0% found this document useful (0 votes)
28 views26 pages

EME Post Mid

The document discusses various concepts related to electromagnetic waves, including properties of conductive and dielectric materials, power dissipation, and boundary conditions. It explores the behavior of waves in different media and the implications of Maxwell's equations in understanding wave propagation and energy transfer. Additionally, it addresses the mathematical formulations and physical principles governing these phenomena.

Uploaded by

lbsd224pandey
Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content, claim it here.
Available Formats
Download as PDF or read online on Scribd
0% found this document useful (0 votes)
28 views26 pages

EME Post Mid

The document discusses various concepts related to electromagnetic waves, including properties of conductive and dielectric materials, power dissipation, and boundary conditions. It explores the behavior of waves in different media and the implications of Maxwell's equations in understanding wave propagation and energy transfer. Additionally, it addresses the mathematical formulations and physical principles governing these phenomena.

Uploaded by

lbsd224pandey
Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content, claim it here.
Available Formats
Download as PDF or read online on Scribd
You are on page 1/ 26
RY + wif Plane Wove in Condusling Medium >) - ne E set | Rw, cin me ge > ; fe) \ Now, T= A. "ey Wy + (yuerestt | > change donsiby. T= A.M Ey = 2 _, a J: Z = me ytlE . ral Rm) =e ~ Condusivily ()m) nck change = 0 [ave/-ve coneds ous: } Lano.e-rosenpic property] bub shangis ore moving 40 9 THO “te. Awe de no edvurol sourte, OL the mediun te excibed by EM wones. > VE = 0 — [for isotropic} > wee © CE + jock €= & by ‘ \ J \ tundacchion digplacemeat errr a eurremt alia WH: joelty HYP a of ase Nae by ye /\ cena : | Loss Tangent A_| wee ce Ls Good Dieleebic | Bod. Conduator [iep. cervonk dowinabss) + Good Conduckse a (cond. runt Asminokes) Sr ea) | ; Va} &8(&- 2S) Som (YEE J \ = Lonple. Dideebie tansiaw By iahieg wil o& gxE & VHD . (ve. jw, fesjueye | (2. . : VE= jue i 725) |: a jwa(esjwe) vi: jolie + joe) 8 | vO" Fu oplanised, UPWS peli \ gy sowing 7 ~h jot e- it | L/ tee sce hk iY | ¢ TE?) y= FEL 2) E> Ee te + &e - 4 ae oT o=0, = je } k ‘ Ti, i was Ke ¢ Nex. Tk te obuoniys cert 3 th rao, a ajo Deg! de =| | (1- ue) jotpe frig, Now, y= at ]p = joe (1 1- Jt. iia « Wwdme fl- w of IP oS J a € [: 2) «78 = elk y jolpe € = ; . fm : a = WAE zh, CPropopohion env.) ara lZ : i i! ’ > a 2 eG j lok -w ez) “Che j (at- 2) +§ [Be 5g jfut-o4 [eB Efe e@ + Re Le \ + . . | | 5 ae _ le Z > f { Ps for 0 good, conadnclse T yy we 7 qz jorpal 5+ jue) a qe [jones { mf \"/ 4] i { Oo e fa) > sms Se a4\p > {wpe c = fot (ENG) . v= \4 (was p= [ee oy, ne > 4 job % t E mee = jwb jae +2. Cee =~ * UPW tn anbibrary direction & isocfeghancyy surface (fee) We kuow, Bet ok Naxwells Eqs He homopenveeis & teobropi smedivewa] &. sourrte- free wegion \ P _ 4) Nur, ture is eonehoink ow K Ten-fiequney : ie a foud freq sec whats value f eg ga + v(vE)- Te = 0 juee UeVxe = jor: GR) Es wee > scenes quee © GP 7 Ev ae mete opet «| (ms pe) e=0 | a are | ay, | (IRE spe) #9 | wy | (REEMA Nou-trivinl so, > ©, W #0 (Rl aye =0 7 kt byte = wus 2 TK wipe kk OLR [free apa] _ ie Sean Kee + foynting Vector Tw alendy stale, Power rm iv ah dissipalsa, art Te Li] R po Ty How is pone _trawsfouncd. 