0% found this document useful (0 votes)
51 views27 pages

Probability

Probability Maths - 3
Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content, claim it here.
Available Formats
Download as PDF or read online on Scribd
0% found this document useful (0 votes)
51 views27 pages

Probability

Probability Maths - 3
Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content, claim it here.
Available Formats
Download as PDF or read online on Scribd
You are on page 1/ 27
i Pyoba bility of Rand _—fmietootda like chance, probabl lot) “Wetabhe Fintaeduehion > _ STudy pe Fottowsing shakemenk Core fiutty QO_strere 13 4 Chon eee f-raiin Aoday ss. ®©_frbably i wiy Get _sistinction_in_mumbat university —_ inMate,oncethainty. Tins + Uncertainty, / hyof evemds plays vitas- CG) (G2) 613) C4) (65) (GE). [There will be Such 26 etdereel Pairs af numbed: ____ Qylk he Beet caer on bar di a { mr ees i! ) Le |i : classmate, =F Ct ny, C1029 C39, C414) 55). (6 693 Qir— CO) nesv2 G . CS fob B= Cvent tue sum of cory S Atvtiine by S oe Che, C4, C2132 C32), C518), Cb), Vf, ncs) = 7+ Lt net Gin Is fossed sfrse& CIM. pon find Ane proba lipy of getting exaclly -two point reall ses, i pe 30[P i> amble site, == in MT, ATH, THA, ATT, tht, Tram | SE be | Pca, nts ~ 32 _ _ nts) ~ B Nof pwbalality ! ZF a xvanchm enbesinent has ‘n! in FT esina de oabsany oeludet 5 deat yun oP udnich ‘ m! are favowrehle ( MSh) —Cotne ocempyrente of — lan_event_A.-tnen Pre Mb. of A.-denofed. PCA)- : PCA = mM = ntAd — Nowf Sample Point Laveurabe -to-evewhh n nts) No: of Sample Polnt indne Sample * Sfaceofpanex | COV | Pty nA) oR NE an ~ | 15 club. 1a-sfad @ C 3 Heceid 13 Diamond & — Play; sets. | 1 9,2,76,5.43,2%4 Ace. ——Fatetusd = King, auetn $ Tack buh Curd Prive are 4. i i | Face Ged= 12 12 <= [ted = te [ Kind corzd= & . = —_ o Augen = Mes ltl ce I ack = & HC] 4. | one ain is tossed Ss {HT n(S)= 2. | “yeainis trssed S$ HHH HHT WT TH, HTT. THT (d= TT. TTT S 7 3 [720 Gind qosped S=$HH AT, TH try nw =4 4 Avie ts tw S= § 1,2, 314.5, 63 nie) = 6 E 3 __chssmade qwodicgare |S=f ny 6 129,99, hayers) Coe iA lieasrmens Gr 1), 1123 ,€013), C200 a SCI, CHING IA) OT AD HASTY, HB, SY, CH TE TY CEI) 5d, Ci TT | ID, (Oi 4), CST, CIS} _ Law's of Pwbabj lily: : = - wire £yendo PP (Aub) = pir) +e(p)—PiAnB) 7 A tine Ev afd _PAUR 0c) = Plates) t Plo) — PCAnA)=P CBAC) — i P(anc)+ PCAN BNC) i Dy tuaiiny Brclu give OR Pais wise erclu Gve |p (AuBs= pray+pcn) i P(AvBLd = PtAjJ+P(8) +PCC) He Genplemendary Ercan : i PCR)= 1—'pra) Pipa = ple)— Plana) P(ANB)= PLA)= (ANB). De mosgen's Law | plapm= pra B) | PCANB) = P(A vB) %*|Osps4 , pmb. 4A oR B = P(AvB) pmb-AsAB = PCADR) % |Gndip ena. Prob. 1 paulfspligufsen Zneevem _PLAR) = PCAPB P(Ang)= Pla): pfA \ { an P(e) iS Pl By) = Pane) pes PCA): P(Br). PW Ex) ind pwbels lily Pretax Cond drown wil