0 ratings 0% found this document useful (0 votes) 28 views 26 pages EME Post Mid
The document discusses various concepts related to electromagnetic waves, including properties of conductive and dielectric materials, power dissipation, and boundary conditions. It explores the behavior of waves in different media and the implications of Maxwell's equations in understanding wave propagation and energy transfer. Additionally, it addresses the mathematical formulations and physical principles governing these phenomena.
AI-enhanced title and description
Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content,
claim it here .
Available Formats
Download as PDF or read online on Scribd
Go to previous items Go to next items
Save EME Post Mid (1) For Later RY
+ wif Plane Wove in Condusling Medium
>)
- ne E
set |
Rw, cin
me ge > ;
fe) \ Now, T= A. "ey Wy
+ (yuerestt |
> change donsiby.
T= A.M Ey
= 2 _, a
J: Z = me ytlE . ral
Rm) =e
~ Condusivily ()m)
nck change = 0 [ave/-ve coneds ous: } Lano.e-rosenpic property]
bub shangis ore moving
40 9 THO
“te. Awe de no edvurol sourte,
OL
the mediun te excibed by EM wones.
> VE = 0 — [for isotropic}
> wee © CE + jock €= & by
‘ \
J \
tundacchion digplacemeat
errr
a eurremt
alia WH: joelty HYP a of ase
Nae by ye
/\ cena
: | Loss Tangent
A_|
weece Ls Good Dieleebic | Bod. Conduator
[iep. cervonk dowinabss)
+ Good Conduckse
a (cond. runt Asminokes)
Sr ea) | ;
Va} &8(&- 2S)
Som (YEE J \ =
Lonple. Dideebie tansiaw
By iahieg wil o& gxE & VHD
. (ve. jw, fesjueye | (2. . :
VE= jue i 725) |: a jwa(esjwe)
vi: jolie + joe) 8 | vO"
Fu oplanised, UPWS peli
\ gy sowing
7 ~h jot e- it | L/ tee
sce hk iY | ¢ TE?) y= FEL 2)
E> Ee te + &e - 4 ae
oT o=0, = je } k
‘ Ti, i was Ke
¢
Nex.
Tk te obuoniys cert
3
th rao, a ajo Deg!
de =| | (1- ue) jotpe frig,Now, y= at ]p = joe (1 1- Jt.
iia « Wwdme fl- w
of IP oS J a € [: 2)
«78 = elk y jolpe
€
= ; .
fm : a = WAE zh, CPropopohion env.)
ara lZ : i i! ’
> a
2
eG
j lok -w ez) “Che j (at- 2) +§ [Be
5g jfut-o4 [eB
Efe e@ + Re Le
\ +
. . |
|
5 ae _ le
Z > f { Ps
for 0 good, conadnclse
T yy we 7
qz jorpal 5+ jue) a qe [jones
{ mf \"/
4] i { Oo e fa) >
sms Se
a4\p > {wpe c = fot (ENG)
. v= \4 (was p= [ee
oy, ne> 4 job %
t E mee
= jwb jae +2.
Cee=~
* UPW tn anbibrary direction & isocfeghancyy surface (fee)
We kuow, Bet okNaxwells Eqs
He homopenveeis & teobropi smedivewa]
&. sourrte- free wegion
\ P _
4)
Nur, ture is eonehoink ow K
Ten-fiequney : ie a foud freq sec whats value f eg
ga + v(vE)- Te = 0 juee
UeVxe = jor:
GR) Es wee
>
scenes quee © GP
7 Ev
ae
mete opet «| (ms pe) e=0 |
a are |
ay, | (IRE spe) #9 |
wy | (REEMANou-trivinl so, > ©, W #0
(Rl aye =0 7
kt byte = wus 2 TK wipe
kk OLR [free apa]
_ ie Sean Kee+ foynting Vector
Tw alendy stale,
Power
rm iv
ah dissipalsa, art
Te Li] R po
Ty How is pone _trawsfouncd. 2
write power tus tins of E.
