Relation Function Ex - 1
Relation Function Ex - 1
Relation and its Types                                                            (b) reflexive but neither symmetric nor transitive
                                                                                  (c) an equivalence relation
1.     Let R = {(3, 3), (6, 6), (9, 9), (12, 12), (6, 12), (3, 9),
       (3, 12), (3, 6)} be a relation on the set A = {3, 6, 9, 12}. The           (d) symmetric but neither reflexive nor transitive
       relation is                                                        Ans.    (b)
       (a) reflexive and symmetric only                                         3    2      2    3
                                                                          Sol. x - 3x y - xy + 3y = 0
       (b) an equivalence relation
       (c) reflexive only                                                 Þ x x - y x + y - 3y x - y x + y = 0
       (d) reflexive and transitive only
                                                                          Þ x - 3y x - y x + y = 0
Ans.   (d)
Sol. (i) (a, a) Î R"a Î A Þ (3,3) (6, 6) (9, 9) (12,12) Now, x = y" x, y Î N ´ N so reflexive
Ans.   (a)                                                                              aa 2
                                                                                  Þ          =a
Sol.   R = {(x, y) Î w ´ w ; the words x and y have at least one                        a +1
       letter in common} clearly R is reflexive and symmetric. For
       transitive let x = abcd, y = defg, z = ghi                                 Þ aa 2 = a 2 + a
       Þ R is not transitive                                                                    1
                                                                                  Þ a =1+
3.     Let N be the set of natural numbers and a relation R on N                                a
       be defined by
                                                                                                          log 2 x + 3
       R=     x, y Î N ´ N : x 3 - 3x 2 y - xy 2 + 3y 3 = 0 .             5.      The domain of f (x) =                   is
                                                                                                           x 2 + 3x + 2
       Then the relation R is:
                                                                                  (a) R – {–1, –2}              (b) (–2, + ¥)
       (a) reflexive and symmetric, but not transitive
     2                                                      RELATION , FUNCTION & INVERSE TRIGONOMETRIC FUNCTIONS
         (c) R – {–1, –2, –3}               (d) (–3, + ¥) – {–1, –2}     Ans.   (b)
Ans.     (d)
                                                                         Sol.   e x + ef (x) = e
           2
Sol.     x + 3x + 2 ¹ 0
                                                                                ex = e - ef (x)
         Þ (x + 1) (x + 2) ¹ 0 Þ x ¹ - 1, - 2 .........(i)
                                                                                Q ex > 0 Þ e - ef (x) > 0 ef (x) < e
         and x + 3 > 0 Þ x > – 3            ........ (ii)
         \- x - 2
                           2
                               -9 > 0                                                 x2 + x + 1 + 1
                                                                         Sol.   y=
                                                                                       x2 + x + 1
                       2
         9- x -2           >0                                                                    1
                                                                                y = 1+       2
                                                                                         x + x +1
                       2
          9- x -2                    = 0+
                               min                                                                         2
                                                                                             æ    1ö   3
                                                                                x2 + x + 1 = ç x + ÷ +
                                                                                             è    2 ø  4
          5 + 4x - x 2
                               max
                                                                                                       3
                                                                                (x 2 + x + 1) min =
               -b                                                                                      4
         x=
               2a
                                                                                (x 2 + x + 1) max ® ¥
                -4
         x=         =2                                                          Þ y min ® 1 + 0
               2 -1
                                                                                                 1 7
         5 + 4 2 - 22 = 9                                                       y max = 1 +        =
                                                                                                 3 3
                                                                                                 4
         y max = log 3 9 = 2
Þ By AM ³ GM
               1
         x+      ³2
               x
                        2   x
         LHS : 2 sin          cos 2 x                                                                         2
                            2                                       12.     The function f (x) = cos log x + x + 1                is :
                                                                                                                                             x2 – 4
                                                                             16.    Let f be a function from R to R given by f (x) =                .
                                                                                                                                             x 2 +1
                                                                                    Then f (x) is.
                                                                                    (a) one-one and into              (b) one-one and onto
                                                                                    (c) many-one and into             (d) many-one and onto
                                                                             Ans.   (c)
                                                                             Sol.   f (x) = f (–x). So, f is many-one.
                                                                                                          5
                                                                                    Also f (x) = 1 -      2
                                                                                                                > 1- 5 = - 4
                                                                                                        x +1
          Clearly, for x < 0, f (x) < 0 and goes on decreasing as x                 So, f is into.
          decreases.
