0% found this document useful (0 votes)
113 views31 pages

Unit 2

Notes for probability

Uploaded by

Sujal Prakash
Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content, claim it here.
Available Formats
Download as PDF or read online on Scribd
0% found this document useful (0 votes)
113 views31 pages

Unit 2

Notes for probability

Uploaded by

Sujal Prakash
Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content, claim it here.
Available Formats
Download as PDF or read online on Scribd
You are on page 1/ 31
fle Jubpero y bes Qipendent ventoble, bo Hye au ind Jondent variables ctay we Shlain o fineas. Allan 9 tafe an N= ath +52% whieh is krowa as rrucbhip Le Uneox, Ate ntss iow quahien Te Jind ob, hha t9e tye Poe rtd Lrast Aquat A heme vse gk Hh rimal eyual Os JolDouns ! 2y = no + ben, + be Sho Shy = asa, +b ene A by SH Hr | Sx2y = A224 tS ee ft a aeyesslon plane of he Jum Y= fbn dhode Ido “How ee as "ofa ot fal ea gna ny Feu moved & “Ka dondge Of” goede tn | Bnate bos Sows Ia “glitbrenk of 990k km fs moved do walght 9 9, Ostan ce q Cres tg) Ciecien) tas f hs (go ° = (12 Le ho 9 i a0 qo } $4 oe [28 | 4% ie 136 | ——— Solu. Given? Y= Bo + 1%, 4 Bars Normal a zy = npe +p =X) + fr Xo Suyy = pe Sy + Pisa? + 8. Say t Exsy =p Sra t fy SM Pa Saat mY yy 4 ics: Ibo 640 6 240 as 3 22 m2 33608 bE Ady 4.89 Ve ho 64 "og SEG 69 a PD 2:0 Yo 108 144 a4 [So A 34 08 3 AI®D. USE 272 S40 84 4 ae Ge 4 892-6 23-04 9-68 = NFS ASE | BH, = 18 SarU) Sy=o Siy-2906q en SH Day Sxu,> : =Q6 209 =1181-49 = 18:24 Spot Bp, tI p, = 740 1B Po +62bp, FAAP, = 28064 Ul Po + 2p, + 1697 Pr = USI 4 Bor 14: S6/ Pi = 86-109 Po =12-160 ot %, =3-4 Me HS T = [tl + Oo hse et | be Mile N= 159-58 Tt a Gatien floes o Y on A,X my from tor ppt (3G;) = 39-4 lees = (j)*= 24 i SH, Yip = OU m1 =o] sy 844 7 Sey ey ages Soba. y= pe + Bm 4 fae OS y > pe'4 Ps 4 ot Po Xa Sy = pla + oe) = Gm y-¥) = p, 200) Ba Fem Owkg = (nm yg) = py E0r%) Ce) tp 80%, SS 20-76 = 88-4 Bt 46 Po O44 = F-6P, + 84 By Bi = o'4 Bo =lS pom 7 Oi — Pe = Y - pit — pave | pa. = $S-2 = va fo Us(6-4) | Bo = 99-56 ea | js l= BAS6 + 0.4%) FISK.) classmate Unét = ont Date Probable el slily Reo: ‘ | ayy Random frperiment } An enpeurent wlieoh predues mor, than ont Cudoms — whtn perpoiraed under ame eondib'ong Sompl dpaset- Te Aer of aU for Thle outcomes oh Q _Aandor enberrtoaon fe known as [endl Apes denoted by 'S d Gent i Ang Subst oO} S Fe brown -as an tent metic iy A 6G. de Probability : det a Aandom exPerinert haa 1 ro. mutually — Lcbusive ually Lire etkoushyre. 