MODULE I: TEST 3
1. Range                                          Classes
 R = HV - LV
  R = 19 - 2                                        17-19
      17                                            14-16
                                                    11-13
 2. Classes                                          8-10
k = 1+3.3logn                                         5-7
k=1+3.3log30                                          2-4
      6
 3. Interval
   i=R/K
    17/6
     3                                                  4. Class Boundaries
                                                   LCB -0.5
                   Lower Class Limit              2-0.5 = 1.5
               a, a+3=b, b+3=c, and so on.        5-0.5 = 4.5
                     2,5,8,11,14,17               8-0.5 = 7.5
                                                 11-0.5 = 10.5
                   Lower Class Limit             14-0.5 = 13.5
                z, z-3=y, y-3=x, and so on.      17-0.5 = 16.5
                      19,16,13,10,7,4
I: TEST 3                                                                Classes           Class Boundaries
              Frequency      Class Boundaries    Class Midpoint                                  CB
                   f          LCB        UCB           CM           55      -      59    54.5
                   3          16.5   -   19.5          18           50      -      54    49.5
                   5          13.5   -   16.5          15           45      -      49    44.5
                   6          10.5   -   13.5          12           40      -      44    39.5
                   8           7.5   -   10.5           9           35      -      39    34.5
                   5           4.5   -    7.5           6           30      -      34    29.5
                   3           1.5   -    4.5           3           25      -      29    24.5
                  30                                                20      -      24    19.5
                 n=30
4. Class Boundaries                             5. Class Midpoint    Legend               Class Boundaries
               UBC +0.5                         CM = (LCB+UCB)/2     Formula            LCB - 0.5
             19+0.5 = 19.5                       (17=19)/2 = 18                          55-0.5
             16+0.5 =16.5                        (14+16)/2 =15                           50-0.5
             13+0.5 = 13.5                       (11+13)/2 - 12                          45-0.5
             10+0.5=10.5                          (8+10)/2 = 9                           40-0.5
                                                                     Solution
              7+0.5=7.5                            (6+7)/2 = 6                           35-0.5
              4+0.5=4.5                            (2+4)/2 = 3                           30-0.5
                                                                                         25-0.5
                                                                                         20-0.5
                                      MODULE I: TEST 4
 Class Boundaries    Class Midpoint       Frequency
       CB                  CM                  f            RF    CF<    CRF<    CF>       CRF>
        -     59.5         57                 5           5.88    85    100.00    5         5.88
        -     54.5         52                 9           10.59   80     94.12   14        16.47
        -     49.5         47                 10          11.76   71     83.53   24        28.24
        -     44.5         42                 22          25.88   61     71.76   46        54.12
        -     39.5         37                 18          21.18   39     45.88   64        75.29
        -     34.5         32                 13          15.29   21     24.71   77        90.59
        -     29.5         27                 6           7.06     8      9.41   83        97.65
        -     24.5         22                 2           2.35     2      2.35   85       100.00
                                              85         100.00
                                             n=85          100
                               FORMULA AND SOLUTION
Class Boundaries    Class midpoint                    RF   f+CF<befo    CRF<   f+CF>of     CRF>
          UCB +0.5 CM = (LCB+UCB)/2                f/n*100 re range CF</n*100 the next   CF>/n*100
           59+0.5     (55+59)/2                   5/85*100   80+5    85/85*100    5       5/85*100
           54+0.5     (50+54)/2                   9/85*100   71+9    80/85*100   5+9     14/85*100
           49+0.5     (45+49)/2                  10/85*100 61+10 71/85*100 14+10         24/85*100
           44+0.5     (40+44)/2                  22/85*100 39+22 61/85*100 24+22         46/85*100
           39+0.5     (35+39)/2                  18/85*100 21+18 39/85*100 46+18         64/85*100
           34+0.5     (30+34)/2                  13/85*100 8+13      21/85*100 64+13     77/85*100
           29+0.5     (25+29)/2                   6/85*100    2+6     8/85*100  77+6     83/85*100
           24+0.5     (20+24)/2                   2/85*100     2      2/85*100  83+2     85/85*100
14/85*100
24/85*100
46/85*100
64/85*100
77/85*100
83/85*100
85/85*100
                                                        MODULE II - TEST II
  Given        4      9        11     12   17     5         8     12       14          Σx =     92
               x1     x2       x3     x4   x5     x6        x7    x8       x9
Arranged       4      5        8      9    11    12     12        14       17          n=       9
  Determine the following
1. mean x̄                                      2. Median x͂                          3. Mode Xmo
Formula:                                        Formula                               Formula     Find the value
                                                                                                      that appeared with
                                                                                                      the highest frequency.