          For x > 3, f (x) > 0 and goes on increasing as x increases.        17.    f (x) = x +      x 2 is a function from R ® R. Then f (x) is
          \ f (x) can have call real values. So, f is onto.                         (a) injective                     (b) surjective
14.       Let f : R ® R be                     a   function   such   that           (c) bijective                     (d) none of these
          f (x) = x3 + x2 + 3x + sin x. Then                                 Ans.   (d)
          (a) f is one-one and into        (b) f is many-one and into
                                                                             Sol.   f (x) = x + | x | .
          (c) f is one-one and onto        (d) f is many-one and onto
                                                                                    Clearly f (–1) = f (–2) = ........... = 0.
Ans.      (c)
                                                                                    So, f is many-one.
                    ìïæ      2
                          1 ö 11 üï                                                 Also, f (x) ³ 0 for all x.
Sol.      f (x) = x íç x + ÷ + ý + sin x.
                     ïîè  2ø   4 ïþ
                                                                                    So, it is not surjective.
                                                                             18.    A function f : A ® B, where A {x : – 1 £ x £ 1} and
                               2                                                                                                                2
                    ìïæ    1 ö 11 üï                                                B = {y : 1 £ y £ 2} is defined by the rule y = f (x) = 1 + x .
          Clearly x íç x + 2 ÷ + 4 ý increases with x.                              Which of the following statement is true?
                     ïîè     ø     ïþ
                                                                                    (a) f is injective but not surjective
          and its value change over R.                                              (b) f is surjective but not injective
          Also, -1 £ sin x £ 1.                                                     (c) f is both injective and surjective
          So, the range of f = R                                                    (d) f is neither injective nor surjective
          Hence, f is onto and one-one.                                      Ans.   (b)
15.       Let f be a function from R to R given by f (x) = 2x + |cos x|.     Sol.   Since, A = {x : - 1 £ x £ 1}
          Then f is
          (a) one-one and into             (b) one-one and onto                     and B = {y :1 £ y £ 2}
          (c) many-one and into            (d) many-one and onto                    For y = f (x) = 1 + x 2
Ans.      (b)
Sol.      Here, f (x) will give all real values for real values of x, Thus          x = 1, y = 1 + (1) 2 = 2
          it is onto.
                                                                                    and for x = -1, y = 1 + (-1)2 = 2
 RELATION , FUNCTION & INVERSE TRIGONOMETRIC FUNCTIONS                                                                                          5
       for one-one
       Take any straight line parallel to x-axis which will intersect
       f (x) only at one point.
       Þ f (x) is one-one
       For onto
                   ì x, x Î Q
       As, f (x) = í            , which shows
                   î - x, x Ï Q                                                     B = Range of f (x)
       y = x and y = – x for rational and irrational values                         Þ B Î [1, ¥).
       Þ y Î real numbers.                                                  22.     Which of the following function has period p ?
       \ Range = Codomain
                                                                                             æ 2px ö        æ px ö
       Þ f (x) is onto.                                                             (a) 2cos ç     ÷ + 3sin ç ÷
                                                                                             è 3 ø          è 3 ø
       Thus, f – g is one-one and onto.                                             (b) |tan x| + cos 2 x
20.    If f : R ® S, define by f (x) = sin x –      3 cos x + 1, is onto,
                                                                                             æ      pö        æ     pö
       then the interval of S is                                                    (c) 4cos ç 2px + ÷ + 2sin ç px + ÷
                                                                                             è      2 ø       è     4ø
       (a) [0, 1]                     (b) [–1, 1]
                                                                                    (d) none of the above
       (c) [0, 3]                     (d) [–1, 3]
                                                                            Ans.    (b)
Ans. (d)
          (a) p
                2
                                          (b) p                         Ans.   (d)
                3
          (c) p                           (d) p/2                       Sol.   f (x) = 2 - x, g (x) = 1 - 2x
Ans.      (b)
                                                                               f (g (x)) = 2 - 1 - 2x
                      1 - cos 2q
Sol.      sin 2 q =
                           2
                                                                                                             1
                                                                               Þ       1 - 2x ³ 0 Þ x £
                                                                                                             2
                             æ 2p ö
          Þ cos 2q period is ç    ÷
                             è 2 ø                                             2 - 1 - 2x ³ 0
          Þp
                                                                                                            3
25.       Which one is not periodic                                            Þ 4 ³ 1 - 2x Þ x ³ -
                                                                                                            2
                            2
          (a) |sin 3x| + sin x            (b) cos x + cos 2 x
                             2                      2
          (c) cos 4x + tan x              (d) cos x + sin x
Ans.      (b)
 RELATION , FUNCTION & INVERSE TRIGONOMETRIC FUNCTIONS                                                                                     7
               é 3 1ù                                                                          p
         Þ x Î ê- , ú .                                                     = cos–1(sin x) =       –x
               ë 2 2û                                                                          2
28.     Let f (x) = sin x and g(x) = In |x|. If the ranges of the           gofoh(x) = sin 2 (cos –1 x ) = 1 - x 2
        composition functions fog and gof are R 1 and R 2
        respectively, then                                                  fohog(x) = sin2(cos–1 x ) = 1 – x.
