ME331-430 Advanced Fluid Mechanics
Prof. A. Banerjee
-------------------------------------------------------------------------------------------------------------------------------
                                        Solutions to Home Work Problem Set 1
                                                           
                                                                                          t
                                                                    x 
    1. Consider a one-dimensional flow whose velocity is u   U 0   e  iˆ , where Uo and τ are constant
                                                                   
       velocity and time scales. Compute the unsteady, convective and total accelerations. (2 points)
                                                                                                                      1|Page
                                        ME331-430 Advanced Fluid Mechanics
                                                      Prof. A. Banerjee
-------------------------------------------------------------------------------------------------------------------------------
                                                                                4U ˆ
    2. For flow near the stagnation point of a cylinder, the velocity is u 
                                                                                    D
                                                                                                          
                                                                                         x i  y ˆj , where D is the
       cylinder’s diameter and U is the speed of the incident flow. Determine the Lagrangian description of
                                           
       the fluid-particle position vector, r  x iˆ  y ˆj , in terms of U, D, t and the initial values of the
       coordinates, xo and yo. (3 points)
                                                                                                                      2|Page
                                        ME331-430 Advanced Fluid Mechanics
                                                      Prof. A. Banerjee
-------------------------------------------------------------------------------------------------------------------------------
                          U
    3. A flow field has u   x iˆ   z ˆj   y  z  kˆ  , where U and R are constant velocity and length
                              R                           
       scales, respectively. Is there any value of the constant  for which the flow is irrotational? (3 points)
    Solution: The vorticity is given by the following expression:
                                    iˆ       ˆj    kˆ
                                               
                            
                                   x y           z
                                    x z          yz
                                                               ˆj    x     z    kˆ    z    x 
                               iˆ   y  z    z                                           x
                                    y               z       
                                                                       z       x       
                                                                                                              y 
                              iˆ 1     ˆj  0  kˆ  0
                              1    iˆ
    Thus, the velocity field is irrotational when  = 1.
                                                                                                                       3|Page
                                        ME331-430 Advanced Fluid Mechanics
                                                      Prof. A. Banerjee
-------------------------------------------------------------------------------------------------------------------------------
    4. The velocity for incompressible flow above an infinite flat wall at y = 0 oscillating with velocity
       u (0, t )  U cos  t  (Stokes’ Second Problem) is given by:
                                  u ( y, t )  Ue  ky cos  t  ky  , v( y, t )  w( y, t )  0 ;
         where t is time, Ω is frequency, y is distance normal to the surface and k is a constant.
             a. Determine the Lagrangian description of the fluid-particle co-ordinates, x and y, in terms of
                U, Ω , k and t and the initial values of the co-ordinates, xo and yo. (3 points)
             b. Compute the acceleration vector and the vorticity vector. (3 points)
Solution (4a):
                                                                                                                      4|Page
                                        ME331-430 Advanced Fluid Mechanics
                                                      Prof. A. Banerjee
-------------------------------------------------------------------------------------------------------------------------------
(4b):
                                                                                                                      5|Page
                                        ME331-430 Advanced Fluid Mechanics
                                                      Prof. A. Banerjee
-------------------------------------------------------------------------------------------------------------------------------
    5. The velocity for a two-dimensional flow is
              xy 2   x2 y 
       u  U  3 iˆ  3 ˆj  , where U and h are
              h        h 
       constants of dimensions L/T and L, respectively.
       Compute the circulation, Γ, on the rectangular
       contour shown in the figure. Verify that your result
       is consistent with finding the circulation using the
       expression     kˆ dA . (3 points)
                           A
                                                                                                                      6|Page
                                        ME331-430 Advanced Fluid Mechanics
                                                      Prof. A. Banerjee
-------------------------------------------------------------------------------------------------------------------------------
    6. Derive an equation defining the streamlines for the incompressible flow whose velocity field is:
        UR 2
       u  2  cos  sin  eˆr  cos 2  eˆ  , where U is freestream velocity and R is a constant length scale.
            r
       HINT: The differential equation in two dimensions for streamlines in cylindrical coordinates is:
       dr ur  r d u . (3 points)
                                                                                                                      7|Page