0% found this document useful (0 votes)
94 views15 pages

Emt Final Notes

Emt final notes by hayt

Uploaded by

ahad mushtaq
Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content, claim it here.
Available Formats
Download as PDF or read online on Scribd
0% found this document useful (0 votes)
94 views15 pages

Emt Final Notes

Emt final notes by hayt

Uploaded by

ahad mushtaq
Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content, claim it here.
Available Formats
Download as PDF or read online on Scribd
You are on page 1/ 15
See ar 22 N The Rebmed Potential the time. VaAsing Potato) mp) a une K Mmennetic VA- -Uy V8 >¥ (xe) exo) = 36 7 So new ey is E=-U0ViNn VXE = = UXCWV) § Sk VXE = Vx NRE eS “ & - OB = Uxn Ot 1B Vea - d(Rsa) = xy at - Vx []- Van Vv- Ba. J VASE =ag saan € V-e=Lv = € VC wen] - A ( 2 Vx(oxa) = 4 L0 eae] et Vee fe & Tv 1d (oa) at ° (9.9) A= UT ae 3 V- (oA) Fad neg Ee aa] Ea aco to -VAeus- HEI. - Hed bee Maxwell equation inteyml fom ' {Dds = [fav . $B: ds =O : E-dt =-(ep ds Fe-dl_= =f ip da Bedi <- t' [dO ds # ie ; Eu - Ea Dg = Par > 5 ?, Hu = Mer Towel mawell eatin o Vx = 31 ot eo Vee oe wd c alt oO VE ey fy to Q:8-0 8 moxwell equation IN Vaccume | @ VKH = es ‘> Db ~ © Fey relanige ee uin- magnetic — wave, sonale bor Elk elechu fied | 87181 and magneiic| Ka 121 +? 2, he . conn iH 2) field one ac No fave = Bay = Bo | \I 4 F chamctenistic. 9 polanized I gh i) AIL EMW Atk -tranayerre in Natune 6-40" i) €/B/K ae mute encliculory (all otthem Ine 40” om a in) Al Emw travel wrth speed oF light re C= Bx10%m fs w) £ and Ban in phare 28 -W-22D ) were RIN vaccumel & S=o ii) VR =O Go So in) Yxe 7-88 Tye ee wv) Jxb = Ae & BE iv) Nixb = Lol Sa 20) at ot iii) Qxt_= TEP. at % Pp yg x(yxe) 77 VK 2B et g (WE) -VE = 2 (0x8) He - Ve > 2 [pt 2) : at ty dv >» Eee ete Colo te at - VE ~ Mo bo at E =O att 9 UNrrokn fave Wave (VEER Ace The wave rave Ging nm the 2 diectin Md me no 4 aM dependency are calla plane wave wo O(KZ-we) = | Eh) = Be S| S mw ithe -b) & Baw = ber | > vue aomben fe 28 | | | + By putting E ancl B iA rade laws a> kK Uxét) w 2 eit oe 7 Power and Energy 0 Emus / Pointing therm vee ‘eae ye =e | VxE = 206 © | Ct 4 nbs Maj OD fala EMW tromfn energy /fowen Take dot product 09 @ with H \ shsndinalsialaal Dg (exn)= -W Coxe) E (OXH) ———— PT (KE) = “AAgey{ © ae € = - aoe F Es(gxr)= ES + 6:22 a) eq (4) = evs) EL 0xH) -H- (xe) 2 E31 6824 V- 6 ot ot Dt a _| cre [PERLE Be ret => pore due te He ob - 2 |Hut| | Seve Bield 2 at Ok LZ wm y power clue & magnetic bield Se = V(Ext Tet var t tn] _ at ___— | -f alesse = [ese + fa (we t wom)du 7 v Vv exw dA «fore av au =O meet “aL EAH =) IASa us f ot ¥ =e scar oF EMW smi fo —> € Dkr fo Se Mo 2 Ll = My Hoe = Hell holtz equation Ve fee eee i | > ke wl6 Glow 3 zw Feed €y Uy = 4 [Ks he Téa] 7 ue I abe = ln, chi dz _—4 ——4| Kin dielectric Man be Complex 4 5X = Ad (B Exe = Ex e NG eas = ie Sp 2 Ex, = Eox_@ e€ | Y Bag = Eon &%* Cos (wt= fe Reflection and