        (a) R1 = {u : –1 < u < 1}, R2 = {v : –¥ < v < 0}
                                                                            Thus no two composites are equal.
        (b) R1 = {u : –¥ < u < 0}, R2 = {v : –1 < v < 0}
                                                                     31.    If f(g(x)) = | cos x |, g(f(x)) = cos2 x , then -
        (c) R1 = {u : –1 < u < 1}, R2 = {v : –¥ < v < 0}
        (d) R1 = {u : –1 < u < 1}, R2 = {v : –¥ < v < 0}                    (a) f(x) is a periodic function and g(x) is a non-periodic
                                                                            function.
Ans.    (d)
                                                                            (b) f(x) is a non-periodic function and g(x) is a periodic
Sol.     f (x) = sin x, g (x) = ln | x |                                    function.
        fog (x) = sin ln |x|                                                (c) Both f(x) and g(x) are periodic functions
         Þ range = [–1, 1]                                                  (d) Neither f(x) nor g(x) is a periodic function
                                                                     Ans. (b)
           sin ce - 1 £ sin x £ 1
                                                                     Sol. Given, f(g(x)) = | cos x | =          cos2 x          ….(i)
        (gof) (x) = ln |sin x|
         Þ range of (gof) (x) = (-¥, 0]                                     from (i) and (ii), f(x) =     x . And g(x) = cos2x
                                                                            Clearly f(x) is a non-periodic function and g(x) is a periodic
                                                        2
29.     If g {f (x)} = |sin x| and f {g (x)} = sin x        , then          function.
                    æ 1+ x ö                                                 Sol.   y = [1 - (x - 3) 4 ]1/7
          (c) log a ç      ÷                      (d) none of these
                    è 1- x ø
                                                                                                        4
                                                                                    y7 = 1 - x - 3
Ans.      (b)
                                                                                    Interchange x « y
                    a x - a -x         a 2x - 1
Sol.      f (x) =                  =
                    a x + a -x         a 2x + 1                                     Þ x 7 = 1 - (y - 3)4
                a 2y - 1                                                            Þ (1 - x 7 )1/4 = y - 3
          x=
                a 2y + 1
                                                                                    Þ y = 3 + (1 - x 7 )1/4 .
                      x +1
          Þ a 2y =                                                           Functional Equations
                      1- x
                    1          æ 1+ x ö                                                              æ1ö 1
          Þ y=        log a    ç      ÷.                                     36.    If 3 f (x) + 5 f ç ÷ = – 3, " x(¹ 0) Î R, then f (x) is
                    2          è1- x ø                                                               èxø x
          (b) – 1 – x +1                                                                   1 æ3         ö
                                                                                    (c)      ç - 5x - 6 ÷           (d) none of these
                                                                                          16 è x        ø
          (c) does not exist because f is not one-one
                                                                             Ans. (b)
          (d) does not exist because f is not onto
Ans.      (d)                                                                                   æ1ö 1
                                                                             Sol.   3f (x) + 5f ç ÷ = - 3           .........(1)
                                                                                                èxø x
Sol.      f (x) = (x + 1)2 - 1
                                                                                                    1
                                                                                    Replace x.by
                                                                                                    x
                                                                                         æ1ö
                                                                                    Þ 3f ç ÷ + 5f (x) = x - 3 ..........(2)
                                                                                         èxø
                                                                                                  æ1ö 3
                                                                                    9f (x) + 15 f ç ÷ = - 9
                                                                                                  èxø x
          Clearly range = [-1, ¥)
                                                                                                   æ1ö
                                                                                    25 f (x) + 15f ç ÷ = 5x - 15
          But co-domain = R                                                                        èxø
          Þ function is not onto Þ inverse of function does not                     Subtract
          exist.