p22 LK Veet
A A
242
pe Ek x celta) = oy
Yeh XK a
alter
Tota), power dissipated. gen wil volume
~ =>]
oe Ge » (Re TE |
Vv
lorevk2 Foren = (Er)
chore analy 8 Ty > oe
ce ms volume = Pleu )
yy
walk volume = Fev
Toner sivewd| dissinolss, (pe ee
Y = (ev le
= per ee). B= ARE)
mo yaya
Mowe Fy. Rv ye tye dee = o£]New, ME: Val= Fae. 2€
at
~—t =
“ Js Uxi-e. 3E
ab
Se
ea B.(vH) ~ 6, 6.88
“Skew LEB ==8( Vx H- =Ael Ye 8’)
2
WT) ‘esr Hunky)
New, ME ve > pt
= > oh = 3k
_ opt heb.
fe eV (Eee) ene oe
ae = ge
tos, 8 BE) = LEP) = 2B S
, SE) (Er) iE
Poe Lb ep
Eta aDefine Elaine Fidd Envgy Dewey [Ug > Lelep
Magrohic Fad, Energy Density, Uy = sap
= -2
v.(BxA) = Sy (Yet Uy) ~ Py
th us detine Ps Ex RD as Toynting Veohae
Pz Suet) - Py. pe
Ve a et Uy) = Py ; yo
/ << Ly suite
closed value inbcgra ae
Cote maw = B[eu) ar (eletav
wt wt.
Tiuerem - . a
lee =2 [ (uceua)ay = (Cte) Ryeting's
: ab. vel. Theorem
vol th
Je shady pole cose, Ug k Uy dowt shang, with Hime
b (EW) de = 7{olel dv
: “vot
v
AY indizales over a closed surface,
Tole[ je) poe * the total, power Bdroin
aaa aad + Ts is a infouk ig the um(ve) |
S a a . [
OFT ouside gral, cae ; of nate of change of
v! a weed not be dieiptel energy.
dina a woNe
“nergy
a et+ Back fo how power is bouswitted :
. Ly
TI — > wite has no E Le
ro > 1 i
> is) —>3
nie J ta
r
wire Ys e > an
Fei veelor of Thie-Kounanis Fide
\ n/abs
(neh. Avg. iP v.)
= jut
E= E, (uy,2) e :
: it jut. iF : :
B= &uy.2).e@ ce @ © = wnt veckos ie,
jo the din of €
“pide |, lube),
' E-Re @
— jot +d,) 4 . t. Xt veel in
f H= We Pde = wait veeko tn
vt ‘ " the din, of #
Now, rab-vobud EF : E, = Ftos(uk oh) e
veol-vobucd MF ; Un ee hate
Fayting Neckar,
Fa = Fe Me |1 Bey = St msltab eed) + olew)] (Be
roseillabing with vite the frequney
nam feet + fa SUT 1am (amt 14,» 4) | (exh)
\ <5 tin vobue =D
wh b- 4, = >My 3 Ra = ot 08 (aut + + or) ee i)
oT ' : 5 the wiigg
fy =| Ralthdt = a ws(teqy (exh) co
T
a
= 4] arelErt) * Q.RelExH |
\ re(exn)
= La (ert) 4 a
a | |
: i Paw -
Te-vorry ng q
= gajet
ad is
zeae beef Bxt*]| = SB e6(h-#) Ged)
L
+ Cwoler Poynting Vector — (Tivee Averaged.)
we By LA
7
Whur 2 -b=0 ~ perdy veo Fh
y , =
Whew fa %, = 40 lake imaginary fe
Pp
a se
va ee es la
to \
Lf -e.(wet) + Bt (ve)
a J
7 ou
Nour, xE = ~JapH 5
oe ck atte GET [wee
Vek = gE + jwek VxH /
J
——-
ane .
lar oo > el pla.