be. black o¥ Pichae Wt A= 0 lard 15 Bleee B= Grad i's fichare— P(A) — 2c, = Fab 3b Pee)= 12 prAna) = & = S27 t PlAuB) = P CAPE PCB) — PCAOB? = ee ae = a & Ste Se TE % blaoks ball + eZ while ? hee) Aroreare 4 ame. by ane24 few bas arecliaven. : eplucemend, hed 15 prvb.theek trae foal. laeanat ely of” fff exomd- Cel outs. a 4-2. a 6s ff Pp Caleamed-é G Glour) = = PLA) pp CB) = = ats ED (Hine are 1 -ticeels ina lupe beasiay Dumbest 1 te a shee hickels ore drawn one af-tes Arne oben wll eplacemenh Find fae prwb=taatk tnty are are cleats ‘Z linme 0s des blass 4 7) even, odd, even numbe Wodd odd, even num boy: nm . 3193656102 Gr u ut a. e116 be I 7) t 9 ~ 33 \odd=6 - | Plodd odd, £0enn = PCa) plo) pce) | u LL = 6 | | Wer go 338A a cere bidding fora Cnteoh. LIS belived! met A has — ered hf Pre. thane Bhads. Bin dur js Yb, lixely 4a -to ytd “ne Gntract. whut fwb-Cs each to g¢% py Gubrwt! ~ om: at Plc) = — 1—_2bd= 4 = : | ~k rs ise 27, PUN +PCHt PCO=) | 2 yin eas [SR f= Iz ae Fa FT Mo= i= ango4 7 ue CX ENE oer T 4S \ 7 DF Fome evemds AL BR c. form a farktion ope. Ssqme. SPace. g PIA) r See _ fr i PCB)= x : }! Reem gu _ | 3 —— _ et PIADFPCB)t POO= | | Ate ax _ _ as Ho Bat ae Z = 1 BAAS a nm =) a, 2 POE GS 1 4 = = | 2. PB) = B= _ = {i PLCO= x Sj 1 a A= a Lo PCAUB= PCA) F PCB) — PCAnB) > | = Sa -o= 2 pe | + = = 7p 2 Pasfiper~ ' <7 | > P(BUG= P(A) +PCc) - P(Bnc) i | = H+ -O = { a 7a { , \ 1 4 —_| 4 \ ay + s | Ble any of, event on 8, PIA #O, [=12--1n, Pods An > Semple @ space. S. en Gaslippenal prob: PlAig) = iia) — § Pepr= teeny tA? PUMP B= Prey: PMY) _Ex@ A Gin js fossed tf it turns.up heads Hoo pais brawn | Pym urn ite two bi wn Fromum B. so “ct S white batts - vr thd | Up fA we Le Soluben: P= PlHead)= 1 P= PeTai ah [Pl= PCtw. black bolls prom Al= “So Pars Lo ple eC ron black bells PromB) — Fen, Uin= Be i Bo, | Reauird Dob= —_P, fi) = 2S, _ Pipil+ PAPE oe a ote = 3 ee 8G BR | 3c 4c, ~ Baq rte, sy Kes —Bke =} = So Ta ee ae AB 6 3 $20 Yo of me produce, Oz classmate, pope £: ri 104). pnd te be geekie. : lomiuced by fie facdet yo = > Pp = PA) = 92, a8) [ple Pe Pads 0-8 LON ps pl Spy aes foe PUB)= 0:84 = O'S | pe pga B= PlCO= 0-2 | Reauired Pwob.= Ppl Ppl B Plt. = _0:3x0'2 } 0°BXOB+OSKOSH OD H0>5 = oz = ee pment O24 FO BEO OS Romdom Variable. + Let LE be a0. _empesimink 5 S > be tne SamPle. Ye fave associated whinit.A Funchon po lasing to every, elemtt 4 of 8 one§ only \= secu number 2 =X ¢5).of Ris Guled_ gj Random vasievble > ET I * ai babilily Ds#" of Diswvete Rovrerlm Vass abl Ly 2003) 0, fos aie. va) ES Pirija A x be Xo. %3 ---Xy ~~ eel Pex) | po Pa --* P-- —_|A romiom vastanle. ‘cated ._C-R: ve “bie tat sles Conk nous Randem Varsqb! ¢. Pee sn dental Can bo Ee — SG age, heloiks welpled..C. ee Oi intent. LOO 0. @ Jemma eet det a al EET iM eeysmecy 5 rmnberwalel, 02% L | t OL {Feaee