35.       The inverse of the function y = [1 – (x – 3) ] is
                                                                     4 1/7                              3
                                                                                    16 f (x) = 5x -       -6
                           7 1/4                                7 1/4                                   x
          (a) 3 + (1 – x )                        (b) 3 – (1 – x )
                           7 1/4
          (c) 3 – (1 + x )                        (d) none of these                               1 æ      3    ö
                                                                                    Þ f (x) =          5x - - 6 ÷
Ans.      (a)                                                                                    16 çè     x    ø
 RELATION , FUNCTION & INVERSE TRIGONOMETRIC FUNCTIONS                                                                                       9
37.    Let f : R ® R be a function given by f (x + y) = f (x) + f (y) for             (a) 4a = 3b                    (b) 3a = 4b
       all x, y Î R such that f (1) = a. Then, f (x) =
                                                                                                     7p
                                                                                      (c) a – b =                    (d) none of these
       (a) ax                           (b) ax                                                       12
       (c) xa                           (d) a + x
                                                                               Ans.   (a)
Ans.   (b)
Sol.   f (x + y) = f (x) + f (y)                                               Sol.   tan -1 tan x = x
       Put x = y = 1
                                                                                                  æ     5p ö
       f (2) = f (1) + f (1) = 2a                                                     \a = tan -1 ç tan
                                                                                                  è      4 ÷ø
       Put x = 1, y = 2
       f (3) = f (1) + f (2) = 3a                                                              ì æ        p öü
                                                                                      = tan -1 í tan ç p + ÷ ý
       In same manner f (x) = ax                                                               î     è    4 øþ
38.    Let f be a real valued function satisfying
       f (x + y) = f (x) f (y) for all x, y Î R such that f (1) = a. Then,                     æ    pö
                                                                                      = tan -1 ç tan ÷
       f (x) =                                                                                 è    4ø
       (a) ax                           (b) ax
       (c) xa                           (d) none of these                                 p
                                                                                      =
                                                                                            4
Ans.   (a)
Sol.   f (x + y) = f (x) f (y)                                                        and
       Put x = y = 1                                                                             ì        æ 2p ö ü
                                                                                      b = tan -1 í- tan ç      ÷ý
       f (2) = f (1) . f (1) = a2                                                                î        è 3 øþ
       Put x = 1, y = 2
       Þ f (3) = f (1) . f (2) = a3                                                            ì      æ    p öü
                                                                                      = tan -1 í- tan ç p - ÷ ý
                                                                                               î      è    3 øþ
       In same manner f (x) = ax
                           æ 1 ö                                                               ì æ p öü
39.    If a f (x + 1) + bf ç      ÷ = x, x ¹ -1, a ¹ –b, then f (1) is equal          = tan -1 í tan ç ÷ ý
                           è x +1 ø                                                            î è 3 øþ
       to
                                                                                          p
       (a) a + b                        (b) a2 – b2                                   =
                                                                                            3
            1
       (c)                              (d) f(1) = 0                                  \ 4a = p
           a+b
Ans. (d) 3b = p
Sol.   Put x = 0                                                                      \ 4a = 3b
       Þ af(1) + bf(1) = 0                                                     41.    Which one of the following is correct?
       Þ f(1) (a + b) = 0                                                             (a) tan 1 > tan–1 1            (b) tan 1 < tan–1 1
       Þ f(1) = 0                                                                     (c) tan 1 = tan–1 1            (d) None of the above
       as a + b ¹ 0                                                            Ans.   (a)
                                                                               Sol.   tan 1 means (tan (57º)) approx
Simplification problems of ITF
                                                                                      and tan 57º > 1
                    æ    5p ö             æ      2p ö
40.    If a = tan–1 ç tan ÷ and b = tan–1 ç – tan ÷ , then                                   -1           p
                    è     4 ø             è       3 ø                                 but tan (1) =         <1
                                                                                                          4
                                                                                      so tan 1 > tan–1 (1)
  10                                               RELATION , FUNCTION & INVERSE TRIGONOMETRIC FUNCTIONS
                        ép     -1 æ  3 öù                                           x
42.    The value of sin ê - sin çç -   ÷÷ ú is :                            1 - tan
                        êë 2      è 2 ø úû                                          2 = cos a
                                                                                    x
                                                                            1 + tan
                                                                                    2
              3                                3
       (a)                            (b) -
             2                                2
                                                                                      x
                                                                                  1 + tan
             1                                1                                       2 =                 1
       (c)                            (d) -                                 Þ
             2                                2                                       x                  cos a
                                                                              1 - tan
                                                                                      2
Ans.   (c)
                                                                            Apply C & D
             ép         æ   3 öù
Sol.   = sin ê - sin -1 ç -
                        ç 2 ÷÷ ú                                                2            1 + cos a
             ëê 2       è     ø úû                                                       =
                                                                                    x        1 - cos a
                                                                            2 tan
                                                                                    2
             ép pù
       = sin ê + ú
             ë2 3û
                                                                                  x 1 - cos a
                                                                            tan    =
            p 1                                                                   2 1 + cos a
       = cos =
            3 2
                                                                                                 x
43.    cot -1     cos a - tan -1     cos a = x, then sin x is equal                      2 tan
                                                                            sin x =              2
                                                                                                     x
       to                                                                               1 + tan 2
                                                                                                     2
                 æaö                         2 æaö
       (a) tan 2 ç ÷                  (b) cot ç ÷
                 è2ø                           è2ø                                     æ 1 - cos a ö
                                                                                    2 çç           ÷÷
                                              æaö                           =          è 1 + cos a ø
       (c) tan a                      (d) cot ç ÷
                                              è2ø                             (1 + cos a )2 + (1 - cos a )2
                                                                                             (1 + cos a )2