Now, Ue & ele| y ong. enn domnily of eam
bine Yoni eleobne fi,
ong. enevey demsib, comple,
i io ae tls fds..
Uy Lyfe -)
r
> pe :
Ve tolE ee aye (ne) > Poms aes oF
c eu a Compre
yi Porwring THEOREM
‘
energy esti Wabin
yt crn ure
Toke He volume iwbeqral,
[eR \ tr = foyefan - Lm { qunl'-eley) a
J vat.
. vol
_
ae ane : oan
hd > z [ olelor - dof quimr-elet*) du)
oS vot. Sy Integear
] Form
~ > Acbial Power Dedinered,
—— Corea), pot)
*) who dius Hee conlin, pont inbeabs %
3 -
a a sinfoce V,I ove Phrosors Ceoneptere|
V { a Nour, We cam shavarkeytise the
aL a J _ dovice!Iod, iuside the surface
ow. by suing te beminall,
vere" vhadour :
=1Z co '
Ly twpcdome (a cinwuil “Sevel absbraehion)
{ E = t vr’) (og. pt)
— :, Complex Twpedanee k Complore Poynting. Veokor
7 (Hime eweraged)
\¥ 4 , Z: cowie impedance
~~ o} 2 = Raj X
1 i
™ i] / Now, 2 is vhonrarkenised, by
hk tovminal behaviowr .
\ Ve2T,
’ > bourne
vd val L
Tower ddiveued, to toad, houninal vi ae won
Rye tur
fi -$ Reda = -[iv.e dv
vol
denotes thal powers
is Housing dn.
fine ta [olel dy + Lj [ Gulnl: ele) av
val. vol.
el, pont = Ong. Power,
Nor eR, Wet \ae =)e ee ery
2 \q?
2
L vot vol
asi! etelar 4s jw cai a7) 4]
Real Img.
ee
a |
[PRt
Now, = weal Up = 4
ddine i dw
vol.
We f te dar
vot
Now, Z=R+]X
=> = 1 —)* )
= ot, [olél dy
Sis a ca
When Wy>We + X >0
Whon Wy < We
Whon wWysWe + * =O *
Zz mou also
founinals ore chosew
Exbu wire Jength may add,
ponaaibie capacitance | stan
defer
resONaNCL,
Jae of
= induhive Load,
yed = capacitive Dood.
rane
ape 4
dupond. ow where
- We)a Bounpary ConDITIONS (Mopute - 3) ers
NDITIONS 20) 3)
‘ Gidertrie - Bidkeobie Tubotface
SD de > Jone
Now,
er Gifr
. $ Bde .
aL GM) bed 2 “BU Bde
By. = fo Fda + 2 [Bude
% We use Maaedls Eqps te Vudbegrod. oe
os diseovdinuily arises ok inburfaces
q d
Sowiee- Ku Regia
% oy Avante, = d= %do Now, y-2 plane is
eL ‘ hy
ay Aha, iubnfore
Boundony vondiis
& stil dw
uit 0
| Nownal, Cowporenl
[ia Bde, + PBA) do
A
A
[a.di + [Bax =
Ay byIn te
4,70
Jimit h>0 : A90,
-D,A + DA =0 © Dy Pan
How, % is he moral, daw (i)
*Dy . (a. >) i). 4 = 9] —{)
a
Ind, Bed
J _o
«ow dee 24/3/95)
Fr tine hh _ - fitin (84/3 [ae
bea’: -jw [Bde $H.al = jo [3
‘ Ben eveesed.