 Solution:
        4+5+9+11+12+12+14+17+18
             x̄ =                               Solution:         x͂ = (9+1)
                         9                                               2                            12 apperead twice
             =     92                                             =     10                      while the rest appeared
                    9                                                    2                            only once.
                                                                  =      5
               =    10.22                                        X5 = 11              Mode      =        12
4. Quartile 1                                   5. Quartile 3                                 6. Decile 5
Formula Q1 = X1 (n+1)                           Formula       Q3 = X3 (n+1)                   Formula
              4                                                       4
Solution =    x1(9+1)                           Solution = x3(9+1)                            Solution
                  4                                              4
            = x 10                                     =      x (3) (10) = 30
                  4                                              4          4
            = 2.5                                      =      7.5
            = x2+0.5(x3-x2)                            =      x7+0.5(x8-x7)
            = 5+0.5(8-5)                               =      12+0.5(14-17)
            = 5 + 0.5*3                                =      12 + 0.5*3
            = 5+1.5                                    =      12+1.5
            = 6.5                                      =      13.5
7. Percentile 77                                8. Standard Deviation (s)
Formula             P77 = X77 (n+1)             Formula
                           100
Solution   =        X77 (9+1)                   Solution
                     100                        x      x2
           =        X77 (10)                      4     16             =   √9(1080) - 92 2
                     100                          5     25                     9(9-1)
           =        X770                          8     64
                    100                           9     81             =    √9720 - 8464
           =        X7.7                         11     121                    9*8
=   x7 +.7 (x8-x7)    12   144
=   12 + .7 (14-12)   12   144      =   √1256
=   12 + .7 (2)       14   196            72
=   12+1.4            17    289
=    13.4             92   1080     =   √17.44
                      Σx   Σx   2
                                    =    4.18
                             Class       f       m         fm
                          50   -   54    1       52         52
                          45   -   49    5       47        235
                          40   -   44   11       42        462
                          35   -   39   18       37        666
                          30   -   34    30      32        960
                          25   -   29    24      27        648
                          20   -   24    11      22        242
Find the value                          100               3265
that appeared with
the highest frequency.
12 apperead twice
the rest appeared
only once.                                        m         fm
                                              (50+54)/2    1*52
                                              (45+49)/2    5*47
                                              (40+44)/2   11*42
                                              (35+39)/2   18*37
                                              (30+34)/2   30*32
         D5 = X5 (n+1)                        (25+29)/2   24*27
               10                             (20+24)/2   11*22
         =     X5 (9+1)
                  10
         =     X 5 x 10
                  10
         =        50
                  10
         =         5
              MODULE II - TEST III
CF>            CB              CF<
 1       49.5      54.5        100
 6       44.5      49.5         99
 17      39.5         44.5        94
 35      34.5         39.5        83
65       29.5         34.5        65
89       24.5         29.5        35
100      19.5         24.5        11
CF>      mean     CB = +.5, -.5              Median                       Mode                    CF<
add     ∑fm/n     50-.5, 54+.5    M=L+n2-cf/f xc              xmo = L +(f1+fo/2 x f1-fo-f2) x c   add
the    3265/100   45-.4, 49+.5                                34.5 + (30-18/2x30-18-24) x -5      the
next     32.65    40-.5, 44+.5    =    34.5+50-35/30 x-5            34.5 + (12/18) x -5           next
 f                35-.5, 39+.5    =    34.5+1530⋅-5                     34.5=-3.33                  f
 to               30-.5, 34-.5    =    34.5+-2.5                           31.17                   to
CF>               25-.5, 29+.5    =    32                                                         CF<
                  20-.5, 24+.5
                                                           Q2=L+2/n4-cf/f⋅c
                                                            = 29.5+50-35/30⋅5
                                                            = 29.5+15/30⋅5
                                                            = 29.5+2.5
                                                            = 32
                                                      . D9=L+9n10-cf/f⋅c
                                                           = 39.5+90-83/11⋅5
                                                           = 39.5+7/11⋅5
                                                           = 39.5+3.1818
                                                           = 42.6818
                                                      P95=L+95n/100-cf/f⋅c
                                                        = 44.5+95-94/5⋅5
                                                        = 44.5+15⋅5
                                                        = 44.5+1
                                                        = 45.5
                                                                                               MODULE 3 Te
  Commo
                      2000                     2006
  dities       Price (po) Quantity (qo) Price (pn) Quantity (qn)
