Structural Design Calculation
Rev 1
Date 28-Sep-23
DESIGN CALCULATION SHEET
OF PRECAST BOUNDARY WALL
PROJECT NAME RESIDENTIAL VILLA
OWNER
CONSULTANT AL RAYYAN ENGINEERING CONSULTANT
PRECAST MANUFACTURER CON CONTRACTING CONCRETE
LOCATION FARM482,AL SAMHA FARMS, ABU DHABI
Structural Design Calculation
(1) INTRODUCTION
This calculation report covers the structural detailed design of Precast Boundary Wall,
(2) CODES AND STANDARDS:
Structural design is carried out with reference to:
- ADIBC-2013 Abu Dhabi International Building Code
- ACI 318M-11 Building Code Requirements
for Structural Concrete
-ASCE/SEI 7-05 Minimum Design Loads for
Buildings and Other Structures
(3) MATERIAL PROPERTIES:
All reinforced concrete structures have been designed to the following cirteria.
- Yield stress of reinforcement fy = 460 N/mm²
- Concrete compressive strength (28 days) fc'= 32 N/mm²
(cylindrical strength)
(4) LOAD CASES:
- Weight of reinforced concrete = 25 KN/m³
- Weight of soil = 18 KN/m³
- Dead load = As shown in load calculation
- Wind Load = As shown in load calculation
- Net Allowable soil bearing capacity = 200 KN/m²
(5) DESIGN METHOD:
Strength Design Method is used according to ACI318M-11 and ADIBC-2013.
(5a) LOAD COMBINATION:
Governing service load:
1. D
2. D + W
Governing ultimate load:
1. 1.4D
2. 1.2D + 1.6 W
1
Structural Design Calculation
(6) CALCULATION OF WIND LOAD according to ASCE/SEI 7-05
As per Eq. 6-27 of section 6.5.14 in ASCE/SEI 7-05,the design wind force shall be:
Design Wind Pressure P = q x G x Cf (kN/m²)
where,
q = the velocity pressure defined in section 6.5.10.
= 0.613 x kz x kzt x kd x V2 x I (N/m2)
kd = wind directionality factor (section 6.5.4.4 Table 6-4)
= 0.85
kz velocity pressure exposure coefficient (section 6.5.6.6 Table 6-3)
= 0.85 [for height H = 0 to 4.6m and exposure category C]
kzt = topographic factor (section 6.5.7.2)
= 1.0 (for reasonably flat topography)
V =basic wind speed (m/sec) which is a 3 second gust speed
at a height of 10m above ground.
= 40 m/sec (as per ADM requirement)
I = Importance factor Category I
= 0.87
G = 0.85 (gust effect factor section 6.5.8)
Cf = 1.40 (net force coefficient figure 6.20 with asprect ratio B/s
= 2.07) B= 6.00 m s= 2.90 m
As =Gross Area of the solid free standing wall in (m2)
Velocity pressure, q =0.613 x kz x kzt x kd x V2 x I
q = 0.613 x 0.85 x 1.0 x 0.85 x 40 ² x 0.9 = 617 N/m²
q= 0.617 KN/m²
Wind Pressure, P = q x G x Cf
P= 0.617 x 0.85 x 1.40 = 0.73 KN/m²
So consider wind pressure, P = 0.73 KN/m²
2
Structural Design Calculation
(8) DESIGN OF COLUMN
(a) STANDARD COLUMN
Hc = Over all Column height =3900.0 mm
hd = Column design height =3650.0 mm
Column section =300.0 mm x 350.0 mm
x= Wind force lever arm =2.200 m (distance from top of footing to center of exposed panel)
Boundary wall panel is resting on the bottom most portion of column, so It is critical
against bending due to wind load, therefore the column will be designed as a
cantilever beam (flexural member) from top of the footing resisting the wind load.