yelp
nN a diab bag ins. 0
MTS: obtained: in the tinnil
Za A> 2, A-O
: jw BeBe _ RESO
=o + Eek
» -E LL iz ae
-uns= Ey! - be :
, az Ean (along & z aswdl)
[(W-W)xin=0]
J
Fee
Ex a=]
My. aeUniform, Banc Wave of Media Irbenfaces
XA
A =
: ke, ky, k
a /% a
#2 >
one popagatisn. wand
Earned Sivts of inwidanh,
; ie, ~ floss. heoysrilted, wove
\ here, propagobion %
\y in x-2 plane
mw hl y-dir | 7 )
Tots tw te plane | Tromsverse Elesiric (TE)
is iw %-2 plone
Hig in yedir®
} Tinnstonse Mognekie (T™)
nee hoi ae
= kif Y
era |
ne -Oeky
#4 an fT
/ 2 HQ 4] rk
{ sy {ih ~
. aN
{ \ }k, k _ | 7 \
\3 AF Joh
row
PLE jlwe “KE rn 4
. B= 2 € a y ky = kyowsb & + ky stu; 2
= H(t -ky.*) 4 4 7 oo
E> fe! y j 5 Ke, = oy est, yah 2
= jek), — » uf. B
& = he J Ky = Kot ® +h ante ©
Relation Gelli [ /
of TE 1 By
Trammizsion — Orellin [_ & |
OAL heivieut 7,
24
w
jlot ~ k\sinb 2 jest - ksi) 2 E, Ry
, + he = oy
: -k2 ako, 2 wk
B.e + Be - hye
when, oe , sib
ke, > ksh,
ks, = k, sh: Fepaclion & Total Internal, Kelection,
ae 7
(te f \ Peon toy
a gues
“4 OO& ae oe Vromsniest on
‘21% , li
z Se hee y coeff of Tm! YY
Teo- Fequeney sunfoees ‘
“at beh
7
as
a [_ ( pr \
\\ bh
ne i
(26/2 /as](2/25 ]
tal = = perfec debric conductor (Pee)
Le
T > »
Didlesbrie- Metal Tolufare
At 2 =) Ad
Win B.D Balt =0
WiLL Nowmal. din” (Mn) ig assuunand. 0
Te be cay me he melo
te $o.an - | dv
Tn didedbric-diekedne t ,
2 Bub Jue, aurface oh igh be
7 present aan ie ra ie
Th didi > dhonge qradually gl sled, of aunface
Th mobo sere & dansity.
v \\ _/
GBS) gan Renee
ans
viume dange adage [aA
aa » |B aed
1 &
My, |B -n=0
7 My
v
a #4, magrobie fil
a must be, tangentiod,’ a
bea, ( / Now: E=0
7 poe > Ber Bio oF BP
o > Bxne0
moa, GRaDs (eEAR JoeB Ny kine gh
: Serra
7 (r- So Se0))
Ys
dui
Js ; Wea lan ei lo
(chil foe) Ein
/ : — : a
Rbbshion ton Malnl (PEC) as
+ TE is a. polurisabion
eS J (kx + kz)
Ge fe — r
_ e e+ .
one e J
= k,c6s6; : Aa
het gk1
=> eee eee
pe Gea es
We =) xe) -2
Db jon PS!
p> ak 220, Beet po. Begley
Nove cee 670 :
By +B =O (gr &)e 20
Reryso + ye-&, [Rit 74]
: ge oo Phare hal]
= & felt ce ih
po
ahs t. Hnltge) th? gy i |~ : f seme Wve]
fn x
a}
tied, ob trberfnce
: . . i fh ty wove Ww X
x )_, Be propagating iv
a-dir® if k,#0
dubie fy
Ni) fits@
{ ae a
c a i" jhgsilhi ke ky
ee ey ee eee
vee Te Stl” Po) *(e5]
po 5
= =| => +A7B. [_ a a
we ahoes SY %) (ye 42053)
JY jo 02 |
orf j kg? kz al
= as ~sinr(ky x) jhJo" 38 k, cllagt) |
(ei)
Boundary Cowtitions NW
He x20: Hy=0 v Oo
My, = paramo. {oudinode) () “ei
2- LER)
se = £8 IME [ physiol) a + byl) 3]
Ext e Y ® |. (Es | 3 (-Eyhy)