P (XS XZ B) Whire sere: a L L @ P(x*205)5 os, rap lal 6 OPlo1exSos) = 5 IPOH OPpworerzoa = S SORE be eae 5 | B PCXDO = Vas See os SUAS | | =efep=0= [0-807 =0-G5u}= 0313 A Gnfinuous i Vx has tne Pellow ing clctiine K Pink @ prea « ¢ " —Z9i=4, fe teter. py — UV eatdee i ° 3 ye at tet = Oo kya ey (@ Pore xsos)— Oy ma ey | 4 J ~ 8 t o t= ate =o 5 =O: ol2” (Q)_lek Given Aacx 43 A Bat 3) PINE PRABIES xt = a8] eo os 6S or = Lf 23-053] = 0-984 ay i PCB)= CXF) = 4, Fotev = af we] oBs FS 37 = 6. st feoots"} = 0:944 * weENEw tet PTANB)= PUR) = 2° 947 ee BAL= PlAng) — 0:94% — oa a PUA) 0984 | MATHEMATICAL Exe Cle ome x) hue pp L— ul eos Me eee Prob. A Eye od (Hen mE) of x demeled SO pees Gs ina dine [Foot —| CR PA (inteawed ) Btae (Py. Benda a Varies Ete) = Lew facta) = EB (x2) = uy) = pent ig Eon Vt Fovdx Seb aN wae. J Fond | Enlil) A discrete x: m Ht 2 lo | 2 3 Pind if mewn, varcx) | Pires 0-2 K O-} 2k of 7K Sem Pisti=1 Kafe = fo $e Boob dig -@ KR | -2 -) © 1 2 a F iguadweinlbiiey 6 22 Fy Orl Se 8l_B p.2 keto tHe pote =] | Keto 4 =] | | SKEl-04 | i Sk= 06 1 K= 0°6x Le 7 + + Emenee ti'= Sah = 27) $l +B Felenisea, =O Ce omen it Tet Kk Sa-x2) ee] a | . ee St f= Farroncengiaererney tenement SISTED Hoot i C= I [k= 2] | tay = x= 22) i | =6[e4 xT = cpl I (gg ise {| eS S-4 T= | 6f $4 a Vary = B&Y-Le ow] = Bo =tby = == iE ae B® me. clutly CnsumOpion of eleedat. ja Rev x widn. Pd-f Paya $ Kp fer AZO 0 fPeR LEO: ona oenday tne eleclric Gime Gnsumebin 14 me expected Valle Jef > ~™[U0=e)—(o- £_) J= | | pa! tt Je = {le-=c6- = 5} = 624967] = 1 ope = ge Shag 22-927) 4 Plex) = 0-4060 {| = = =; sy o LPO 4) = J 5 ete aff grate | || Moment. Gemeseting runchen: D. Ry. me maf pa DRN 4 hou: - by Mat) s-defined idee 4-0 var fous ond eb From mF a = Leet) ae — — — Lopes Varen= Ur 44 | aE EeMiot Vere, : Ex?) ind ane MM. FE of fn Lllowing dist”? oa oat % Ay nee pura E fre Foul f v3 NPGcsm) + 4+ An ty Contra moments | Mean=*= Sho = 1(-2 4+ 1(3) +44) | wee O: £6: ahowk Mean == pe™ 1 =T te 3-1 ECI=l | ae ab on Le v = Zt) et, 20 ere} | ae i aN Used Pum (es | — 4-H =) l= 415 poaa re ea pia seo +), aT ee aS | =! mae a th —}+ fe ag 13 Jey 4 34h 7 =ft= “ST es 4 + Seca Ab= d= Saheb = 4 VM, = GeP, Fe -9442—50 + ho = a MLL = Gepn.of gs a2ee Miz oct ut that 4923s + Sou > _Mylt) ZF xdenotes Ine owkame faulvdi classmate 2 die, prea § Varn), Shence rind» 4s 6 CUNY 1 7 ot | ao qT ! 1 —fd _ si ! jz toto] =[E Cots ety grt, neil 4 cet po] | | ay Ea {| — =f beiteeaeetcte 2) 23% | EE -* Fer t | Nop gt oo t 2 tr r=} a Protea} =e 4 9.034 see tae Stay alf) = [Ora of= St \ | Varw= Ae CaS = 97 (a2 ac I 1a | Ex@) pind tne. m.g.f- of ¢.v.