Cree Jor as red Ball tate he ober
Fino) hs__expeckabion
Seln.
ae Lab X — Amounk » 4 bs. to_p, para
~~ To be joe ex]
ce ek oh won
feos me EX [30 140
Fae I % a %
Let bu) = Ge = 2 = 4 = pl2Reet)
cl ' % + >
“. pl) = xq = 424 = 4 _ pliasty)
a WG iota > f
on I pUsa)= 4G = 6 =Q = plead
* 3
|
|
2 at
et) as 21. plu) * H.. bla) + 2%. Ke)
cian eh riae ee +t Mow
nae > = 2.
E[x]= ie =E 131-426 — Lt fecka hou.
dunt to be potdclassmate
Date
Pege
Se
3
ctu In a Aus find _ he enpecled| nos ef tosses
o|__cofn
ik X >No o} tosses § extn HOOT Tr rrr tat
wp be phd epee
% Az! ty ME
Secret 2 3 Gis.
play = Vo pou) = Wen = V4
boflewty 1- ple) splay Ve | poa)= Vie, plis)= Ka
EU) = ty + ORG + 3Ye Te Ft 0 Vor
ie t Bleed Sot St
o ptt aa
GQ) the Prsbebiy Bit) 0 DRY A &* clad by b=
Pre eee eat San ee STE
PO) ) K 2K 2K BK KR Qe Teak
Erad the hee of (Kp) POSE) gem Piece) plienad
W) Mean L Vattance of X
Soler,
f) PHEO Vx
= KO eee wed
RSV SL a ee
_ Kt 2K 40K 48k HEE RK™ OTK OE |
—_| Soka Qk =| =O
___| Keel Vo =H bub KEO
—__| ~ [K= Vio 7 a
ere ae eee tee ete ttePreae) = Pe) + PD
QE 49K
= atk
PURZE) = PL) + A) +P) a 0C4) t PS)
= Keeper 1 - oe)
= [of
= 0-8}
PUIEx $5) = P(xe0) = 0 -B/
(tit
Mean & Vorance }—
Mun = Ele)
= Sxpl)
Ca
Kt M24 TK +4 Ske TK HK MY
Aq Ko 4 9K
= BK + 6EK* ADK
= 66k 430K
= 0.66 +3
Mean = 83:6C
Vorulnee
=
= ara) — (ea) ™
Elbe) = arpln)
= Kt Awa Lute. 3K pase’ F
$6 ake + 49. 4e-tu)
= ROK + AB K + Q9K™ +83 at
440 kK * 4k
AA + 12-4
= 16%
——
W
‘classmate
Dote___—
’ —_
vat : tient
Te PDE of a -randorn vartoble X Ss given by me
OQ = yoe ot ee
‘Yn BO"
=f $09 dp}
e:
=> fre a
ee aa
Syl [ea ae =]
oie ee
Sys [ A+O0 + Saree
A TS CULT!LULLUW
= Rye =.
(ye = Vo)
fi) * Maca gine p— v ae .
Mean = €(X]}
=" ‘%
= “(xy e@ de mye Poe de
+ x oo oc 4
=f fag tna fps eet
| pret a rs i=
S ye Pe fey +
arf — (1-0) tfosotte
Dye fatter )y = Le)
|
Mean =o. ann ek]
(ia]_Vowence ee at
“ee eT = (ERD
Grady ¢ Of) @
=o a7) dn
- Yo edn 7
a wl
= y [ee = Te
JS : _* af f-t &
Gi
+ 2 it )
a ° 3
(0- 0-22
= ffo-o +2 —([0 -0 +0 +] ocorerl a
1
pate =e
| Var) = 3-8
= 2
=A wan en variable & has ‘Ta disihy Jn gin by pe
7 ~ eo cn ser Jena g
J) = he ae
Tk) pose) r= a
fi 360 S 3 Te =o Kao
= A =. i
= dn oo=
= «f ten
2k [Yen'n | =! ;
5S «xilm- (172) ) =)
CK =
fe 4)
x_J
im pCx>o) 7 ae
=f tejdn = KL an
. a tat
= F =
=k [fe x). = K[ _-° )
= ke 7
oe
bE | 6 cauginous RYU is grisen by }— DE Bx>
it
Of ne nah a Rb suc
Mi) plisa)= plea)
i) plore = 0.05
—_Seln»
2 ee— (ii) he —APanurtion penrb) = [ [694% |
a ee ees
a !
ea I Bn dn = SP Bxb an
ae & o =
iia [ ey, = 1-63
= Go l=b2 = iD.0 Ss
ota b> =0qs ‘
ae es) (P|
“BVT olfameter of an thohie” tably is eraomad
ne am a CRV usith PDF: —
ae di) = kx Ct-x) 0 exe 4
ot KO find
ee ii) Rad mean
oe [hii) fad vournee
“4 | Sly.