7 Also’ Tub 'A! be an an! rt of fe given rerden expofiment such that ‘mo! obo uch opmes be pavourerble dp A Ten P(A) = noe, urble euteo =m Tetel no. of Otrtennes n Noté ; Li) Ay ony evint A i O€ Pla) &4 anol PCA) = 1 - PCH) eee explant QA TH Maron Youy 1 Rr ony d& euendke ARR! PCave) = pray Yece) — Plana) si} AA one mud enclufre i Plana) vo = PAVE) = pCAy+ F ved) i ee Auth Hak “ee euent A already pened Fen —~|pobof Bk diokd b , plem) —; {1 Hea Plaoay PiA)#0 p (A) asec sessed eee eee eee EEE RTO on prada Pa) = PCB) Plana) = Prax P(e) eshte barton wy Random Vartables (onside, an expt of fowing 4 pate ef cod Tuc Simple space! g S = fan! ar, TH, 173 dapinaX= { Non Of beans) we xed 21 Foy * 7 x ah 12.4 3 ta untghe seal no. | eae a punch A v he. X-is a Jemnehiory Ute mrapy cathe seems ‘, | 4 | fe. called r0ndon vatable bey Thr rove] Acal nos Aniyned 40 Cael, pnbeone l | a m i enperinede “ut lenown ak raage al a vandpm vartable Aeecovole) ee lane denn _Vartablis ar jobless te “4d iy OFreute Rondom Vouabl (ORV) 1- TD te rar athe wardens vartatle tc date or ‘hfluile hen TL fe Old Bey [ | oor: Towing a ein fore > Nios Jonas aan head append tom X= fi Fs 4 eae i nal ——4 4 Continuous Rowden Viet able Ceav ) 1 9) ~the van hordum ver, is wneountabl, injinile bre. oa bo an _interya) 0) real Sous “Hen it ts i 27- Continuous Ral ene vartebles Brobetit Distibubon of Bawden verfable a Ka fa a Halle lay be a dfscrete random vertable chen use can jind__POK= x1) = POX) PO =*2) = POG) - ake, Now we Atbrteen} Ayslem abcally the _rardem. vay. XQ teedtspending parchobé thes in G dab as follows. | — Vv x | % Me - ee PG | Ren Pot) Whi ol. te known as prob distibuben Es x R ik sakshes THe following 2 tendihong, | — WP) o (oo li) SOc) = 4 —__| ‘ ae ee hun, he | pretabtlivy 6) X= x; AW er fnckh'ons 5 et POR) Ni grenar ag =SPOj=eT dineled by P=) o Plu) ov PO). Prve ig it Aas es ce Jelleraing 2 Doth, Anon [Pdf eet : eke [aE] Be 8 ie ton ah ae Conv) the ust Ane pistbily aM ssl: POx=ti) ty wh mig rhted of 2d; ob he. PCx=xi) P(%) -Sx ox 4S; P(v-6e Sn Z VEX cD) which is Brown oe PDP, it Adlbpies Yhe plowing A eondthions | — Woah ‘ }) Lo wm _ fire = 3 |S ee I “Gomulatine Deikibuton Binchon CCE) : Tp x is a_DRV hen P(x 2%) ele 7 Say ov FIX) js known gr COL ond #67 | _ dipined a3! FUG) = lx) = = A(x) | : ui) a CAV thon PLXEX;) — dincded | F(X) FO) tc Known as coh Qe anee difinad 0 FO) = Fl«) oo | [ Mean, Mean of a -ranclom vartabe KX fe 9 _ l _ (Emm. known 04 tts expectation bested 4 =. classmate RE] = fede af 5 CRY Voriente_: Vasiomee 8) a warden variable daredeol pO defined by 2 ©n= C[ (x E09)*] by © EA a= © (k=n)™) ot= SUCH) pe), th x is DRV x Fe ayy tae : 3 Sets OY T Nore. * oe alo be wren o4 | — oe = E(x )- feut ots Efe) — (1) the prob- mass uncon a4 aDRV is gin by t- pbo_= 4 mel 2 --- --- YBa 1 — ol 1) bbe even) bet fle multe 93) plt= even) = pws. ots - + = plea) + plr4) + peed +-~- = 4 + \ t1 t---- a 24 2s = 4 jue + [ty aryy24 ] 6 ae 4 (47 (a7 = = 1 1) = fy —| 2 Uy] [3] ba = ven) = lL) CS) a “Tepe r= Me Vg GA person fag toda Z balls ak jandam fer | Tine ene rooney =F J) : = i oc 4 whtle & 8rd bells Buk J €70 foi tach_unhile ball Weak ee f “Cree Jor as red Ball tate he ober Fino) hs__expeckabion Seln. ae Lab X — Amounk » 4 bs. to_p, para ~~ To be joe ex] ce ek oh won feos me EX [30 140 Fae I % a % Let bu) = Ge = 2 = 4 = pl2Reet) cl ' % + > “. pl) = xq = 424 = 4 _ pliasty) a WG iota > f on I pUsa)= 4G = 6 =Q = plead * 3 | | 2 at et) as 21. plu) * H.. bla) + 2%. Ke) cian eh riae ee +t Mow nae > = 2. E[x]= ie =E 131-426 — Lt fecka hou. dunt to be potd classmate Date Pege Se 3 ctu In a Aus find _ he enpecled| nos ef tosses o|__cofn ik X >No o} tosses § extn HOOT Tr rrr tat wp be phd epee % Az! ty ME Secret 2 3 Gis. play = Vo pou) = Wen = V4 boflewty 1- ple) splay Ve | poa)= Vie, plis)= Ka EU) = ty + ORG + 3Ye Te Ft 0 Vor ie t Bleed Sot St o ptt aa GQ) the Prsbebiy Bit) 0 DRY A &* clad by b= Pre eee eat San ee STE PO) ) K 2K 2K BK KR Qe Teak Erad the hee of (Kp) POSE) gem Piece) plienad W) Mean L Vattance of X Soler, f) PHEO Vx = KO eee wed RSV SL a ee _ Kt 2K 40K 48k HEE RK™ OTK OE | —_| Soka Qk =| =O ___| Keel Vo =H bub KEO —__| ~ [K= Vio 7 a ere ae eee tee ete tte Preae) = Pe) + PD QE 49K = atk PURZE) = PL) + A) +P) a 0C4) t PS) = Keeper 1 - oe) = [of = 0-8} PUIEx $5) = P(xe0) = 0 -B/ (tit Mean & Vorance }— Mun = Ele) = Sxpl) Ca Kt M24 TK +4 Ske TK HK MY Aq Ko 4 9K = BK + 6EK* ADK = 66k 430K = 0.66 +3 Mean = 83:6C Vorulnee = = ara) — (ea) ™ Elbe) = arpln) = Kt Awa Lute. 3K pase’ F $6 ake + 49. 