Ans.   (a)
       p                                                                              a
         - 2 tan -1 ( cos a ) = x                                               2sin 2
       2                                                                    =         2
                                                                                    2 a
                                                                              2 cos
                                                                                      2
                              p
       2 tan -1 ( cos a ) =     -x
                              2
                                                                                    æaö
                                                                            = tan 2 ç ÷
                            p x                                                     è2ø
       tan -1 ( cos a ) =    -
                            4 2
                                                                                                           1
                                                                      44.   If tan(cos–1 x) = sin æç cot -1 ö÷ , then x is equal to :
           æp xö                                                                                   è       2ø
       tan ç - ÷ = cos a
           è4 2ø
 RELATION , FUNCTION & INVERSE TRIGONOMETRIC FUNCTIONS                                                                        11
                                                               Properties of ITF
               5                                    5
       (a) ±                               (b) ±
               3                                   3
                                                                            -1          p
                                                               46.    If sin x =          , for some x Î (–1, 1), then the value of
             5                                                                          5
       (c) ±                               (d) None of these
              3                                                       cos–1 x is :
Ans.   (b)                                                                  3p                              5p
                                                                      (a)                             (b)
                                                                            10                              10
                           æ       1ö
Sol.   tan (cos-1 x) = sin ç cot -1 ÷
                           è       2ø                                       7p                              9p
                                                                      (c)                             (d)
                                                                            10                              10
           1- x2   2                                           Ans.   (a)
                 =
            x       5
                                                                                        p
                                                               Sol.   If sin -1 x =       ,
                                                                                        5
           5 (1 - x 2 ) = 2x
                                                                      We know
       Squaring both sides
                                                                                               p
       5 - 5x 2 = 4x 2                                                sin -1 x + cos -1 x =
                                                                                               2
       9x 2 = 5                                                              -1           p p 3p
                                                                      so, cos x =          - =
                                                                                          2 5 10
                    5
       x=±
                   3                                                                     3          5
                                                               47.    The value of cot -1 + sin -1    is :
                                                                                         4         13
45.    cos [tan–1 {sin (cot–1 x)}] is equal to :
                                                                              -1   63                              12
               x2 + 2                              x2 + 2             (a) sin                         (b) sin -1
       (a)                                 (b)                                     65                              13
               x2 + 3                              x2 +1
                                                                              -1   65                               5
                                                                      (c) sin                         (d) sin -1
                                                                                   68                              12
               x2 +1
       (c)                                 (d) None of these   Ans.   (a)
               x2 + 2
             é       æ x 2 + 1 öù
       = cos êcos -1 ç         ÷ú                                              æ 63 ö
                     ç x 2 + 2 ÷ú                                              ç ÷             63
             ê
             ë       è         øû                                     = tan -1 ç 36 ÷ = tan -1
                                                                               çç 16 ÷÷        16
                                                                                è 36 ø
             x2 +1
       =
             x2 + 2
  12                                                         RELATION , FUNCTION & INVERSE TRIGONOMETRIC FUNCTIONS
                æ                      ö                                                    x -1          x +1 p
                    63                                                    Sol.   tan -1          + tan -1     =
       = sin -1 ç                      ÷                                                    x+2           x+2 4
                ç 632 + 16 2           ÷
                è                      ø
                                                                                                                    æ a+b ö
                                                                                 Q tan -1 (a) + tan -1 (b) = tan -1 ç        ÷
                æ 63 ö                                                                                              è 1 - ab ø
       = sin -1 ç ÷
                è 65 ø
                                                                                          æ x -1 x + 1 ö
                                  y                                                       ç        +          ÷
48.              –1
       If cos x – cos        –1     = a, then 4x2 – 4xy cos a + y2 is                                           p
                                  2                                              \ tan -1 ç x + 2 x + 2 ÷ =
                                                                                          ç   (x - 1) (x + 1) ÷ 4
       equal to                                                                           ç1-                 ÷
                                                                                          è      (x + 2)2 ø
       (a) –4 sin2 a                            (b) 4 sin2 a
       (c) 4                                    (d) 2 sin 2a
Ans.   (b)                                                                                  2x
                                                                                           x +2                 æ pö
                                                                                 Þ   2              2
                                                                                                          = tan ç ÷
                             y                                                     (x + 4x + 4) - (x - 1)       è 4ø
Sol.   cos -1 x - cos -1       =a                                                                2
                             2                                                           (x + 2)
              æ xy                              y2 ö
       cos -1 ç    + 1 - x2                1-      ÷=a                           2x (x + 2)
                                                                                            =1
              ç 2                               4 ÷                               4x + 5
              è                                    ø
                                                                                 2x 2 + 4x = 4x + 5
                                   2
       xy             y
          + 1- x2 1 -   = cos a
        2             4                                                          2x 2 = 5
                                                                                              5
                           y2           xy                                       x=±
         1- x2 1 -            = cos a -                                                       2
                           4             2
                                                                          50.    If 2 tan–1 (cos x) = tan–1 (2 cosec x), then the value of x is :
       Square both sides.