Wind force acting on one column =(0.73 x 2.90 x 6.00) =12.70KN acting at 2.200m from
the top of the footing
Ultimate Moment due to Wind force,
Mu= 1.6 x 12.70 x 2.200 = = 44.71 KN-m
Rn= M u x 106 ɸ = 0.9 (for flexure)
2
ɸ . b.d
b= 140.0 mm , d= 304.0 mm
Pw
Rn= 44.71 x 10⁶ Hc hd
0.9.140.304²
R n = 3.83970
x
2. 𝑅𝑛
𝑓𝑐′ 1 − 1 −
ρ= 0.85. 0.85. 𝑓𝑐′
𝑓𝑦
ρ = 0.85(32MPa/460MPa)(1-√(1-((2)(3.84)/((0.85)(32MPa)))
ρ = 0.00904
(ACI 318-05 10.5) Minimum area of steel is,ρmin= 1.4/fy = 0.003043
ρmin= 0.003043 < ρ = 0.00904
Required area of steel
As,req = ρx b x d = 0.00904 x 140.0 x 304.0 = 384.65 mm²
Using 2 - T12
+ 2 - T12
As,provided = 452 mm²
As provided is greater than As required - SAFE!
4
Structural Design Calculation
(9) DESIGN OF FOUNDATION
Pw
h
Safe allowable bearing capacity = 200 KN/m²
Lateral force due to wind load (Pw) z
Area= 6.00 x 2.90 = 17.40 m² Ps s1
Wind force (Pw) = 17.40 x 0.73 = 12.70 KN S2
S2/3
Lateral resistance due to soil around the column (Ps) o
Ps= 1/2.Kp.ɣs. S2² .width of column
Ps= 1/2(3)(18)(1.00²)(0.35) ɣs = unit weight of soil
Ps= 9.45 KN Kp= passive soil coefficient
(a) Check against overturning
B L H
Assumed base size = 1800 x 1400 x 250 B
Column dimension y = 0.35 m
x= 0.35 m y
s1 soil depth from ground to top of footing = 0.75 m
x L
edge distance 0.175 m
Loads acting downward:
hollowcore panel weight = 42.00 KN
Column weight = 8.00 KN
Foundation weight = 15.75 KN
Earth filling above footing weight =
=>(1.80x1.40-0.35x0.35)x0.75x 18 = 32.37 KN
TOTAL WEIGHT (Q)= 98.12 KN
Overturning Moment:
Taking moment about the end point O at the bottom of the base
Wind Lever arm Z= (2.90/2) + 1.00 = 2.450 m
Moment due to Wind Load (Pw)=12.70 x 2.450 = 31.12 KN-m
Soil Lever arm S2/3= (1.00/3) = 0.333 m
Moment due to Soil resistance (Ps)=9.45 x 0.333 = 3.15 KN-m
Total Overturning Moment = 27.97 KN-m
Stabilizing Moment:
Ms = Stabilizing moment due to gravity load of foundation, wall panel, column and soil.
Ms= (15.75+32.37) x 1.80/2 + (42.00+8.00) x 0.175
= 52.05 KN-m
Factor of safety against over-turning
F.O.S = Ms /Mo =52.05 / 27.97 = 1.86 > 1.50
Safe against overturning O.K!
5
Structural Design Calculation
(b) Check for bearing pressure
2
σ = Q/A ± 6M/LB (L= 1.40 m, B= 1.80 m )
σ = (98.12) / 1.40 x1.80) ±( 6 x 64.22/(1.40 x1.80²))
σ= 38.94 ± 84.95
σ1 = 123.89 KN/m² ,σ2 = - 46.01 KN/m²
e= M/N = 64.22 / 98.12 = 0.65
Considering uplift Equation to obtain the maximum soil pressure due to tension in footing:
σmaxgross = 4Q/3L(B-2e)= 190.34 KN/m²
σmax nET = σmaxgross- (Ɣsoil*S2) = 172.34 KN/m² ≤ σall-NET = 200 KN/m²
So the maximum pressure does not exceed the allowable bearing pressure O.K!