4e-tu) = ROK + AB K + Q9K™ +83 at 440 kK * 4k AA + 12-4 = 16% —— W ‘ classmate Dote___— ’ —_ vat : tient Te PDE of a -randorn vartoble X Ss given by me OQ = yoe ot ee ‘Yn BO" =f $09 dp} e: => fre a ee aa Syl [ea ae =] oie ee Sys [ A+O0 + Saree A TS CULT!LULLUW = Rye =. (ye = Vo) fi) * Maca gine p— v ae . Mean = €(X]} =" ‘% = “(xy e@ de mye Poe de + x oo oc 4 =f fag tna fps eet | pre t a rs i= S ye Pe fey + arf — (1-0) tfosotte Dye fatter )y = Le) | Mean =o. ann ek] (ia]_Vowence ee at “ee eT = (ERD Grady ¢ Of) @ =o a7) dn - Yo edn 7 a wl = y [ee = Te JS : _* af f-t & Gi + 2 it ) a ° 3 (0- 0-22 = ffo-o +2 —([0 -0 +0 +] ocorerl a 1 pate =e | Var) = 3-8 = 2 = A wan en variable & has ‘Ta disihy Jn gin by pe 7 ~ eo cn ser Jena g J) = he ae Tk) pose) r= a fi 360 S 3 Te =o Kao = A =. i = dn oo= = «f ten 2k [Yen'n | =! ; 5S «xilm- (172) ) =) CK = fe 4) x_J im pCx>o) 7 ae =f tejdn = KL an . a tat = F = =k [fe x). = K[ _-° ) = ke 7 oe bE | 6 cauginous RYU is grisen by }— DE Bx> it Of ne nah a Rb suc Mi) plisa)= plea) i) plore = 0.05 —_Seln» 2 ee — (ii) he —APanurtion penrb) = [ [694% | a ee ees a ! ea I Bn dn = SP Bxb an ae & o = iia [ ey, = 1-63 = Go l=b2 = iD.0 Ss ota b> =0qs ‘ ae es) (P| “BVT olfameter of an thohie” tably is eraomad ne am a CRV usith PDF: — ae di) = kx Ct-x) 0 exe 4 ot KO find ee ii) Rad mean oe [hii) fad vournee “4 | Sly. []] ~ jeans x ' a 2 = pagina nny classmate. Page Ela) = Papodan ° = vz Kx dn _ SK TG dn an eo ee “3 wot saa Ele CaeE loudest EL #™) = MN Yoda 2. ak!f (tn) da = K Ca NESE ae Kl wt oe as =e = a = Os f 2 = 08 oI = dds PvE By a (3, UV wnet f= | 0 y Ener Za-ax 7 £x£3 Oo oturwite = Find! = — WL a - (i Cor 4 x Wn" f Badu a * "Te: ~o54) der] —> aE + a eax ey] = ee ee a 4at Si-4Sa=} ; a = 4: Sa = a= Al ————— Gil cpp :~ Flo) = p(x ex) : =e Hada cf : i = a ee th," yan te Sens} fx) =e + 3.2 dbo ol 8. Tt rs ™ interval (4245 Fas lial eee zi aS — >) Date classmate Page f(r) = e+ [ag de 2s. Ta dx ° i ia | Las Ot aed Qh 25 7 area : as = Qn™ 4 2m ~ 2 peda sy Bi et ( Fie an 44 la 9 [ise 14 Dees Societe Ect tm mierwal ? Bom ota eo = frye fe Ae r tes otf Bans 7 dos 4 ea W ° 4 b 4 Ve oo ly YI "Ua —2%..du a3 Tt (lL fod= = g m23i- fae 45 ° f Te 4a : ( O_, «£0 aren EC) au 273 bens BY eee 6n-n™ ZLne EN show ea DAV tolled” mole Dp.g sa ti “lid fort 4 she dishtbibion where: n> no-o} Frals_ b > Mob of swears tn each Bod. - ge top wt fib ep atl. Ns eath -beal =” The ae PME flex! the probability Pa fa Aulteys suk eho ime of tals wary | a] nl = oer 3 @yr fe a Seat een - ~ 3/72) + a! paar : nian) pees i Ay 1 = nb. + nf) 5 ; bg = Pa! + nts) rae BE eee raat : 2 Ln3 apie ake te ude tf a abd 7 Cah = Vanfance : = FT ERIE eel : =e Es n-X = oS tt er eo aa 3 = 2 [Ge <1) to) com Pees 2go n+ > = 2 | zev-a) ae ie dest sing tt Hem, Ts + :