                                                                                       3p                              p
          y2        x 2 y2             x 2 y2     1                              (a)                             (b)
       1-    - x2 +        = cos 2 a +        - 2. xy cos a                             4                              4
          4            4                  4       2
                                                                                       p
                                                                                 (c)                             (d) None of these
          y  2                                                                         3
       1-   - x 2 = cos 2 a - xy cos a
          4                                                               Ans.   (b)
Ans.   (c)
 RELATION , FUNCTION & INVERSE TRIGONOMETRIC FUNCTIONS                                                                              13
                                 p                                                          p
       Þ tan x = 1 so x =                                         Sol.     cos -1 x >         - cos -1 x
                                 4                                                          2
                                                 11p                                            p
51.    The equation 2cos-1 x + sin -1 x =            has :                 2 cos -1 x >
                                                  6                                             2
       (a) no solution                    (b) only one solution
                                                                                            p
       (c) two solutions                  (d) three solutions              cos -1 x >
                                                                                            4
Ans.   (a)
                                                                                        p
                                 11p                                       x < cos
Sol.   2 sin -1 x + cos -1 x =                                                          4
                                  6
                                                                                   1
       p              11p                                                  x<
         + sin -1 x =                                                              2
       2               6
                     4p                                                           é     1 ù
       sin -1 x =                                                          so x Î ê -1,   ú
                      3                                                           ë      2û
Never possible, so no solution. 54. Set of values of x satisfying cos–1 x > sin–1 x
                 æaö          æbö p
52.    If tan -1 ç ÷ + tan -1 ç ÷ = , then x is equal to :                   æ 1ö                        é 1ö
                  x
                 è ø          èxø 2                                      (a) ç 0, ÷                  (b) ê0, ÷
                                                                             è 2ø                        ë 2ø
       (a)   ab                           (b)   2ab
       (c) 2ab                            (d) ab                             æ1 ö                        æ1 ù
                                                                         (c) ç , 1÷                  (d) ç , 1ú
                                                                             è2 ø                        è2 û
Ans.   (a)
                                                                  Ans. (b)
             -1   æaö        -1 æ b ö p
Sol.   tan        ç x ÷ + tan ç x ÷ = 2
                  è ø           è ø                                                         p
                                                                  Sol. cos
                                                                           -1
                                                                              x>                - cos -1 x Q x ³ 0
                                                                                            2
                  éa bù                                                                     p
             -1
                  êx+xú p                                                cos -1 x >
       tan        ê       ú=                                                                4
                  ê1 - ab ú 2
                  ëê x 2 ûú                                                  p                      p
                                                                         Þ        < cos -1 x £
                                                                             4                       2
                     ab
       Þ so 1 -           =0
                     x2                                                  0£ x <
                                                                                        1
                                                                                            2
       Þ x 2 = ab
                                                                                    1
                                                                         0£ x<
       Þ x = ab                                                                     2
53.    If cos–1 x > sin–1 x, then :
                                                                                                                           1
       (a) x < 0                          (b) –1 < x < 0          55.     The value of cos (2 cos–1 x + sin–1 x) at x =      is :
                                                                                                                           5
                          1                                1              (a) 1                              (b) 3
       (c) 0 £ x <                        (d) -1 £ x <
                           2                                2
                                                                                                                     2 6
Ans.   (d)                                                                (c) 0                              (d) -
                                                                                                                      5
                                                                  Ans.    (d)
  14                                                          RELATION , FUNCTION & INVERSE TRIGONOMETRIC FUNCTIONS
                                                          1                                                                        1
Sol.   cos (2 cos -1 x + sin -1 x) = ? at x =                                                                +..... + tan -1             = tan -1 q , then q =
                                                          5                                                                    1+ n n +1
                                                                                                    æxö