SEE BELOW PROKON OUTPUT FOR CHECKING
6
Structural Design Calculation
σmaxgross = 190.05 KN/m²
σmax nET = σmaxgross- (Ɣsoil*S2) = 172.05 KN/m² < 200Kpa
THEREFORE FOOTING SIZE IS SUFFICIENT …
7
Design of Hollowcore Slabs (HCS-150)
t PARAMETERS
w = 1200.0mm (width of hollowcore slab)
γ = 25.0KN/m³ (specific weight of concrete)
t DESIGN LOADS
Wind load = 0.73 KN/m²
t LOAD CALCULATION
EQUIVALENT LINEAR LOAD:
Imposed Wind load = 0.73KN/m² x 1.20m = 0.88KN/m
Maximum typical length of hollow core = 5.83m
*DESIGN OUTPUT FOLLOWS*
Summary Report
Concise Beam (TM), Version 4.47h, (c) 2008 Black Mint Software, Inc
Licensed to: iNViSiBLE TEAM - 1
Project:
Problem:
SUMMARY REPORT
Design Code Used: ACI318-05
______________________________________________________________________________________________________
CONCRETE MATERIAL PROPERTIES
Precast Beam
___________________________
Concrete Density Wt = 2500 kg/m^3
Compressive Strength f'c = 40.0 MPa
Modulus of Elasticity Ec = 29725 MPa (user defined)
Strength at Transfer f'c = 28.0 MPa
Modulus of Elast. at Transfer Ec = 26587 MPa
Strength at Lifting f'c = 28.0 MPa
Modulus of Elast. at Lifting Ec = 26587 MPa
Cement Content = 460 kg/m^3 Construction Schedule *
Air Content = 5.00 % Age at Transfer = 0.75 days
Slump = 0.0 mm Age at Erection = 3 days
Aggregate Mix = 0.46 (ratio fine to total aggregate) Age at Topping Placement = 4 days
Aggregate Size = 10.0 mm Age Topping is Composite = 11 days
Curing Method = Moist * for loss calculations only
Humidity = 70 %
Basic Shrinkage Strain = 780.000E-6
______________________________________________________________________________________________________
BEAM LAYOUT
Segment/Length Offset Section Identification Topping Parameters
No From To Z Y Folder Section t1 b1 t2 b2
m m mm mm mm mm mm mm
__ ________ ________ _______ _______ _______________ _______________ _______ _______ _______ _______
1 0.000 5.830 0.0 0.0 HC 150 HC 150
Total Beam Length = 5.830 m, Centre of Supports, Left @ 0.000 m, Right @ 5.830 m
Span Length = 5.830 m, Bearing Length, Left = 70.0 mm, Right = 70.0 mm
______________________________________________________________________________________________________
PRECAST SECTION PROPERTIES (NON-COMPOSITE) *
Seg. A I yb Sb St V/S bw width height
No. mm^2 mm^4 mm mm^3 mm^3 mm mm mm mm
____ ____________ ____________ ______ ____________ ____________ ________ ________ ________ ________
1 112260 296.774E+6 72.0 4.122E+6 3.805E+6 40.00 280.0 1200.0 150.0
* These properties do not include the transformed area of any reinforcing or prestressing steel.
See the Transformed Section Properties text report for properties that include the area of steel.
______________________________________________________________________________________________________
PRESTRESSING STEEL TENDONS
Prestressing Strand Details
Offsets End Offset & Type * Tendon Jacking Force
ID Qty Material Section x y Left Right Area Pj %fpu
m mm m m mm^2 kN
__ ___ ____________ _______________ ________ ________ ________ ________ ____________ ____________ _____
1 4 1860 MPa 09.53 (3/8") 0.000 35.0 0.000 B 0.000 B 219.20 203.9 0.50
Es= 195000 MPa 5.830 35.0
2 4 1860 MPa 09.53 (3/8") 0.000 115.0 0.000 B 0.000 B 219.20 203.9 0.50
Es= 195000 MPa 5.830 115.0
notes: * Strand End Types: B - Fully Bonded, D - Debonded, C - Cut, A - Anchored (fully developed)
Prestressing steel is low relaxation strand.
