0% found this document useful (0 votes)
9 views24 pages

ML 1

The document discusses various statistical concepts including maximum likelihood estimation (MLE), Bayesian estimation, and probability distributions such as binomial and Poisson. It emphasizes the importance of likelihood functions and the derivation of estimators based on observed data. Additionally, it touches on the application of these concepts in estimating parameters for different distributions.

Uploaded by

Akshay S
Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content, claim it here.
Available Formats
Download as PDF or read online on Scribd
0% found this document useful (0 votes)
9 views24 pages

ML 1

The document discusses various statistical concepts including maximum likelihood estimation (MLE), Bayesian estimation, and probability distributions such as binomial and Poisson. It emphasizes the importance of likelihood functions and the derivation of estimators based on observed data. Additionally, it touches on the application of these concepts in estimating parameters for different distributions.

Uploaded by

Akshay S
Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content, claim it here.
Available Formats
Download as PDF or read online on Scribd
You are on page 1/ 24
i PScry =e) a es I eema 7 Louse aan i Pie ee oo Uniform PEL Pe | Ecponerctral enaal bot theorem > Ohl mbenyy | distributions ane __considincoeh __guysston | [o__ estimate _Paxometer | / k _, Binmial Hise) =(") KP) Poisson POek) -— eé Aak Kk anival 1 => means k 22 nD te Unit erin #() = | oc € Larb j | | Boul PKS) = pPCI-p) nee Nozma | yi FG ye = =f ER api ae ==. ee Vaio 2#——_—— 7 80 LS men > apsara Ozte:__-_--__ FR) =e ~ “Espana Moximnumn Kikeliby ook Estimation PBIA) iw Bayes Therm cae a6 assump tiore Ret Xiy9X) XZ. Xn be Samples Finds -the distnibution trom which these camples come From (4% assume ) depending on be haview) Finds rts probability function | Finds the —_unknduy amelie in |_porsba bs hy function throug h Maximum dikeliboodd Eetimations io ings those set oF porametie —foy the assume probability ditetribution we thak ives man kikelihoool gr the otourrcniey, TF =bhe Somplis in thet distr bukron chops t | Collet Detar [Xi X25 ++ Xn J || Assume probability distyibatron 3. Famulate the Zeina Funetiory aA pe maviMi3, this fr le fire tfase Wi pavimetews for which the “Fi tae Mae Val Likelihood’ Functions sf slandanae Ban TO EBay | — ani Form Lal events equally Pikely ) ~~ ev can be dixvete oY Continuous | —_ a = | To Feleteoe to isso = | Pla a speciic™ “opla blw suc(essive —~" = _| wnt " “gecur rene) en = EO heen = = iM oe Xe Xn) a Ww ’ 5 —— =n ¢ ak _ 1 log(L(A)) = 1 fog —n[SXi) a LOY = SX Pe __ av hu a tog (Ltm))~=0 | a a oe — an - at > [r= 7 = exparnunkt oh 4 = et a Hy oo wok = = _ apsara ~ Qaussian pa f = I —é 2a2 2 pawametens — by x LAsume | est while imotirg ethan ) for all _unknauin distvibutran map _*t to Gaussian because ot — Cerkwal Lime Theaver _ (xP / — Kyo eae (= | eg 2 | ¢é ee ae Var (S&F) yO ne dag CLC) __Log (Gro ; ail “He Aps a ie is P(e DOA. cS | er ee oc oS aes See eee) ——4 _- ou = a _——_| cm i | Feet uiatr =o ——t co nse — : i 2X;—= LM — ~ ] a = —| H : i ee eee 1 ———A-} Neverat Dicvubaton A apsara ste: ey a log (LCE) = toy [#P fog (2AT2) ZL = 7 (5 (x=2?) Loe yhg(I()= 0 1 x 20 2% 3 4 LR oe — 3 6py =2— Zz a = A= si -Ky? Lee Nb Jteg (LO) = oO > Ss 2 =e Le oF = go? 3(ki=u)* ZR a ge No. = | 7 Obs PSQy ak — D. — a — =i. — a i (xP) Von weg __ 1 0 / a Ticahoe OWT pe _ _ Mawmun Au keush MILE ge vey = | cnamay L(e) or _— 7 J 6 Si — & Mevmuin ow postenen Estimation (mA ae | by Says Thess 9 _— J ZF HH [ elxT = pxle) ole) a7 | POC) eT | P(x) om need to be Gonsicltna re? | SIN ‘tic constan t ra ___ Plelx) =P (xje) ee) re i—Io_MAP, ging wrth MLE al (prions alse fongideveds HT | oy e(a)| aT _Uistai bution ef eo | . apsara Pe are 2 — | : —_ a), Davive” Derive the Mab estimation fay a srt oF fo K | data XpXy Xn tun ing (tom _& ’ assaf deste ution m= SE (mean ) _ , {iVven pruiow oF H Follows ow gaussian. | lla ibutia mean Wand Vowiehce 1 I || Xp oX%yy-- - Xn 2 J 4) part= Pie } | V20 o> 7 A (xi= A) . ] L(#) =(/_1_\e < ert re i 4 F | —b—&y 3. Prviosy : Zp | pte) = | oF p2 _ 4: Posters o _ | p(uix) = Le) ~ PCR) J ae =F rf | i eS L e—ip* a as - _x —— 4 ae =p? a = ‘Page No.:_ 22 = 5) | ‘de CPC mIX xy) — 7 pS 506 sh ales a) ape —$__ os le po? = Il | i il | | | | i | oe I 6). ‘Taking dewivatiw oS 7 Ty ag PCR) re OY - 7 =F (2Xxi=B)) = Z(H) he £02 £p2 =e) ae) Be 2 as / 9 r a! 7 quake to O He PRR) G2) - apsara Date: eFax ee | een MLE > avgmax L( 6 4 z(6) MAP > agen are PCGTX ) & Ky P(e) A) Sup pose ou me given a col ant youre NG sure whether “+ is faiy 6% biased - You flip the bins _[o times _ te TH gad __3T Assume cach _-flip _!s hnclepe naire - _|Then timate _prabobihly fF getting Lilt A A, XX pe Xn 2) Find distribytion 7 0 anh | => Berogalli PCH) net Binomial (We ave ret aki b Find plano oF suc) pm=f-=—0*(7= 6)! =Kk ony | TAL! 3 = 3. =0 o re W1-8) = 36 SEE ere ae aad ; st ae apsara Date:___-__ You ave. still Flipping that same coin - YYou__obsevvel 1H “and ST. Bat ow You hove a prioy belief that the asin 16 slight biasch towavde heal: Th pliee io leat a peta — distibutian “ith povometerS a= 4 and pat Estimate -the probobilrty + getting head: Assume Beta distribetion ~appraxi motely ae Yay! Use MAP Sine pricy |S giver ! = Xi x. _-. KO | ! 6 2-| £ikehhoook — Besnouf]! ; L= pott = of (-6@)I* fale = p distributia P(g) = o°(/-6) 3. Pos Levioy —__ ss a p(elx) = L(e) PCe) - 3 = (1-6)? . 07G9) = glo G04 | Lo PCOLX oa D fog (10 ) 44 ta | I to] & Cég(CIx)) zi | | rere hh Ss l—@ fo (guating z ZT 0 lo(i-e) 4G —— fi & 10 = = O- 774 mice cel, cl tt +4 ee = 5 Suppose yu axe anal time betwear Machine dotluyes which mode! ret ia | 7) Aist ys bub’on obser the | | FGI following 4,4) 3, I » 4,2 the. —Aale__parvometey _i we 4 A be “y- Page Noe \ apsara | MLE | pat = Renn “n Date: LO) = pe we ee = é Gia 1270 Log (LO) = 5 Rlog(r) 12H dh toa L(®)) = 5 12 Pe wm “Ui eS = O41 12 _ You aye still analyyng the same data: ‘| Bat now __basech _on St experience “ypu believe thot _-failux yato howe! Abe amund 0 — ae u_model this belt dyistyibuliar ae at | burt porameles k= 3 a pak a Asscne — YY distribatloge im Xal g PX vem ae en as) = EO ey ES ur tt oe i Ed (hal abd) uaa) = 187 aa a : 1 1 aa | ah mv Tid i v= = 034 | Pe i (3 —— 4 8) You obspwe follouring data pati PB i am _ Sov JS Ho 12,15 518, )80, 714 _~ an. Hey Gre dygwn__indupnds _puvogl distr bub or _- hth mon prank Varun & == Te 4 eng apsarc = LQ a —_ i = rm Qe oetey = = Pulp) Pole) pC Kater) =f oie: jel ae) [ = deg (Lh \) Seay ft VES 2 -\War02!) a L{é (2 So + G8 P+ LFZ go= + =) - tog (L@) 7 a {ZL aa (12-1 TSEB =F +) ae fe =—_—__40=p = tau} ei I \ \ \ \ \ \ \ 14 \ \ Pea Wh \ ! hh | | i I IL = Pee Xoo) (2) P(xilo) PX Jo) L POX n lem 5 I y =/_! Zoek ce (WU 2Aa77 oO eq ((#)) = =F Txgx Ff a thge—_, go ee A Ce eae o3* eee pga No" apsara @|| You aye studying +e no sf _emarle Yeaived po ~ Ow a 6 houaw windiu/ you Yack -the follwing wunto 3, 4,4, 0,16 Assum (aunts fallow paisso? Ctimale yak _payannhey Jv” &| beliwe Now payed past behaviaur pe 9 jaa y__and pegple ipreli pltell see cnoeh friuz ated YsINgG Y. disbabdisn wath, permet a3 Bald - : Ve J Pobre = @€ AL _ LH }

You might also like