    I              400        35         460            45
    II             800        10         1000           18
   III             300        15         350            12
   IV             4000        10         5000            8
   V               250        20         300            27
1. Simple Aggregate of Prices for 2006 (2000 → 100)
            ΣP2006
  I2006 =                x 100
            Σ P2000
         = 45+18+12+8+27 / 35+10+15+10+20 x 100
         = 1.22222222 x100
         = 122.22
2.Simple Average of Relative Prices for 2006 (2000 → 100)
            PcoI2006                                               PcoIV2006
  IcomI =                x 100                        Icom4=                 x 100
            PcoI2000                                               PcoIV2000
         = 45/35      x 100                                   = 8 / 10      x 100
         = 1.28571429 x100                                    =         0.8 x100
         =     128.57                                         =       80.00
            PcoII2006                                              PcoV2006
 Icom2 =                 x 100                        Icom5=                x 100
            PcoII2000                                              PcoV2000
         = 18/10      x 100                                   = 8 / 10      x 100
         =        1.8 x100                                    =        1.35 x100
         =     180.00                                         =      135.00
            PcoIII2006
  Icom3=               x 100
            PcoIII2000                                        = 125.51 + 180 + 80 + 80 + 135
                                                                                5
         = 12 / 15       x 100                                =      603.57 / 5
= 0.8           x100   =   120.71
=       80.00
MODULE 3 Test 2
              3. Weighted Aggregate Price Index for 2006 (2000 → 100)
                   Commodity   poqo      pnqn      poqn      pnqo
                   I              14000     20700     18000     16100
                   II               8000    18000     14400     10000
                   III              4500      4200      3600      5250
                   IV             40000     40000     32000     50000
                   V                5000      8100      6750      6000
                   Totals         71500     91000     74750     87350
       Laspeyre’s Index (2000 → 100)                        Fisher’s Ideal Index (2000 → 100)
                   Σ(pnqo)                                        IF = √ (IL) (IP0
            IL =               x 100
                   Σ(poqo)                                           = √ (122.17) (121.74)
                                                                    √ 14872.61
               = 87,350 / 71500 x 100                                =     121.95
               = 1.221678 x 100
               = 122.17
       Paasche’s Index (2000 → 100)
                   Σ(pnqn)
            IP =               x 100
                   Σ(poqn)
               = 91,000 / 74,750 x 100
               = 1.217391 x 100
               = 121.74
                                                  MODULE 3 Test 3
         Year         Old Price Index           Revised Price Index
        2000                  100
        2001                102.3
        2002                105.3
        2003                107.6
        2004                111.9
        2005                114.2                      100
        2006                                          102.5
        2007                                          106.4
        2008                                          108.3
        2009                                          111.7
        2010                                          117.8
                                                     SOLUTION
         Year         Old Price Index           Revised Price Index
        2000                 100
        2001                102.3
        2002                105.3
        2003                107.6
        2004                111.9
        2005                114.2                      100
        2006                                          102.5
        2007                                          106.4
        2008                                          108.3
        2009                                          111.7
        2010                                          117.8
Formula:
For Base:           Old Price Index / 100
For Spliced Index   Old Price Index / Divisor
3 Test 3
             Divisor                Spliced Index
                         1.142                   87.57
                         1.142                   89.58
                         1.142                   92.21
                         1.142                   94.22
                         1.142                   97.99
                         1.142                    100
                                                 102.5
                                                 106.4
                                                 108.3
                                                 111.7
                                                 117.8
TION
             Divisor                Spliced Index
             1.142                   100 / 1.142
             1.142                  102.3 / 1.142
             1.142                  105.3 / 1.142
             1.142                  107.6 / 1.142
             1.142                  111.9 / 1.142
           114.2 / 100            114.2 / 114.2 / 100
                                 same with New price
                                 same with New price
                                 same with New price
                                 same with New price
                                 same with New price
                                                                                                  Module V : No. 3
Given
                             Region 1     Region 2          Region 3               Total
   Basketball                   75          58                 48                   181
    Soccer                      33          15                 23                   71
   Volleyball                   47          36                 29                   112
