EE-612:
Lecture 1
1D MOS Electrostatics
Mark Lundstrom
Electrical and Computer Engineering
Purdue University
West Lafayette, IN USA
Fall 2006
NCN
www.nanohub.org
Lundstrom EE-612 F08 1
outline
1) Review of some fundamentals
2) Identify next steps
Lundstrom EE-612 F08 2
energy bands
E n0 = N C e(EF − EC ) kB T
EC
EG n0 p0 = ni2
EF
EV
p0 = NV e(EV − EF ) kB T
x
Assumptions:
i) equilibrium, ii) Boltzmann carrier statistics, iii) uniform electrostatic potential
Lundstrom EE-612 F08 3
electrostatic potential
ψ (x ) EC ( x ) = constant − qψ ( x )
the energy bands will bend
Lundstrom EE-612 F08 4
band bending
E n0 ( x ) = N C e(EF − EC ( x )) kB T
slope = electric field
EC ( x ) = C − qψ ( x )
EF
EV (x) = EC (x) − EG
p0 (x) = NV e(EV ( x )− EF ) kB T
x
Lundstrom EE-612 F08 5
1D MOS electrostatics (L >> Tox)
VG
V=0 V=0
V=0
Lundstrom EE-612 F08 6
1D MOS electrostatics (L >> Tox)
V=0 V=0
VG
x
V=0
Lundstrom EE-612 F08 7
‘flat band’ conditions
S iO 2 ψ (x) = constant = 0
EFM = EFM
0
− qVG
VG′ = 0 EC
EFM EF
EV
Lundstrom EE-612 F08 8
electrostatic potential
qψ (x )
qψ S
EC
ψ (x ) = 0
EF
qVG′ > 0 EV
EFM
x
EC ( x ) = constant − qψ ( x )
EC (∞) − EC (x)
ψ (x) =
q
Lundstrom EE-612 F08 9
accumulation
• bands bend up
• surface potential < 0
ψS < 0
• hole density increases
EC exponentially
qVG′ < 0
EF p0 (x) = NV e(EV ( x )− EF ) kB T
EV
∞
p-type Si ( )
QS = + ∫ q p0 (x) − N A− dx C/cm 2
0
QS ~ e− qψ S kB T
(not quite, but close)
Lundstrom EE-612 F08 10
depletion
• bands bend down
ψS > 0 • surface potential > 0
EC • For x < W:
EF
p0 (x) = NV e(EV ( x )− EF ) kB T ≈ 0
qVG′ > 0 EV
n0 (x) = N C e(EF − EC ( x )) kB T ≈ 0
x
W ρ(x) ≈ −qN A (x < W ) C cm 3
Lundstrom EE-612 F08 11
depletion (ii)
ρ(x) = −qN A
d (ε Si E )
ψS > 0 = ρ(x) = −qN A
dx
EC
dE −qN A
=
EF dx ε Si
qVG′ > 0 EV
qN A
E (x ) = (W − x )
x εS i
W qN AW −QS
ES = =
εS
i
εSi
Lundstrom EE-612 F08 12
depletion (iii)
E S = qN A W ε S i
E
ES dE
= − qN A ε S i
dx
ψS > 0
EC
x
W
EF
qVG′ > 0 EV ψ (x ) = − ∫ E(x)dx
1
x ψ S = E SW
2
W
W = 2ε Siψ S qN A
Lundstrom EE-612 F08 13
depletion (iv)
W = 2ε Siψ S qN A
ψS > 0
QS = −qN AW = − 2qN Aε Siψ S
EC
EF QS ~ ψ S (very close)
qVG′ > 0 EV
x
W
Lundstrom EE-612 F08 14
inversion
k BT ⎛ N A ⎞
ψ S > 2ψ B ψB = ln ⎜
q ⎝ ni ⎟⎠
ψ S >> 0 (surface potential to make n(x = 0) = NA)
EC p0 (x < W ) ≈ 0
EF (EF − EC ( x )) kB T
n0 (x = 0) = N C e
EV
qVG′ > 0 ~ eqψ S kB T
∞ ∞
x QS = − ∫ q ⎡⎣ n0 (x) + qN A− ⎤⎦ dx ≈ − ∫ qn0 (x)dx
0 0
W
QS ~ eqψ S kB T
(not quite, but close)
Lundstrom EE-612 F08 15
MOS electrostatics
accumulation flat band depletion/
inversion
qψ S < 0 qψ S > 0
EC EC EC
VG’
EF VG’ EF EF
VG’
EV EV EV
ψS < 0 ψS = 0 ψS > 0
Lundstrom EE-612 F08 16
MOS electrostatics
log10 QS (ψ S )
C/cm2
EC
~ e−qψ S / 2kB T ~ e qψ S / 2kB T
VG’=0 EF
EV
~ ψS
ψS ψS = 0
Lundstrom EE-612 F08 17
next steps
1) Understand how to do the problem ‘exactly.’
2) Use simpler arguments to understand QS(ψS).
3) Briefly discuss ultra-thin body electrostatics.
Lundstrom EE-612 F08 18