Calculated Losses: Initial = 2.5%, Final = 12.2%
Maximum Total Prestress Forces: Pj(jacking) = 407.7 kN,
Pi(transfer) = 397.3 kN,
Pe(effective) = 358.2 kN @ x = 0.405 m,
Prestressing Strand Transfer and Development Lengths
ID Diameter End Debond Length fse fps Transfer Development
mm m MPa MPa mm mm
__ ________ ________ _____________ ____________ ____________ ____________ ____________
1 9.5 LEFT 0.000 827.47 1834.02 380.8 1771.7
1 9.5 RIGHT 0.000 827.47 1834.02 380.8 1771.7
2 9.5 LEFT 0.000 806.54 1840.46 371.1 1799.9
2 9.5 RIGHT 0.000 806.54 1840.46 371.1 1799.9
Engineer: Company:
File: HC150-5.83.con 1 Wed Sep 27 08:44:13 2023
Summary Report
Concise Beam (TM), Version 4.47h, (c) 2008 Black Mint Software, Inc
Licensed to: iNViSiBLE TEAM - 1
Project:
Problem:
______________________________________________________________________________________________________
BEAM AND TOPPING SELF-WEIGHT
Segment/Length Linear Weight
From To Beam Topping
No. m m kN/m kN/m
___ ________ ________ ____________ ____________
1 0.000 5.830 2.75
______________________________________________________________________________________________________
EXTERNALLY APPLIED LOADS
Load Intensity (*) Offset (m)
Load Case Load Label Load Type Left Right Left Right
___________ ____ _______________ _____________ ____________ ____________ ____________ ____________
Live Load L Load #1 Line Load 0.88 0.88 0.000 5.830
* point loads = kN, line loads = kN/m, point moment/torsion = kNm, line torsion = kNm/m
Load Combinations
Factored Combination 1 = 1.40D + 1.40F
Factored Combination 2 = 1.20D + 1.60L + 0.50SRLr + 1.20F + 1.20T
Factored Combination 3 = 1.20D + 0.50L* + 1.60SRLr
Factored Combination 4 = 1.20D + 1.60SRLr + 0.80WE
Factored Combination 5 = 1.20D + 0.50L* + 0.50SRLr + 1.60WE
Factored Combination 6 = 0.90D + 1.60WE
* Load factor reduced from 1.0 to 0.5 for low live loading (garage, public assembly, < 4.8 kN/m2) (The use of T is not
______________________________________________________________________________________________________
SHEAR STIRRUPS
Stirrup Stirrup Number of Legs Total Stirrup Area Stirrup Spacing
From To Grade Size Stirrup Interface Stirrup Interface Stirrup Interface
m m MPa in Beam Ties mm^2 mm^2 mm mm
________ ________ ________ ________ _________ _________ ____________ ____________ _________ _________
0.000 5.830 400 0 0 0.0 0.0 0.0 0.0
______________________________________________________________________________________________________
TORSION PARAMETERS
Seg. Torsion Parameters
No. Aoh Ph
mm^2 mm
___ ____________ ____________
1 0.0 0.0
Aoh is the area enclosed by the centerline of the outermost closed transverse torsional reinforcement.
Ph is the perimeter of the area defined as Aoh.
______________________________________________________________________________________________________
ANALYSIS RESULTS SUMMARY - IN SERVICE
Total Unfactored Moments | Total Factored Effects
x Total Sustained | Shear Moment Torsion
m kNm kNm | kN [*] kNm [*] kNm [*]
________ ____________ ____________ | _________________ _________________ _________________
0.000 0.0 0.0 | 13.7 [ 2] 0.0 [ 1] 0.0 [ 1]
0.567 5.4 4.1 | 11.1 [ 2] 7.0 [ 2] 0.0 [ 1]
1.134 9.7 7.3 | 8.4 [ 2] 12.5 [ 2] 0.0 [ 1]
1.700 12.8 9.7 | 5.7 [ 2] 16.5 [ 2] 0.0 [ 1]
2.267 14.7 11.1 | 3.1 [ 2] 19.0 [ 2] 0.0 [ 1]