                                                                         -1  p   Sol.     -1 £ log3 ç ÷ £ 1
                                                                 ....tan ¥ =                        è3ø
                                                                             2
                   1               1               1                                      1 x
57. If tan -1          + tan -1        + tan -1                                            £ £3
                  1+ 2          1+ 2 3          1+ 3 4                                    3 3
 RELATION , FUNCTION & INVERSE TRIGONOMETRIC FUNCTIONS                                                                               15
       Þ 1£ x £ 9                                                                                            æ p pö
                                                                              Þ domain of log (cos x) = D3 = ç - , ÷
       Domain = [1, 9]                                                                                       è 2 2ø
                                                   sin –1 x – 3                                  é pö
59.    The domain of the function f (x) =                         is          D1 Ç D2 Ç D3 Þ x Î ê 0, ÷
                                                       9– x   2                                  ë 2ø
                                         p p                                  Þ 0 < x £1
60.    The largest interval lying in æç - , ö÷ for which the
                                      è 2 2ø
                                                                              Þ 0 < tan -1 x £ p / 4
                            2         æx ö
       function f (x) = 4- x + cos -1 ç - 1÷ + log (cos x) is                 Þ -p / 4 £ - tan -1 x £ 0
                                      è2 ø
       defined, is                                                            Þ +p / 4 £ +p / 2 - tan -1 x £ p / 2
                                         æ p pö
       (a) [0, p]                    (b) ç - , ÷                              p / 4 £q £p / 2
                                         è 2 2ø
                                                                       62.    Range of f(x) = sin–1 x + tan–1 x + sec–1 x is
           é p pö                        é pö
       (c) ê - , ÷                   (d) ê 0, ÷                                   æ p 3p ö                         é p 3p ù
           ë 4 2ø                        ë 2ø                                 (a) ç ,    ÷                     (b) ê , ú
                                                                                  è4 4 ø                           ë4 4 û
Ans.   (d)
                                                                                  ì p 3p ü
                                                                              (c) í , ý                        (d) None of these
                     - x2          æ p pö                                         î4 4 þ
Sol.   Domain of 4          = D1 = ç - , ÷
                                   è 2 2ø
                                                                       Ans. (c)
       For Þ x = 0, - 1                                                Sol.   f (x) = sin -1 x + tan -1 x + sec-1 x
              x             x                                                           -1
       -1 £     -1 £ 1 Þ 0 £ £ 2                                              Domain sin x, x Î [-1, 1]
              2             2
                                                                                                   p
                ì p 3p ü                                                           Þ Period =
        Range = í , ý                                                                              2
                î4 4 þ
                                                                            66.    The period of the function f (x) = |sin 4x| + |cos 4x| is p/k.
63.     Range of f (x) = sin–1x + cot–1x + tan–1x is
                                                                                   Then the value of k is
                                                                            Ans.   (8)
        (a) [0, p]                             (b) é p , pù
                                                   êë 2 úû
                                                                                                                                            p
                                                                            Sol.   We know period of f (x) = | sin x | + | cos x | is
            ép ù                                                                                                                            2
        (c) ê , pú                             (d) [–p, p]
            ë4 û                                                                   Þ Period of f (x) = | sin 4x | + | cos 4x |
Ans.    (a)
                                                                                     p
Sol.     f (x) = sin -1 x + cot -1 x + tan -1 x                                          p
                                                                                   = 2 =
                                                                                     4 8
                        p
         = sin -1 x +                                                       67.    Let [x] denote the greatest integer £ x. If f (x) = [x] and
                        2
                                                                                                                   æ 8 ö æ                 8 ö
              p              p                                                     g(x) = |x|, then the value of f ç g æç ö÷ ÷ - g ç f æç - ö÷ ÷ is
         -      £ sin -1 x £                                                                                       è è øø è è 5 øø
                                                                                                                         5
              2              2
                                                                            Ans.   (-1)
        So 0 £ f (x) £ p
                                                                            Sol.   Given f (x) = [x] and g (x) = | x |
         f (x) Î [0, p]
                                                                                          æ æ 8 öö      æ 8 ö é8ù
                                                                                   Now, f ç g ç ÷ ÷ = f ç ÷ = ê ú = 1
Numerical Type Valued Questions                                                           è è 5 øø      è 5 ø ë5û
                                                                                                         æ 1 ö
                                                                                73.    If 2f (x + 1) + f ç      ÷ = 2x and x ¹ –1, then f (2) is equal to
                                                                                                         è x +1 ø
                                                                                       k/6. Then the value of k is.