% ifine Yn momink abouk- oflgin t4 el By Ae Ly = b=] | TE@M=1, EW=7] E60=3/--- Mot= 2 Cet%) = Ef lt tu+ tent, ¢393 7 i a a) I FEW CEO TLE £0) +48 posyb-s- T ‘ae Put VouneoP £00, pey2yans — = ett tte tit: ettety le Ele) re x has mean 45 voslence 18%. had mean = | Voi inderendenk Find E(2%,+x2=3) mel Vationce ty J -mne two ore independ Fi Po rH bv £22) +%2-3). EO 4, VG Etpeye—2, viovw> 4 E (2x AaB) E (2HI+Ha)~3 eee DoE eas | = UA)r(2)-3=3 } clessmate Dp ERS) SUPPOSE. freed & 15. a-Vy wid Bo arch Nero oe —= 0) Find tne RSifive wlues ab suthdnect y= aax-b has exrecpafin 03, vaelance tee Locamenb | b= 104] § NOs Veax=b) = abyia) «i Aa=atroc) az ye || Tray a=. 4 b= 2 | | Probabj lity Dist O, chssate oF mn ete. \\. O|Binomiel. 0154) Potea= pyr 5 C—O oc OER Parameter of Lisp, — raat /Prt=h Fag. dy pO EE Slee Use: One dssing ofa Gin-head ob tal{s. eSulf-of Cram. success 0% fasluye —— © habs} of feason ~Smexeh_of Non-Smolke-s a ned Re \ “ean = ne BZ virhance = et i 2 4 t (Cind Pb dist P of >. ‘alupoo: Given £ (x)= mean =P J Var = nPZ = 4. | L L bet peel |: PPL =~ WH_ 2 + 1 FPR | | ° 7h = 1 Pel-qel-z= : 4=2 +) Pel-4=l de r r NP=2 ve M4 s2 -2n=G wh Binomial dig? Pinan) = Nie PL gn’ — feat y (2 yo = A Pedxteort Probe dis¢Dof Sieg a fuluso. "| f =a Loo 3B 4 © 6 [eee yer /! | Poem : 2 Ibo 2 & | 72579 9 7 7 1B 729| La (Ly. Tas i 1 C= SHE Vey = te el Atlee. = Dior s) = P+Po pAmo- = PRS3) > plot pUtple) tPZ) Ghaclly = fX=s2)= PG) ons DistD. classmate, sabia oats ID zf avandom yastable x follows Priton. dittn. such fruk | PCx= 1) = 2PCX=2). Find mean joins Vabty) fA leotind Pleo Soli hut Px=x) = 5% aX : Sr t 2th / Ton salam P(x=1) = 2PCxX=2) oem) 2 E™% ms | 7 aaa 2 | Bm = of w.me 2 | wr” I 1=9_ inforbur USN memaVadios 4 | P(x=3)= 2” me — gl 3 = 06! ay 3! ne Ib: of geting ap tem defeebye sA 0-005. wheel £4 Podb- tral exactly 2 item ip a Sample of 200 aye defeuky [Given B= og aa} p Goh =! 3 7 a ae o36T9xT — 6 .00IR 5 6 Lind pb tnok atmos 4 defective buts vill be Gouna inabox of 2e0 bupps Ifit chown Ingt 2 els of buthy ere defeckve [liven g4 = 00123 | | Poy PCI EPS F POT L = e424? a Sig eee Ty eet Shah as ZI 3] 4] — a4 - = =e [ie da 2th J | = St Is J = 0-0193x103 = 0. 62-3. BG Sample of Paneny ave defeobye. Find PW. train Hea uth Ga, bulbs (at fue reek Pwo bulbs. rninte (east E DAS 1 Som tap He 708 amd GA FZ 7 P= tanocr=Z | By using forwundis4n PCneny= C2 wr {| v ee i x= Sio% = i oT A) Pp -Lx=3)-= 2293 - I< sre 0-18 044, t | = er2 st 1 52 qt Sp te = oem erates zutbo)— = Ply, = a) = pra E23 sos al 3] noemal O14 et ee ee eh 7. wt Pavamefen 10) — i en Cathe vetlonce, TO-xn = (i) Z | on 2 = ASD js.Gured_pusmal [vaatuke 1 in meno —W _ 3, standard deuakien=1—; i | - nl neMedian = Cena het Ape cuiinl o Zo = KL mem (Avery =H Boa SD | oo! i 5 y an A AS — es os _f 4 4 d ! | © Ar Bert FeO eek ze) et Z| ee, Fg. B rg < | | AY 1 , Find Avex of A= 1 Az 20te ee Dt ME core ! “WE, Cind Areaof FI9B= ho 223) FALE z0toZ 21) — a ilies Find Preah Fh (2zotcZer2 [ee eae Lz Pn nd Hue are.a_urdes. Pne aera