2.834 15.4 11.7 | 0.4 [ 2] 20.0 [ 2] 0.0 [ 1]
2.915 15.4 11.7 | 0.0 [ 1] 20.0 [ 2] 0.0 [ 1]
3.401 15.0 11.4 | -2.3 [ 2] 19.5 [ 2] 0.0 [ 1]
3.968 13.4 10.2 | -5.0 [ 2] 17.4 [ 2] 0.0 [ 1]
4.534 10.7 8.1 | -7.6 [ 2] 13.8 [ 2] 0.0 [ 1]
5.101 6.8 5.1 | -10.3 [ 2] 8.8 [ 2] 0.0 [ 1]
5.668 1.7 1.3 | -13.0 [ 2] 2.2 [ 2] 0.0 [ 1]
5.830 0.0 0.0 | -13.7 [ 2] 0.0 [ 1] 0.0 [ 1]
* Critical Factored Load Combination
______________________________________________________________________________________________________
SUPPORT REACTIONS (kN)
(+ve = upwards)
Unfactored Support Reactions
Engineer: Company:
File: HC150-5.83.con 2 Wed Sep 27 08:44:13 2023
Summary Report
Concise Beam (TM), Version 4.47h, (c) 2008 Black Mint Software, Inc
Licensed to: iNViSiBLE TEAM - 1
Project:
Problem:
In Service During Lifting
Load Case Left Right Left Right
___________ ____________ ____________ ____________ ____________
Beam Weight 8.0 8.0 8.0 8.0
SDL BT 0.0 0.0
Topping Wgt 0.0 0.0
SDL AT 0.0 0.0
LL Sustain 0.0 0.0
Live Load 2.6 2.6
Roof Load 0.0 0.0
Fluid Wgt 0.0 0.0
VWind or EQ 0.0 0.0
Strain Load 0.0 0.0
___________ ____________ ____________ ____________ ____________
Sust. Total 8.0 8.0
Total 10.6 10.6 8.0 8.0
Factored Support Reactions
Load Combo. Left [*] Right [*]
___________ _________________ _________________
Factor Max. 13.7 [ 2] 13.7 [ 2]
Factor Min. 0.0 [ 1] 0.0 [ 1]
* Critical Factored Load Combination
______________________________________________________________________________________________________
CONCRETE STRESS RESULTS
(+ve = compression, -ve = tension)
x Stress Limit Overstress
Location m MPa MPa Notice
_______________ ________ ____________ ____________ ________
STRESSES AT TRANSFER
Critical Compression
Top of Beam 2.915 6.83 16.80 0%
Bottom of Beam 0.405 2.44 16.80 0%
Longitudinal Tensile Rebar Needed (mm^2)
Critical Tension Required Provided Additional
Top of Beam 0.000 0.00 -2.64 0%
Bottom of Beam 0.000 0.00 -2.64 0%
_______________ ________ ____________ ____________ ________
STRESSES DURING LIFTING
Critical Compression
Top of Beam 2.915 6.83 16.80 0%
Bottom of Beam 0.405 2.44 16.80 0%
Longitudinal Tensile Rebar Needed (mm^2)
Critical Tension Required Provided Additional
Top of Beam 0.000 0.00 -2.64 0%
Bottom of Beam 0.000 0.00 -2.64 0%
_______________ ________ ____________ ____________ ________
STRESSES IN SERVICE
Critical Compression
Top of Beam 2.915 7.43 24.00 0%
Bottom of Beam 0.405 1.89 24.00 0%
Critical Tension
Top of Beam 0.000 0.00 -6.30 * 0% Class U member - not cracked
Bottom of Beam 2.915 -0.89 -6.30 * 0% Class U member - not cracked
_______________ ________ ____________ ____________ ________
STRESSES IN SERVICE (SUSTAINED LOADS ONLY)
Critical Compression
Top of Beam 2.915 6.45 18.00 0%
Bottom of Beam 0.405 2.12 18.00 0%
* Bilinear deflection calculation used.
At Transfer During Lifting In Service
Modulus of Rupture, fr = -3.30 MPa -3.30 MPa -3.94 MPa
Transfer Strength Required, f'c = 11.4 MPa (f'c specified = 28.0 MPa)
Lifting Strength Required, f'c = 11.4 MPa (f'c assumed = 28.0 MPa)
______________________________________________________________________________________________________
DISTRIBUTION OF FLEXURAL STEEL & CRACKING
(+ve = tension, -ve = compression)
Beam not cracked or crack depth is less than concrete cover.