                                                                                Ans.   (10)
                                                                                                        1
                                                                                Sol.   Put x = 1, -       is given function respectively, we get
                                                                                                        2
                                                                                                  æ1ö
                                                                                       2f (2) + f ç ÷ = 2                 .........(i)
70.    The number of real solutions of the equation log0.5 x = |x| is                             è2ø
Ans.   (1)
                                                                                              æ1ö
Sol.   draw graph of log 0.5 x and y = | x |                                           and 2f ç ÷ + f (2) = -1            ..........(ii)
                                                                                              è2ø
                                                                                                                                       5
                                                                                       On solving Equation (i) and (ii), we get f (2) = .
                                                                                                                                       3
                                                                                74.    If f (x) = ax 2 + bx + c satisfies the identity
                                                                                       f (x + 1) – f (x) = 8x + 3 for all x Î R. Then, a + b =
                                                                                Ans.   (3)
                                                                                Sol.   é a x + 1 2 + b x + 1 + c ù - é ax 2 + bx + c ù = 8 x + 3
                                                                                       ë                         û ë                 û
        20
                                                                            79.    The value of tan–1 (1) + tan–1 (0) + tan–1 (2) + tan–1 (3) is
                      -1
Sol.   å sin               x i = 10p,                                              equal to kp. Then the value of k is
       i =1
                                                                            Ans.   (1)
                                      p
                                        £ sin -1 x £
                                                     p                      Sol.   tan -1 (1) + tan -1 (0) + tan -1 (2) + tan -1 3
       We know that -
                                      2              2
                                                                                   since tan -1 (0) = 0
                                                         p
       So only possibility if sin -1 x i =                 "i Î [1, 20]
                                                         2                                                      æ 2+3ö
                                                                                   tan -1 2 + tan -1 3 = tan -1 ç      ÷
       So x i = 1.                                                                                              è 1- 6 ø
        20                                                                                  æ 5 ö
                                                                                   = tan -1 ç ÷ + p
       å x i = 20                                                                           è -5 ø
       i =1
                                                                                                          3p
77.
                3        4
       If cos -1 - sin -1 = cos -1 x, then x is equal to                           = p + tan -1 (-1) =
                5        5                                                                                 4
Ans.   (1)                                                                                                            p 3p
                                                                                   tan -1 1 + tan -1 2 + tan -1 3 =    +   =p
                                                                                                                      4 4
                      3         4
Sol.   cos -1           - sin -1 = cos -1 x
                      5         5                                                               æ p pö
                                                                            80.    If        x Îç- , ÷ ,           then        the   value    of
                                                                                                è 2 2ø
                æ4ö          æ4ö
       Þ sin -1 ç ÷ - sin -1 ç ÷ = cos-1 x
                 5
                è ø          è5ø                                                          æ tan x ö      -1 æ 3sin 2x ö
                                                                                   tan -1 ç       ÷ + tan ç               ÷ is kx. Then the value
                                                                                          è 4 ø             è 5 + 3cos 2x ø
       0 = cos -1 x
                                                                                   of k is
       x = cos 0 = 1                                                        Ans.   (1)
78.    If k £ sin–1 x + cos–1 x + tan–1 x £ K and k + K = mp. Then the                    æ tan x ö          æ 3sin 2x ö
       value of m is.                                                       Sol.   tan -1 ç       ÷ + tan -1 ç             ÷
                                                                                          è 4 ø              è 5 + 3cos 2x ø
Ans.   (1)
              p        p                      3p
       Þ          £            + tan -1 x £
              4            2                   4
Þ k =p /4
                       3p
       &K =
                        4
RELATION , FUNCTION & INVERSE TRIGONOMETRIC FUNCTIONS   19
               é             æ 2 tan x ö ù
               ê tan x     3ç               ÷ ú
               ê       +     è 1 + tan 2 x ø ú
               ê 4              æ 1 - tan 2 x ö ú
               ê         5 + 3 çç         2 ÷ ÷ú
    = tan -1   ê                è 1 + tan x ø ú
               ê æ tan x ö é 6 tan x ù ú
               ê1 - ç      ÷ê             2 úú
               ê è 4 ø ë 8 + 2 tan x û ú
               ê                                ú
               ê                                ú
               ëê                               ûú
     é tan x          6 tan x      ù
     ê          +            2     ú
             4     8 + 2 tan x ú
    =ê
     ê1 - æ tan x ö é 6 tan x ù ú
     ê çè 4 ÷ø ëê 8 + 2 tan 2 x ûú ú
     ë                             û
    = tan -1 (tan x)
   =x