     Total                     155          109               100                   364
                                                                                 Overall total
   Hypothesis
Ho: each sport is independent of each of the regions
Ha: each sport is not independent within each of the regions
   (variables are not independent)
Formula
 Expected Value (Total active league in all regions)   (Tol active league in Region 1)
     (EV) =                                      Overall Total
Observed                    Expected    Obs.-Expected    (obs-exp.) sq.r              x2
                   75         77.07         -2.07             4.30                         0.06
                   33         30.23          2.77             7.65                         0.25
                   47         47.69         -0.69             0.48                         0.01
                   58         54.20          3.80            14.44                         0.27
                   15         21.26         -6.26            39.20                         1.84
                   36         33.54          2.46             6.06                         0.18
                   48         49.73         -1.73             2.98                         0.06
                   23         19.51          3.49            12.21                         0.63
                   29         30.77         -1.77             3.13                         0.10
                                                                                           3.40
Formula                                   Obs.-Exp.        (obs-exp.)2         (obs-exp.)2
Solution                                                                            Ex
                   75    181*155/364      75-77.07       ~ -2.07 x -2.07        4.30/77.07
                   33     71*155/364      33-30.23        ~ 2.77 x 2.77         7.65/30.23
                   47    112*155/364      47-47.69       ~ -0.69 x -0.69        0.48/47.69
                   58    181*109/364      58-54.20        ~ 3.80 x 3.80        14.44/54.20
                   15     71*109/364      15-21.26       ~ -6.26 x -6.26       39.20/21.26
                   36    112*109/364      36-33.54        ~ 2.46 x 2.46         6.06/33.54
                   48    181*100/364      48-49.73       ~ -1.73 x -1.73        2.98/49.73
                   23     71*100/364      23-19.51        ~ 3.49 x 3.49        12.21/19.51
                   29    112*100/364      29-30.77       ~ -1.77 x -1.77        3.13/30.77
Module V : No. 3
            degree of freedom = (row-1) (column - 1)
                                  = (3-1) (3-1)
                                  =2*2
                                  =4
            df = 4                                                   intesection = 9.49
            significance = 0.05                                      test static = 3.40
            Test static, 3.40 is near the critical value, 9.49, null hypothesis is accepeted.
                                         Points Per
              Player      Age (x)        Game (y)
                                                         xy            x2          y2
    1           Bosh        29            15.1          437.9         841        228.01
    2          Bryant       36            26.7          961.2        1296        712.89
    3          Durant       25            28.9          722.5         625        835.21
    4          James        29            23.4          678.6         841        547.56
    5         Nowitzki      35            19.9          696.5        1225        396.01
    6           Rose        23            27.6          634.8         529        761.76
    7          Wade         32            20.9          668.8        1024        436.81
  Total         n=7         209           162.5        4800.3        6381       3918.25
    1                        29            15.1       29 x 15.1     29 x 29    15.1 x 15.1
    2                        36            26.7       36 x 26.7     36 x 36    26.7 x 26.7
    3                        25            28.9       25 x 28.9     25 x 25    28.9 x 28.9
    4                        29            23.4       29 x 23.4     29 x 29    23.4 x 23.4
    5                        35            19.9       35 x 19.9     35 x 35    19.9 x 19.9
    6                        23            27.6       23 x 27.6     23 x 23    27.6 x 27.6
    7                        32            20.9       32 x 20.9     32 x 32    20.9 x 20.9
Formula
Substition and solution
                r=                     7 (4800.3) - (209) (162.5)
                             √7(6381) - (209) 2 √ 7(3918.25) - (162.5) 2
                          33,602.10         -         33,962.50
          √   44,667          -          43,681                √ 27,427.75          -
                                         -360.40
          √     986                                                 1,021.50
                                        -360.40
                                      √ 1007199
                                         -360.40
                                          1003.6
-0.36
            Formula
            Substition and solution
                              b=        7         4800.3          -       209
                                        7         6381            -         209
                               =      33602.1 -                 33962.5
                                        44667 -                   43681
                               =       -360.4
                                            986
                               =        -0.37
            Formula
                                        n
            Substition and solution
                              a=      162.5         -           -0.37     209
                                                           7
26,406.25
                               =      162.5         x          -76.3931
                                                    7
                               = -12413.88
                                     7
                               = -1773.411
Hence, the equation of the line that best fit the series of the data is:
y = -1,773.41 + -0.37x
    162.5
2
s of the data is: