0 ratings0% found this document useful (0 votes) 94 views15 pagesEmt Final Notes
Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content,
claim it here.
Available Formats
Download as PDF or read online on Scribd
See ar 22 N
The Rebmed Potential
the time. VaAsing Potato)
mp) a
une K
Mmennetic
VA- -Uy
V8 >¥ (xe)
exo) = 36 7
So new ey is
E=-U0ViNn
VXE = = UXCWV) § Sk
VXE = Vx
NRE eS “
&
- OB = Uxn
Ot
1B Vea
- d(Rsa) = xy
at
- Vx []- Van
Vv- Ba. JVASE =ag saan
€ V-e=Lv =
€ VC wen] - A
( 2 Vx(oxa) = 4 L0 eae]
et
Vee fe
&
Tv 1d (oa)
at ° (9.9) A= UT ae
3 V- (oA) Fad neg Ee aa]
Ea aco
to
-VAeus- HEI. - Hed
bee
Maxwell equation inteyml fom
' {Dds = [fav
. $B: ds =O
: E-dt =-(ep ds
Fe-dl_= =f ip da
Bedi <- t' [dO ds
# ie ;Eu - Ea
Dg = Par > 5
?, Hu = Mer
Towel mawell eatin
o Vx = 31
ot
eo Vee oe wd
c alt
oO VE ey fy
to
Q:8-0
8
moxwell equation IN Vaccume
| @ VKH =
es
‘>
Db
~
© Fey relanige ee uin-
magnetic — wave,
sonale bor Elk
elechu fied | 87181
and magneiic| Ka 121 +? 2,
he . conn iH 2)
field one ac No fave
= Bay = Bo |
\I
4F chamctenistic. 9 polanized I gh
i) AIL EMW Atk -tranayerre in Natune 6-40"
i) €/B/K ae mute encliculory
(all otthem Ine 40” om a
in) Al Emw travel wrth speed oF light
re C= Bx10%m fs
w) £ and Ban in phare
28 -W-22D
) were RIN vaccumel
& S=o
ii) VR =O Go
So
in) Yxe 7-88 Tye ee
wv) Jxb = Ae & BE
iv) Nixb = Lol Sa 20) at
ot iii) Qxt_= TEP.
at
%
Pp
yg x(yxe) 77 VK 2B
et
g (WE) -VE = 2 (0x8)
He
- Ve > 2 [pt 2)
:
at ty
dv
>»
Eee ete Colo te
at -
VE ~ Mo bo at E =O
att9 UNrrokn fave Wave (VEER
Ace
The wave rave Ging nm the 2
diectin Md me no 4 aM
dependency are calla plane wave
wo O(KZ-we)
= |
Eh) = Be S|
S mw ithe -b) &
Baw = ber
|
> vue aomben fe 28 |
|
|
+ By putting E ancl B iA rade laws
a> kK Uxét)
w
2 eit oe 7
Power and Energy 0 Emus / Pointing therm
vee ‘eae
ye =e |
VxE = 206 © |
Ct 4
nbs Maj OD
fala
EMW tromfn energy /fowen
Take dot product 09 @ with H
\
shsndinalsialaalDg (exn)= -W Coxe) E (OXH)
————
PT (KE) = “AAgey{ © ae
€ = -
aoe
F
Es(gxr)= ES + 6:22
a)
eq (4) = evs)
EL 0xH) -H- (xe) 2 E31 6824 V- 6
ot ot
Dt a _|
cre [PERLE Be
ret
=> pore due te
He ob - 2 |Hut| | Seve Bield
2 at Ok LZ
wm y power clue &
magnetic bield
Se
= V(Ext Tet var t tn]
_ at ___—
| -f alesse = [ese + fa (we t wom)du
7 v
Vv
exw dA «fore av au =O meet
“aL EAH =) IASa us
f ot ¥ =e scar
oF EMW
smifo —> € Dkr fo Se
Mo 2 Ll = My Hoe
= Hell holtz equation
Ve fee eee i |
> ke wl6 Glow 3
zw Feed €y Uy = 4
[Ks he Téa] 7
ue I
abe = ln, chi
dz _—4
——4|
Kin dielectric Man be Complex 4
5X = Ad (B
Exe = Ex eNG eas =
ie Sp 2
Ex, = Eox_@ e€ |
Y Bag = Eon &%* Cos (wt= fe
Reflection and transmition oF EMw |
ep at normal Meident é
x
polanige in OE mediom Df — medvm @ |
p7 incident Vi Er, Uy Voy Er Ve
fave io
Be Z
asec eld
Etiny = box € an 4
z E(Kizee vt) A
3
Bran) = Bxe
yp ramomiss ion)
men KO deflection
;
j oe get) for tra SS)
oT eye t-wt)
4 =
} a -( (W2- wt) Et = bop @ D.
f Be = -ton € A iar; : gmat)
| vi 4 Br = Cor a
| earn 4Ete = Ey Bu > ae
dc A \
Eox 4 Gok = €or \
|
Box = Re = Bot
Ale A dh
Eos — Eog = €or
Vy dt WU) Var.
Esx - Cog < View For ” B= wy, ;
Var vey
~
Fox - fox = B bor 4
Eos + foe = Cor oO
Q ber = (146) ber a
mull ey @ with B |
B bos + BER = Blot
compare with © 4
Eon = ee © 3
Lib 4
B= Mv Vian
br VE : —|
ar a i Wes Ds
1B 7M ary |pt Bin ey ® and @
Re Eo Be.
bor
T = te
cot
6-12-22
|
Electromapeti wtve Keflction — and Ioaecndaea
objective Sncident
eee 2h pes
a e Fu 3
8 opcident 5
for neident ;
at fig Fete
- = Nes ett |
Baas xx) Ae 5 oe fe Sere snes |
oN
= fer peplection ee
=e Z -E C (Kad wt) ,
; az bop € of quency would be
al 7 (% xk) Same gor all Ber
Pp Beooe) = 1 Ke Xe / its only clepead on
ess — sown not on mediem
orn {ss} of
é, Gor Lares : oO oh -20
1 (ryt) = boy € 7
« MePd 2 Az ¥
Brow) = L, Ut x Ey) want
4 ~ v ew dF
7 We wi
we
KVaw
Waviz ais 2 favs
e eM ME
a= Ke x Mt “9
ok Me
vs
oat 220 (at bounds) a
ttgsewa) [Key =e) ( \ rey ~
a é <
) ( ye + : ) oe (wt) is Sang |
2 spatod 0
Kr-6 = KR-S = KB ar at Beundlg 2
a(hade # Yltady = rc(iwret lhiadg = lac + Sry
4 of X=0 ]
4 Oss) = ylta)y = 45 Cin)y if
. Ry je :
wAKeyx =x (Hae = xCere
Alea lile)
et fee
(ale = Cnelx = ny) _4
# Ast law ot reflect!
KY Sin 01 = KR Sin O = Mr Sib
22nd lan oy Refledion —
Ox = Og :
—
fe=. @ Boundary Condition
tt Em
E — Onr= On Bn = Boo
Oe (Ea 4 foe le = & (Exe
@ (Bos + foe a al Be
© l(t: 1 Feta = ber) 6s
1 (fo + Boe) a4 = L (gor)
@ ‘i rea
ir
Last _twe _ ayatons ond _@_ have
peo farm in. form 0 analy
«as
* Suppose ware is
polanize such tha
Eis // te plane
ot Sncident
b
Es afk thee ot hem tt EB are 40° from
- each. eth
ftom ew O
E, (- €or Sin Ont bor Sin Og) = 2 (- Bor sin) —-@
Cor CosO1 + (RCosOR = Koi SO) > @
from ey ©
“1 Ufa= fe) = Lb 3
AVI Ur va
Cop seat = TOU Cor
Leevt ay B12-12-22.
4) Absorption and - Brpeiecbey oF Emy)
vIn cancluctoy
=
VxB = Mb ck + Uk be —
a et 4
V-B =o @ :
. for AeN cencluctivits, medium |
ae a ne O ij
fing cont on @ and © _|
Ve Selle Es + Uo Be __|
ot _4
Whe Mee 4 Me Ob _ 4
au! at }
ie C1 Hr = we) q
Cony = boe ———|
Se now KK > COMPIRK
TORT wey |
oo Pax= bo ¢ He? 15 ned for pl
ae Sap Ke rth ditto —
al Kovctaen © abot? =\E=
i “ey °} Vs = J
continu ae
| Viee)= - Oh
y ot
olvt)s al
™
© (EL) -- oh
€ €
ay pang O_O
ef 2 - of
at €
ue = Sew et Tek
e
for penfeck. tonductr of = Ob ad at=0
Jp <9
So aftt all tis
Yeco ©
Vero . ae
— Ve = 2 OP ‘@)
4 at
t
| vxe = EGE 1 MoE 4)
yl at := pi fterl Taga + aca 3
- | i
[+ bet lr + CESS) ] +1 N
—~y
o fie [TE oe 3
2 tw —~
7 3 e
Sole by S 4
x —
afer Selving this
R= fae | fie. af 4
eee
ee
Solahion 03 E |
= aya ¢(H2 wt) i
ca Eo Ber eee,