______________________________________________________________________________________________________
NET DEFLECTION ESTIMATE AT ALL STAGES
Engineer: Company:
File: HC150-5.83.con 3 Wed Sep 27 08:44:13 2023
Summary Report
Concise Beam (TM), Version 4.47h, (c) 2008 Black Mint Software, Inc
Licensed to: iNViSiBLE TEAM - 1
Project:
Problem:
(-ve = deflection down, +ve = camber up)
Deflection growth estimated by use of PCI suggested multipliers - see multiplier report
Design Code Used: ACI318-05
Net Deflection | Change in Deflection
Location Net @ * Net @ Net @ Net DL Net Total | DL growth LL Span/Deflection
x Transfer Erection Complete @ Final @ Final | + LL ** alone DL growth LL
m mm mm mm mm mm | mm mm + LL ** alone
________ _________ _________ _________ _________ _________ | _________ _________ _________ _________
0.000 0.0 0.0 0.0 0.0 0.0 | 0.0 0.0 0 0
0.567 -1.8 -3.3 -3.3 -4.8 -5.2 | -1.9 -0.5 3002 12719
1.134 -3.4 -6.2 -6.2 -9.0 -9.9 | -3.7 -0.9 1588 6702
1.700 -4.6 -8.5 -8.5 -12.4 -13.6 | -5.0 -1.2 1157 4871
2.267 -5.4 -10.0 -10.0 -14.6 -16.0 | -5.9 -1.4 982 4128
2.834 -5.8 -10.6 -10.6 -15.4 -16.9 | -6.3 -1.5 926 3889
2.915 -5.8 -10.6 -10.6 -15.4 -16.9 | -6.3 -1.5 925 3885
3.401 -5.6 -10.3 -10.3 -14.9 -16.4 | -6.1 -1.5 956 4019
3.968 -4.9 -9.0 -9.0 -13.1 -14.4 | -5.3 -1.3 1091 4588
4.534 -3.8 -7.0 -7.0 -10.1 -11.1 | -4.1 -1.0 1421 5990
5.101 -2.3 -4.2 -4.2 -6.1 -6.7 | -2.5 -0.6 2365 10007
5.668 -0.5 -1.0 -1.0 -1.4 -1.5 | -0.6 -0.1 10307 43783
5.830 0.0 0.0 0.0 0.0 0.0 | 0.0 0.0 0 0
Span/Deflection Limits: DL growth + LL * = L / 480 for non-structural attachments
L / 240 otherwise
LL alone = L / 360 for floors
L / 180 for roofs
* on temporary supports at transfer ** after completion, including placement of all DL
______________________________________________________________________________________________________
FLEXURAL DESIGN CHECK
Design Code Used: ACI318-05
Beta Used: for precast beam = 0.760
Factored Design Minimum Depth in Net Tensile Flexure Ø Notes &
Moment Strength Strength Compression Strain Class Warnings
x Mu ØMn 1.2Mcr c
m kNm kNm kNm mm
________ ____________ ____________ ____________ ____________ ____________ ____________ ____ __________
0.000 0.0 0.0 19.5 0.3 1.3770 Tension 0.75
0.567 7.0 22.5 33.6 14.3 0.0212 Tension 0.77
1.134 12.5 32.6 33.6 19.3 0.0149 Tension 0.81
1.700 16.5 41.7 33.6 21.3 0.0132 Tension 0.86
2.267 19.0 44.7 33.6 22.3 0.0125 Tension 0.90
2.834 20.0 44.7 33.6 22.3 0.0125 Tension 0.90
2.915 20.0 44.7 33.6 22.3 0.0125 Tension 0.90
3.401 19.5 44.7 33.6 22.3 0.0125 Tension 0.90
3.968 17.4 44.7 33.6 22.3 0.0125 Tension 0.90
4.534 13.8 35.2 33.6 20.3 0.0140 Tension 0.83
5.101 8.8 25.3 33.6 15.3 0.0196 Tension 0.78
5.668 2.2 8.5 25.5 5.3 0.0627 Tension 0.75
5.830 0.0 0.0 19.5 0.3 1.3770 Tension 0.75
________ ____________ ____________ ____________ ____________ ____________ ____________ ____ __________
Points of Maximum and Minimum Factored Moment
2.915 20.0 44.7 33.6 22.3 0.0125 Tension 0.90
0.000 0.0 0.0 -18.0 1.3 0.2730 Tension 0.75
Points of Critical Moment Design
2.915 20.0 44.7 33.6 22.3 0.0125 Tension 0.90
0.000 0.0 0.0 -18.0 1.3 0.2730 Tension 0.75