prob. of _man will One Upto Jo t we8 Siig ta secre : ae ect SAS a my =10. ere ve = PrP t—3 a aoe poo) = ey pe gh Me O41, 2 ---L0 an plas "cy [o-3)" (0.3) ee . nae p(2ecr = ple) + pC) +B) + BID + plte = te oa 0.3) fhe tee % 4G CMOS) GE (09> = AH0K GD9S x10! + Ip (22%35K0 ) + 4S KS 1999 Y103 4 1D x Os0ID] “+ (=X) ©0282 = Ooo} +2663 +0:293y 4 0-1} qoobe 4 pabcie sag {Mt Sarat goo pene wstth 5: cATdasin oh Z how aaa Jonata apould. be zncpected. to Rave! = Bb 3 3 gids ny 2 boys On 3 boys Gh Given 17 5 children —+ prob. } a My in @ penal = ye na) > PMPs a pod =" p 9 7 | - et frre 7 neh nes 5} pecado_t — pea) te = Sex (hy (a) : : Are aa k FE ulin = uk a} B60 deol =(Sye Ee ote is zo Yeo Tie =[ O52 | Ww) pO) r= SCo Cy)" (ee : lo x Va * Ve See _ Ss S - i of tye Iba ) [+3 ; ew Roy. Sdyhion = cut Seo Jondlies sapecbed m2 pote favtes S Bogs ae! * = Beox S/i¢ “Cosa eee ee eet | fi) pO) + p) = pred) 5 4_& i We 1 = Se Rope nes dp jamibes = np = Boor S - = Soo ; (eld CG) Deo of Io betes “an _unblasesl tafn ih Anus Tony oses Con, Wwe ¢: eck Hi) le . Sanaa n=1o poh gave — rob + heads ny fog : Pane f= - Gea [pee) =e Bp as ui We! j * (ny * = : i) pla) = es eT Ee — = “lio = x |} RK | De ee I = Is zd + Noe Cases = a f lo of aah my (0 Ath: [Bae = $95 & 1-97 Br | XC sels J 22a classmate; eee = —$ oe 2 ag a By 3 BST a, Tala [etsy 45% 1 t Jo x4 aes oe 1 118 24 7024 Loree ©=—84 Ta 1% Se) a ‘ —T 4 : 4a. fate ‘ 1 Rep ne: Couey = (00 Vey “fet = (9-18 & 19. ebs" > tT + 7 TW no iY dete p Rone Cones ma Ode or Ame Few brnomdal vortate sith frre bates sy 6-2 Ty lo Grea ant chosen at rendem atiany fhatank ea Ame | Ken Jind prrobobinity —Kad ! CU) 3 aw are 7 ; (WY Atos 2 Gres i yi Afmoce 3 Uncen Oe loud : : \ Pf Z =p =_ b. oy A Ler prone Line bus boo ar 3 6B — 7 “= |o PME ee pC) = a me = =e 7 ae Daa “=n ++, 10 . = rf = prob: a hi - st + pti) EI pa) ms Te Oy. a CEES . = 0: 30lt89 ; TS 010739 + 026943 = 0/39 + 0 80/989 + 9 2°/ _fetssen Dishibutern the probarbilthy Ashi budoy pe Sees 1 Qiven reba plat) 7 -— nA ae ction pad. ikea t 3s_brown ae oe Tea ease vortate A_5. a> constankt vealed Povamute se i = | Mean = ET] = poy) : 2B wer 3 at TT , = < eA (QH)) J Fa = eo A 2 (tean = A\ Notaner = ECC] —(ERI)™ Cons} dea }~ et kN i hove Efur) = 2 x? ply) : = = febean) poy = = but) bn) 4 Z plo) ¢ = e[aeDe d= 1a A. ce -3 eS) +A Ye vale of 12 Js, Prob. ol ramsmtaton roy > $s 0-001 Jor cock us, impale rab. “that 2 i) no Crnor_durrrq a HS i) J ror during us : Ti) gXeasp 1 Ord, " ” iv) albmpit keo “ ” Sin Betg i “Given | pes. of Arr! _ p= Ooot a2 ener, > ! n Note : A N e o bmi ts + bol) = T a aoe ea a) Rp probe = Hal toe 6 as at ——= 5 =e) 4p) +P@ Oe classmate S Date _ Page ____— = 048809 40 ONG + eC = (2 1212) 2 ze 0-9a9G4 — On an average D0 RAC, ane found ma _jinsol volume blood Jey a normal _peuon . DefeamPnie the prob - sade Hs. blood comple of (& novmal ppeison wot! tentain !— (1) lon han 18 ROCs T)_mow “an 16 ROCs — = — FJiven |-— PMEI- pO) = os 20% T 2 i) hep. pre pixcis) 2 = RG = pl TSP) Kee ] = pW POs + pay oe Te [a at + 207 + Cie St 4) ob aoe es “ae 7