transmition oF EMw | ep at normal Meident é x polanige in OE mediom Df — medvm @ | p7 incident Vi Er, Uy Voy Er Ve fave io Be Z asec eld Etiny = box € an 4 z E(Kizee vt) A 3 Bran) = Bxe yp ramomiss ion) men KO deflection ; j oe get) for tra SS) oT eye t-wt) 4 = } a -( (W2- wt) Et = bop @ D. f Be = -ton € A iar; : gmat) | vi 4 Br = Cor a | earn 4 Ete = Ey Bu > ae dc A \ Eox 4 Gok = €or \ | Box = Re = Bot Ale A dh Eos — Eog = €or Vy dt WU) Var. Esx - Cog < View For ” B= wy, ; Var vey ~ Fox - fox = B bor 4 Eos + foe = Cor oO Q ber = (146) ber a mull ey @ with B | B bos + BER = Blot compare with © 4 Eon = ee © 3 Lib 4 B= Mv Vian br VE : —| ar a i Wes Ds 1B 7M ary | pt Bin ey ® and @ Re Eo Be. bor T = te cot 6-12-22 | Electromapeti wtve Keflction — and Ioaecndaea objective Sncident eee 2h pes a e Fu 3 8 opcident 5 for neident ; at fig Fete - = Nes ett | Baas xx) Ae 5 oe fe Sere snes | oN = fer peplection ee =e Z -E C (Kad wt) , ; az bop € of quency would be al 7 (% xk) Same gor all Ber Pp Beooe) = 1 Ke Xe / its only clepead on ess — sown not on mediem orn {ss} of é, Gor Lares : oO oh -20 1 (ryt) = boy € 7 « MePd 2 Az ¥ Brow) = L, Ut x Ey) want 4 ~ v ew dF 7 We wi we KV aw Waviz ais 2 favs e eM ME a= Ke x Mt “9 ok Me vs oat 220 (at bounds) a ttgsewa) [Key =e) ( \ rey ~ a é < ) ( ye + : ) oe (wt) is Sang | 2 spatod 0 Kr-6 = KR-S = KB ar at Beundlg 2 a(hade # Yltady = rc(iwret lhiadg = lac + Sry 4 of X=0 ] 4 Oss) = ylta)y = 45 Cin)y if . Ry je : wAKeyx =x (Hae = xCere Alea lile) et fee (ale = Cnelx = ny) _4 # Ast law ot reflect! KY Sin 01 = KR Sin O = Mr Sib 22nd lan oy Refledion — Ox = Og : — fe =. @ Boundary Condition tt Em E — Onr= On Bn = Boo Oe (Ea 4 foe le = & (Exe @ (Bos + foe a al Be © l(t: 1 Feta = ber) 6s 1 (fo + Boe) a4 = L (gor) @ ‘i rea ir Last _twe _ ayatons ond _@_ have peo farm in. form 0 analy «as * Suppose ware is polanize such tha Eis // te plane ot Sncident b Es afk thee ot hem tt EB are 40° from - each. eth ftom ew O E, (- €or Sin Ont bor Sin Og) = 2 (- Bor sin) —-@ Cor CosO1 + (RCosOR = Koi SO) > @ from ey © “1 Ufa= fe) = Lb 3 AVI Ur va Cop seat = TOU Cor Leevt ay B 12-12-22. 4) Absorption and - Brpeiecbey oF Emy) vIn cancluctoy = VxB = Mb ck + Uk be — a et 4 V-B =o @ : . for AeN cencluctivits, medium | ae a ne O ij fing cont on @ and © _| Ve Selle Es + Uo Be __| ot _4 Whe Mee 4 Me Ob _ 4 au! at } ie C1 Hr = we) q Cony = boe ———| Se now KK > COMPIRK TORT wey | oo Pax= bo ¢ He? 15 ned for pl ae Sap Ke rth ditto — al Kovctaen © abot? = \E= i “ey °} Vs = J continu ae | Viee)= - Oh y ot olvt)s al ™ © (EL) -- oh € € ay pang O_O ef 2 - of at € ue = Sew et Tek e for penfeck. tonductr of = Ob ad at=0 Jp <9 So aftt all tis Yeco © Vero . ae — Ve = 2 OP ‘@) 4 at t | vxe = EGE 1 MoE 4) yl at : = pi fterl Taga + aca 3 - | i [+ bet lr + CESS) ] +1 N —~y o fie [TE oe 3 2 tw —~ 7 3 e Sole by S 4 x — afer Selving this R= fae | fie. af 4 eee ee Solahion 03 E | = aya ¢(H2 wt) i ca Eo Ber eee,

You might also like