______________________________________________________________________________________________________
SHEAR AND TORSION DESIGN CHECK
Design Code Used: ACI318-05
Shear and Torsion Design Forces
Applied Prestress Concrete Stirrup * Shear Applied Threshold Notes &
Shear Component Strength Strength Strength Torsion Torsion Warnings
x Vu Vp ØVc ØVs ØVn Tu ØTcr/4
m kN kN kN kN kN kNm kNm
________ ___________ ___________ ___________ ___________ ___________ ___________ ___________ __________
0.000 13.7 0.0 46.3 0.0 46.3 0.0 4.5
0.567 11.1 0.0 37.2 0.0 37.2 0.0 7.1
1.134 8.4 0.0 26.5 0.0 26.5 0.0 7.1
1.700 5.7 0.0 26.5 0.0 26.5 0.0 7.1
Engineer: Company:
File: HC150-5.83.con 4 Wed Sep 27 08:44:14 2023
Summary Report
Concise Beam (TM), Version 4.47h, (c) 2008 Black Mint Software, Inc
Licensed to: iNViSiBLE TEAM - 1
Project:
Problem:
2.267 3.1 0.0 26.5 0.0 26.5 0.0 7.1
2.834 0.4 0.0 26.5 0.0 26.5 0.0 7.1
2.915 0.0 0.0 26.5 0.0 26.5 0.0 7.1
3.401 -2.3 0.0 -26.5 0.0 -26.5 0.0 7.1
3.968 -5.0 0.0 -26.5 0.0 -26.5 0.0 7.1
4.534 -7.6 0.0 -26.5 0.0 -26.5 0.0 7.1
5.101 -10.3 0.0 -29.8 0.0 -29.8 0.0 7.1
5.668 -13.0 0.0 -56.6 0.0 -56.6 0.0 5.8
5.830 -13.7 0.0 -46.3 0.0 -46.3 0.0 4.5
* Stirrup resistance based on required stirrup area.
Transverse Steel (Stirrup) Design for Shear
Required Shear Steel Stirrup Stirrup Spacing Long. Torsion Steel, Al Notes &
Total Torsion* Provided Provided Required Total Allowable Warnings
x (Av+2At)/s At/s Av+2At s s Required Reduction**
m mm^2/m mm^2/m mm^2 mm mm mm^2 mm^2
________ ___________ ___________ ___________ ___________ ___________ ___________ ___________ __________
0.000 N/A N/A N/A N/A N/A 0.0 0.0
0.567 N/A N/A N/A N/A N/A 0.0 0.0
1.134 N/A N/A N/A N/A N/A 0.0 0.0
1.700 N/A N/A N/A N/A N/A 0.0 0.0
2.267 N/A N/A N/A N/A N/A 0.0 0.0
2.834 N/A N/A N/A N/A N/A 0.0 0.0
2.915 N/A N/A N/A N/A N/A 0.0 0.0
3.401 N/A N/A N/A N/A N/A 0.0 0.0
3.968 N/A N/A N/A N/A N/A 0.0 0.0
4.534 N/A N/A N/A N/A N/A 0.0 0.0
5.101 N/A N/A N/A N/A N/A 0.0 0.0
5.668 N/A N/A N/A N/A N/A 0.0 0.0
5.830 N/A N/A N/A N/A N/A 0.0 0.0
* Portion of the total stirrup area required to resist torsional shear flow (one leg around periphery).
** Allowable reduction in the additional longitudinal steel in the compression portion of the section.
Engineer: Company:
File: HC150-5.83.con 5 Wed Sep 27 08:44:14 2023
Shear Design Graph
Concise Beam (TM), Version 4.47h, (c) 2008 Black Mint Software, Inc
Licensed to: iNViSiBLE TEAM - 1
Project:
Problem:
Shear Design
100
80
60
40
20
Shear - kN
-20
-40
-60
-80
-100
0 0.583 1.166 1.749 2.332 2.915 3.498 4.081 4.664 5.247 5.83
Distance From Left End of Beam - m
Factored Applied Shear, Vu
Shear Strength of Concrete, ØVc
Total Shear Strength, ØVn
Engineer: Company:
File: HC150-5.83.con Wed Sep 27 08:44:26 2023
Flexural Design Graph
Concise Beam (TM), Version 4.47h, (c) 2008 Black Mint Software, Inc
Licensed to: iNViSiBLE TEAM - 1
Project:
Problem:
Flexural Design
50
45
40
35
Moment - kNm
30
25
20
15
10
0 0.583 1.166 1.749 2.332 2.915 3.498 4.081 4.664 5.247 5.83
Distance From Left End of Beam - m
Factored Applied Moment, Mu: +ve Bending
Flexural Strength, ØMn: +ve Bending
Engineer: Company:
File: HC150-5.83.con Wed Sep 27 08:44:40 2023