CANE. Aneacd of, = 12 fiz Zz 270+ 628, Z Circa bepn zaof ea on68 ) _ 0+ 245) ! Arts bef 2e0, Z=— 0-56) = 0-4ghe + 0-1F7F2 =0- 66a4 BZ: (Q)aunha (Area bef) 220 to 221-44) — (Area ben cz 0h z=0-8} { = 0493 — 0-24 0/1829 G )) Peautred Anta = 0-S— (Areal 20h 20.6) = (DP CTA-141=D) nam HANG ze 4-10 =P(zl1) a = area be}n (z=-1 SZ =1) = 4 a = Trey befn ze0h7=)) = 2 (03413) = 01-6826 =O0S— 0-2284= 02943 ale —oL O (GD) Reouived trea = (Area bel 229} 2= 1.29) +o al | | =o 8yH toe id | = _0-3997- VT s+ | Azo h 14 notmal Vorjade witn mean 4 t Fins DP Cix-14/<4).@) PCse v2 19) Gy pexeiay t luk ans Ny ZS X= — X=I0 ; i PISS xSIW= Plots ezegy” = Area ber = be Zeal R729, as j | SLarta bet? 220.8 22 ory 4 areathek A (220h22) — FAA 0-44.52 =o-g4l 1 PlxS)). pezeosj— _ i < ef L = (Area bel” — oo to Z=0)4 Carey tum 220 to,Z20 ) i | AH O'S 40. giigc= o boty 5 E_, [Ex@) The ma b. ' | i at _ la’ 225, If 3 stude a scleched at random fom mis College Whwkis pe Prob. teat 5 ‘ak least One of trem would have Ssa@red more -tnem Bom wel ) = lok WN-Y Zs Xm = Koy Ae § wk o Ss 5 ieee eel OS {jv } | ——5 Px Ts) = PCz 7B) = 0-5— (aren Prom 220-ta 229), | Sos 6:4772 = 0/0229 ei wb ortd ; nore. thom FS Marks. ; Plastudent had net scored more trem ts) = 1- 0-228 =0:9%2) [eC an sneee, td om = _0-977Z2X°-4772 X 09732 =0-9, : Fares hed x= as, xeas (h X15, xz is, (WW) xZ35 union 22 220, Sx a 1 Area (bet xaos f= 35) 4 = Area ( bepnze08Z= 1) = 9 3412 i [SSS | [_Jircm bos n(n isd Xe1) = Area bof (2 2. (Area befnz 2 Aca. tome, aight of (x2 1s) = Area to re vith of ==) =# pest [Nunxeis, z--1Zwhnx-ss, 2} mee lassmate @ xz35, 22) 2 Arla co fue ninth of (x23) = Aiea Co tun yn of (2=1) = (Aven pep) 22 -\-te220 J+ (Areactebne RUS ef ee0) a = O'B4/ 34 O15 = O'8413 | = Lind Z, POb- st, Plera)= Shes =0-05- 0. Zypa 64 | 1 Zp Xo Bew, ) (+ 64 = 3000 2O 250 | R= Zooor wom 64— Rs. 3410. Bd) ton an indeniginre tor. administered C0 lone shuden het crete wath 2B SD. war 24, Cindnumbes of studen (phon x= So, Z> So te zh. = 0-33 =_2 Chea bepn wooden = 2 (o-\915) = 0:2926 Number of sludouts ethos more tran 50 muiks. = NP = | 009 x0-3707 = 34) | rr 7 b : - I = NP = le0ox 0-3335 393. ; 9) re marks oblained by Jooo Studenfr tn an e: fren are } found to be Nesmally dist wita mes Jo.$ SD-S Espmabe tne) |numbey of Studenks uluse masies Wl Il lo-e cay ; ont ; Hi MhetN Go § 3s Gy mure Pron Fs- eos | I = _ x —— ; Ooh ww Zs Ko. a =f2 Se, = i J Ox>60, 2 = S079 2-2 y Whonx23s 22 Ito 4 ai H t OFS} PC=2 44) j = = Aresbet ¢2>-2.4221) = Arey beln (z=0 z= 2)-+Arey, (220 twt=)) = _0-5F92 +0:3413 Zo gigs i —_ ve: 7 in ya a = j SNP= loo» o-81K5"= SIS. j 17 ~_| GY PAZ ID= P27 1) = Arca -€ fre riots of z= 1 el = Os — CArea, z2ofz=1) FE | SOS - 034135 0:15 9h >t vo of Spudenp.geelingaiere frum Fs 2adbes —| NP = loowx ols s#= sg =| E— k

You might also like