2 write power tus tins of E. p22 LK Veet A A 242 pe Ek x celta) = oy Yeh XK a alter Tota), power dissipated. gen wil volume ~ =>] oe Ge » (Re TE | Vv lorevk2 Foren = (Er) chore analy 8 Ty > oe ce ms volume = Pleu ) yy walk volume = Fev Toner sivewd| dissinolss, (pe ee Y = (ev le = per ee). B= ARE) mo yaya Mowe Fy. Rv ye tye dee = o£] New, ME: Val= Fae. 2€ at ~—t = “ Js Uxi-e. 3E ab Se ea B.(vH) ~ 6, 6.88 “Skew LEB ==8( Vx H- =Ael Ye 8’) 2 WT) ‘esr Hunky) New, ME ve > pt = > oh = 3k _ opt heb. fe eV (Eee) ene oe ae = ge tos, 8 BE) = LEP) = 2B S , SE) (Er) iE Poe Lb ep Eta a Define Elaine Fidd Envgy Dewey [Ug > Lelep Magrohic Fad, Energy Density, Uy = sap = -2 v.(BxA) = Sy (Yet Uy) ~ Py th us detine Ps Ex RD as Toynting Veohae Pz Suet) - Py. pe Ve a et Uy) = Py ; yo / << Ly suite closed value inbcgra ae Cote maw = B[eu) ar (eletav wt wt. Tiuerem - . a lee =2 [ (uceua)ay = (Cte) Ryeting's : ab. vel. Theorem vol th Je shady pole cose, Ug k Uy dowt shang, with Hime b (EW) de = 7{olel dv : “vot v AY indizales over a closed surface, Tole[ je) poe * the total, power Bdroin aaa aad + Ts is a infouk ig the um(ve) | S a a . [ OFT ouside gral, cae ; of nate of change of v! a weed not be dieiptel energy. dina a woNe “nergy a et + Back fo how power is bouswitted : . Ly TI — > wite has no E Le ro > 1 i > is) —>3 nie J ta r wire Ys e > an Fei veelor of Thie-Kounanis Fide \ n/abs (neh. Avg. iP v.) = jut E= E, (uy,2) e : : it jut. iF : : B= &uy.2).e@ ce @ © = wnt veckos ie, jo the din of € “pide |, lube), ' E-Re @ — jot +d,) 4 . t. Xt veel in f H= We Pde = wait veeko tn vt ‘ " the din, of # Now, rab-vobud EF : E, = Ftos(uk oh) e veol-vobucd MF ; Un ee hate Fayting Neckar, Fa = Fe Me | 1 Bey = St msltab eed) + olew)] (Be roseillabing with vite the frequney nam feet + fa SUT 1am (amt 14,» 4) | (exh) \ <5 tin vobue =D wh b- 4, = >My 3 Ra = ot 08 (aut + + or) ee i) oT ' : 5 the wiigg fy =| Ralthdt = a ws(teqy (exh) co T a = 4] arelErt) * Q.RelExH | \ re(exn) = La (ert) 4 a a | | : i Paw - Te-vorry ng q = gajet ad is ze ae beef Bxt*]| = SB e6(h-#) Ged) L + Cwoler Poynting Vector — (Tivee Averaged.) we By LA 7 Whur 2 -b=0 ~ perdy veo Fh y , = Whew fa %, = 40 lake imaginary fe Pp a se va ee es la to \ Lf -e.(wet) + Bt (ve) a J 7 ou Nour, xE = ~JapH 5 oe ck atte GET [wee Vek = gE + jwek VxH / J —— - ane . lar oo > el pla. Now, Ue & ele| y ong. enn domnily of eam bine Yoni eleobne fi, ong. enevey demsib, comple, i io ae tls fds.. Uy Lyfe -) r > pe : Ve tolE ee aye (ne) > Poms aes oF c eu a Compre yi Porwring THEOREM ‘ energy esti Wabin yt crn ure Toke He volume iwbeqral, [eR \ tr = foyefan - Lm { qunl'-eley) a J vat. . vol _ ae ane : oan hd > z [ olelor - dof quimr-elet*) du) oS vot. Sy Integear ] Form ~ > Acbial Power Dedinered, —— Corea), pot) *) who dius Hee conlin, pont inbeabs % 3 - a a sinfoce V,I ove Phrosors Ceoneptere| V { a Nour, We cam shavarkeytise the aL a J _ dovice!Iod, iuside the surface ow. by suing te beminall, vere" vhadour : =1Z co ' Ly twpcdome (a cinwuil “Sevel absbraehion) { E = t vr’) (og. pt) — : , Complex Twpedanee k Complore Poynting. Veokor 7 (Hime eweraged) \¥ 4 , Z: cowie impedance ~~ o} 2 = Raj X 1 i ™ i] / Now, 2 is vhonrarkenised, by hk tovminal behaviowr . \ Ve2T, ’ > bourne vd val L Tower ddiveued, to toad, houninal vi ae won Rye tur fi -$ Reda = -[iv.e dv vol denotes thal powers is Housing dn. fine ta [olel dy + Lj [ Gulnl: ele) av val. vol. el, pont = Ong. Power, Nor eR, Wet \ae =)e ee ery 2 \q? 2 L vot vol asi! etelar 4s jw cai a7) 4] Real Img. ee a | [PR t Now, = weal Up = 4 ddine i dw vol. We f te