[]]
~
jeans
x
'
a
2
=
pagina nnyclassmate.
Page
Ela) = Papodan
°
= vz Kx dn _
SK TG dn
an eo ee
“3
wot
saa Ele CaeE
loudest EL #™)
= MN Yoda
2.
ak!f (tn) da = K
Ca
NESE
ae
Kl wt oe
as
=e = a
= Os
f 2 = 08 oI = ddsPvE
By a (3, UV wnet
f= | 0 y Ener
Za-ax 7 £x£3
Oo oturwite =
Find! = —
WL a -
(i Cor 4 x
Wn" f Badu a * "Te: ~o54) der]
—> aE + a eax ey] =
ee ee a
4at Si-4Sa=} ; a =
4: Sa =
a= Al —————
Gil cpp :~ Flo) = p(x ex) :
=e Hada cf :
i
= a ee
th," yan te Sens}
fx) =e + 3.2 dbo
ol 8.
Tt
rs ™ interval (4245 Fas lial
eee zi aS
—>) Date
classmate
Page
f(r) = e+ [ag de 2s. Ta dx
° i ia
| Las Ot aed Qh 25
7 area
: as
= Qn™ 4 2m ~ 2
peda sy Bi et
( Fie an 44 la
9
[ise 14 Dees Societe Ect
tm mierwal ? Bom ota
eo = frye fe Ae r
tes otf Bans 7 dos 4 ea
W
°
4
b
4
Ve
oo
ly
YI
"Ua —2%..du
a3 Tt
(lL fod= =
g
m23i-
fae 45 ° f
Te 4a
: ( O_, «£0 aren
EC) au 273 bens
BY eee
6n-n™ ZLne ENshow ea DAV tolled”
mole Dp.g sa ti “lid fort
4 she dishtbibion where:
n> no-o} Frals_
b > Mob of swears tn each Bod. -
ge top wt fib ep atl. Ns eath -beal
=”
The ae PME flex! the probability Pa
fa Aulteys suk eho ime of tals
wary |
a]
nl = oer 3
@yr fe a Seat een
- ~ 3/72)
+ a! paar :
nian) pees
i Ay 1
= nb. + nf) 5
; bg = Pa! + nts) rae
BE eee raat : 2Ln3
apie ake te
ude tf
a abd 7 Cah =
Vanfance :
= FT ERIE
eel : =e Es n-X
= oS tt er
eo aa 3
= 2 [Ge <1) to) com
Pees 2go
n+ >
= 2 | zev-a) ae ie dest
sing tt Hem, Ts + : prob. of _man will One Upto Jo
t we8 Siig ta secre :
ae ect SAS
a my =10.
ere ve = PrP t—3 a
aoe poo) = ey pe gh Me O41, 2 ---L0
an plas "cy [o-3)" (0.3)
ee . nae p(2ecr
= ple) + pC) +B) + BID + plte
= te oa 0.3) fhe tee %
4G CMOS) GE (09>
= AH0K GD9S x10! + Ip (22%35K0 ) +
4S KS 1999 Y103 4 1D x Os0ID] “+ (=X) ©0282
= Ooo} +2663 +0:293y 4 0-1} qoobe 4
pabcie sag {Mt Saratgoo pene wstth 5: cATdasin oh Z how aaa
Jonata apould. be zncpected. to Rave! =
Bb
3 3 gids
ny 2 boys On 3 boys
Gh Given 17 5 children
—+ prob. } a My in @ penal = ye na)
>
PMPs a
pod =" p 9 7
| - et frre 7 neh nes
5} pecado_t —
pea) te
= Sex (hy (a) : : Are
aa k
FE ulin = uk a} B60 deol
=(Sye Ee ote is
zo Yeo Tie =[ O52 |
Ww) pO) r=
SCo Cy)" (ee :
lo x Va * Ve See _ Ss
S - i
of tye
Iba ) [+3 ;
ew Roy. Sdyhion = cut Seo Jondlies sapecbed m2
pote favtes S Bogs ae! *
= Beox S/i¢
“Cosa
eee ee eet|
fi) pO) + p) = pred)
5 4_&
i We 1
= Se
Rope nes dp jamibes = np
= Boor S -
= Soo ; (eld
CG) Deo of Io betes “an _unblasesl tafn
ih Anus Tony oses Con, Wwe ¢: eck
Hi) le . Sanaa
n=1o poh gave
— rob + heads ny fog
: Pane f= - Gea
[pee) =e Bp as
ui We! j * (ny * = :
i) pla) = es
eT Ee —
= “lio =
x |} RK
| De ee
I = Is zd
+ Noe Cases = a
f lo of aah my (0 Ath:
[Bae
= $95 & 1-97
Br
| XC sels J22a classmate;
eee =
—$
oe
2
ag a By 3 BST a, Tala
[etsy 45% 1 t Jo x4 aes oe 1
118 24 7024 Loree ©=—84
Ta 1% Se) a ‘
—T 4 : 4a. fate ‘
1 Rep ne: Couey = (00 Vey “fet
= (9-18
& 19. ebs"
>
tT
+ 7
TW no iY dete p Rone Cones ma Ode or Ame Few
brnomdal vortate sith frre bates sy 6-2 Ty lo Grea
ant chosen at rendem atiany fhatank ea Ame
| Ken Jind prrobobinity —Kad !
CU) 3 aw are 7
; (WY Atos 2 Gres i
yi Afmoce 3 Uncen Oe loud : : \
Pf Z
=p =_ b. oy A Ler prone Line bus
boo ar 3 6B — 7
“= |o
PME ee
pC) = a
me = =e 7 ae Daa “=n ++, 10
. =rf = prob: a
hi - st + pti) EI pa)
ms Te Oy. a CEES .
= 0: 30lt89 ;
TS 010739 + 026943
= 0/39
+ 0 80/989 + 9 2°/
_fetssen Dishibutern
the probarbilthy Ashi budoy pe Sees
1
Qiven reba
plat) 7 -— nA ae
ction pad. ikea t
3s_brown ae oe
Tea ease vortate
A_5. a> constankt vealed Povamute se
i =
| Mean = ET]
= poy) :
2B wer
3 at
TT
,
= < eA
(QH))J
Fa
= eo A 2
(tean = A\
Notaner = ECC] —(ERI)™
Cons} dea }~ et kN i hove
Efur) = 2 x? ply) :
= = febean) poy
= = but) bn) 4 Z plo) ¢
= e[aeDe d= 1a A.
ce
-3 eS) +AYe vale of 12 Js, Prob. ol ramsmtaton roy >
$s 0-001 Jor cock us, impale rab. “that 2
i) no Crnor_durrrq a HS
i) J ror during us :
Ti) gXeasp 1 Ord, " ”
iv) albmpit keo “ ”
Sin Betg i
“Given | pes. of Arr! _ p= Ooot
a2 ener,
>
!
n
Note :
A
N
e
o
bmi ts +
bol) =
T
a aoe ea
a) Rp probe = Hal
toe
6 as at
——=
5 =e) 4p) +P@Oe
classmate S
Date _
Page ____—
= 048809 40 ONG + eC = (2 1212)
2
ze 0-9a9G4
—
On an average D0 RAC, ane found ma _jinsol volume
blood Jey a normal _peuon . DefeamPnie the prob -
sade Hs. blood comple of (& novmal ppeison wot!
tentain !— (1) lon han 18 ROCs
T)_mow “an 16 ROCs
—
= — FJiven |-—
PMEI- pO) = os 20%
T 2
i) hep. pre pixcis)
2
= RG = pl TSP) Kee ]
= pW POs + pay
oe Te [a at + 207 +
Cie St 4)
ob aoe es “ae 7
P(Ai/e)
ANI pia)
ce)
=> FEROS) = P(b/6). PU) 7}
PL B08) = P(8/a) = PLA)
f
I> e(ai/e) = Pl6/A,). PCA.)
PCe)
New ! =
06) =p [lean,) v (G0A2) }
= p(6nA,) v P(6Aa)
= p(@/ny. PCA) + P(O/Aa), PA)
ar x
Ple/a.) =e! (a) ne 2
x
aah (ae2 eS
2
(ela) =e Ga)” = 2 Uae)"
A! a
tis Lae (ey
2
z
e © (400) + e (1900)
ae z
A = 8000 X 800) = BnD = at L
BOT
ze 8
(nF Lo: (4 po Ar
placa) _= pls Pe ta
eer ye tM te
21
plo Meetfreneine 285
—+—
noy 3 %
Ag fale
sxe
as
4 ih
vo sy =