dar vot Now, Z=R+]X => = 1 —)* ) = ot, [olél dy Sis a ca When Wy>We + X >0 Whon Wy < We Whon wWysWe + * =O * Zz mou also founinals ore chosew Exbu wire Jength may add, ponaaibie capacitance | stan defer resONaNCL, Jae of = induhive Load, yed = capacitive Dood. rane ape 4 dupond. ow where - We) a Bounpary ConDITIONS (Mopute - 3) ers NDITIONS 20) 3) ‘ Gidertrie - Bidkeobie Tubotface SD de > Jone Now, er Gifr . $ Bde . aL GM) bed 2 “BU Bde By. = fo Fda + 2 [Bude % We use Maaedls Eqps te Vudbegrod. oe os diseovdinuily arises ok inburfaces q d Sowiee- Ku Regia % oy Avante, = d= %do Now, y-2 plane is eL ‘ hy ay Aha, iubnfore Boundony vondiis & stil dw uit 0 | Nownal, Cowporenl [ia Bde, + PBA) do A A [a.di + [Bax = Ay by In te 4,70 Jimit h>0 : A90, -D,A + DA =0 © Dy Pan How, % is he moral, daw (i) *Dy . (a. >) i). 4 = 9] —{) a Ind, Bed J _o «ow dee 24/3/95) Fr tine hh _ - fitin (84/3 [ae bea’: -jw [Bde $H.al = jo [3 ‘ Ben eveesed. yelp nN a diab bag ins. 0 MTS: obtained: in the tinnil Za A> 2, A-O : jw BeBe _ RESO =o + Eek » -E LL iz ae -uns= Ey! - be : , az Ean (along & z aswdl) [(W-W)xin=0] J Fee Ex a=] My. ae Uniform, Banc Wave of Media Irbenfaces XA A = : ke, ky, k a /% a #2 > one popagatisn. wand Earned Sivts of inwidanh, ; ie, ~ floss. heoysrilted, wove \ here, propagobion % \y in x-2 plane mw hl y-dir | 7 ) Tots tw te plane | Tromsverse Elesiric (TE) is iw %-2 plone Hig in yedir® } Tinnstonse Mognekie (T™) nee hoi ae = kif Y era | ne -Oe ky #4 an fT / 2 HQ 4] rk { sy {ih ~ . aN { \ }k, k _ | 7 \ \3 AF Joh row PLE jlwe “KE rn 4 . B= 2 € a y ky = kyowsb & + ky stu; 2 = H(t -ky.*) 4 4 7 oo E> fe! y j 5 Ke, = oy est, yah 2 = jek), — » uf. B & = he J Ky = Kot ® +h ante © Relation Gelli [ / of TE 1 By Trammizsion — Orellin [_ & | OAL heivieut 7, 24 w jlot ~ k\sinb 2 jest - ksi) 2 E, Ry , + he = oy : -k2 ako, 2 wk B.e + Be - hye when, oe , sib ke, > ksh, ks, = k, sh : Fepaclion & Total Internal, Kelection, ae 7 (te f \ Peon toy a gues “4 OO& ae oe Vromsniest on ‘21% , li z Se hee y coeff of Tm! YY Teo- Fequeney sunfoees ‘ “at beh 7 as a [_ ( pr \ \\ bh ne i (26/2 /as] (2/25 ] tal = = perfec debric conductor (Pee) Le T > » Didlesbrie- Metal Tolufare At 2 =) Ad Win B.D Balt =0 WiLL Nowmal. din” (Mn) ig assuunand. 0 Te be cay me he melo te $o.an - | dv Tn didedbric-diekedne t , 2 Bub Jue, aurface oh igh be 7 present aan ie ra ie Th didi > dhonge qradually gl sled, of aunface Th mobo sere & dansity. v \\ _/ GBS) gan Renee ans viume dange adage [aA aa » |B aed 1 & My, |B -n=0 7 My v a #4, magrobie fil a must be, tangentiod, ’ a bea, ( / Now: E=0 7 poe > Ber Bio oF BP o > Bxne0 moa, GRaDs (eEAR JoeB Ny kine gh : Serra 7 (r- So Se0)) Ys dui Js ; Wea lan ei lo (chil foe) Ein / : — : a Rbbshion ton Malnl (PEC) as + TE is a. polurisabion eS J (kx + kz) Ge fe — r _ e e+ . one e J = k,c6s6; : Aa het gk 1 => eee eee pe Gea es We =) xe) -2 Db jon PS! p> ak 220, Beet po. Begley Nove cee 670 : By +B =O (gr &)e 20 Reryso + ye-&, [Rit 74] : ge oo Phare hal] = & felt ce ih po ahs t. Hnltge) th? gy i |~ : f seme Wve] fn x a} tied, ob trberfnce : . . i fh ty wove Ww X x )_, Be propagating iv a-dir® if k,#0 dubie fy Ni) fits @ { ae a c a i" jhgsilhi ke ky ee ey ee eee vee Te Stl” Po) *(e5] po 5 = =| => +A7B. [_ a a we ahoes SY %) (ye 42053) JY jo 02 | orf j kg? kz al = as ~sinr(ky x) jhJo" 38 k, cllagt) | (ei) Boundary Cowtitions NW He x20: Hy=0 v Oo My, = paramo. {oudinode) () “ei 2- LER) se = £8 IME [ physiol) a + byl) 3] Ext e Y ® |. (Es | 3 (-Eyhy)

You might also like