gradeup
Analog Circuits (Formula Notes/Short Notes)
                     𝐸𝐸G/si =1.21− 3.6 × 10−4 .T ev
  •   Energy gap   𝐸𝐸G/Ge =0.785− 2.23 × 10−4 .T ev
                                                      � Energy gap depending on temperature
                         𝑁𝑁                      𝑁𝑁
  •   EF = EC - KT ln�𝑁𝑁𝐶𝐶 � = Ev + KT ln �𝑁𝑁𝑣𝑣 �
                            𝐷𝐷                     𝐴𝐴
  •   No. of electrons n = Nc e−(Ec−Ef)/RT               (KT in ev)
  •   No. of holes p = Nv e−(Ef−Ev )/RT
  •   Mass action law np = n2i = Nc Nv e−EG/KT
  •   Drift velocity 𝑣𝑣d = μE (for si 𝑣𝑣d ≤ 107 cm/sec)
                            B.I
  •   Hall voltage 𝑣𝑣H =        . Hall coefficient R H = 1/ρ .        ρ → charge density = qN0            = ne …
                           we
  •   Conductivity σ = ρμ ; μ = σR H .
                                                   q            q
  •   Max value of electric field @ junction E0 = - Nd . nn0 = - NA . np0 .
                                                                        ϵsi              ϵsi
  •   Charge storage @ junction Q + = - Q − = qA xn0 ND = qA xp0 NA
                                                             dp                         dn
                                                        p
  •   Diffusion current densities Jp = - q Dp         Jn = - q Dn
                                              dx                                        dx
  •   Drift current Densities = q(p µp + nµn )E
  •   µp , µn decrease with increasing doping concentration .
                                                     eu
      Dn       Dp
  •        =         = KT/q ≈ 25 mv @ 300 K
      µn       µp
  •   Carrier concentration in N-type silicon nn0 = ND ; pn0 = n2i / ND
  •   Carrier concentration in P-type silicon pp0 = NA ; np0 = ni2 / NA
                                                          𝑁𝑁𝐴𝐴 𝑁𝑁𝐷𝐷
  •   Junction built in voltage V0 = VT ln �                        �
                                ad
                                                            𝑛𝑛𝑖𝑖2
                                                                          2εs 1        1
  •   Width of Depletion region Wdep = xp + xn = �                           �
                                                                           q NA
                                                                                  +      � (V0   + VR )
                                                                                      ND
           2𝜀𝜀𝑓𝑓𝑓𝑓
      *�             = 12.93𝑚𝑚 𝑓𝑓𝑓𝑓𝑓𝑓 𝑠𝑠𝑠𝑠�
          𝑞𝑞
      xn   N
  •      = A
               gr
      xp ND
                                                            q.NA ND
  •   Charge stored in depletion region qJ =                 NA +ND
                                                                     . A . Wdep
                                              εs A                 εs A
  •   Depletion capacitance Cj =                     ;   Cj0 =
                                              Wdep             Wdep / VR =0
                              VR m
        Cj = Cj0 /�1 +           �
                              V0
       Cj = 2Cj0 (for forward Bias)
                                                                        Dp
  •   Forward current I = Ip + In ;                  Ip = Aq n2i
                                                           �𝑒𝑒 𝑉𝑉/𝑉𝑉𝑇𝑇 − 1�
                                                     Lp ND
                                                      D
                                        In = Aq n2i L Nn �𝑒𝑒 𝑉𝑉/𝑉𝑉𝑇𝑇 − 1�
                                                     n A
                                         Dp     D
  •   Saturation Current Is = Aq n2i �L N + L Nn �
                                         p D    n A
  •   Minority carrier life time τp = L2p / Dp ; τn = L2n / Dn
gradeup
                                                                                                        gradeup
•   Minority carrier charge storage Qp = τp Ip , Q n = τp In
      Q = Q p + Q n = τT I         τT = mean transist time
                                            𝜏𝜏
•   Diffusion capacitance Cd = �𝜂𝜂𝑉𝑉𝑇𝑇 � I = τ.g ⇒ Cd ∝ I.
                                                 𝑇𝑇
    τ→ carrier life time , g = conductance = I / 𝜂𝜂𝑉𝑉𝑇𝑇
•   I02 = 2(T2 −T1 )/10 I01
•   Junction Barrier Voltage Vj = VB = Vr (open condition)
                                        = Vr - V (forward Bias)
                                        = Vr + V (Reverse Bias)
                                                        1
•   Probability of filled states above ‘E’ f(E) =     (E−Ef )/KT      1+e
•   Drift velocity of e−           𝑣𝑣d ≤ 107 cm/sec
                       d2 V       −ρv       −nq             dv          −nqx
•   Poisson equation          =         =              ⇒         =E=
                       dx2         ϵ         ϵ              dx           ϵ
Transistor :-
• IE = IDE + InE
                                                         p
• IC = ICo – α IE → Active region
• IC = – α IE + ICo (1- eVC /VT )
Common Emitter :-
• IC = (1+ β) ICo + βIB
            I
                                         β=
                                                      eu
                                                       α
                                                      1−α
•           Co
    ICEO = 1−α  → Collector current when base open
•   ICBO → Collector current when IE = 0     ICBO > ICo .
                                    0              V
•   VBE,sat or VBC,sat → - 2.5 mv / C ; VCE,sat → BE,sat  = - 0.25 mv /0 C
                       ad
                                                      10
                                             IC − ICBo
•   Large signal Current gain β =            IB + ICBo
                                  IC
•   D.C current gain βdc =             = hFE
                                  IB
•   (βdc = hFE ) ≈ β when IB > ICBo
                                   ∂I                                          hFE
        gr
•   Small signal current gain β′ = ∂IC �                    = hfe =                   ∂h
                                                 R VCE                  1−(ICBo + IB ) FE
                                                                                      ∂IC
                                    βactive
•   Over drive factor =                                                     ∵ IC sat = βforced IB sat
                           βforced →under saturation
Conversion formula :-
 CC ↔ CE
• hic = hie ; hrc = 1 ;                hfc = - (1+ hfe ) ;              hoc = hoe
 CB ↔ CE
         h            hie hoe                −h            hoe
• hib = 1+hie ; hib = 1+h     - hre ; hfb = 1+hfe ; hob = 1+h
                fe            fe                                 fe                  fe
CE parameters in terms of CB can be obtained by interchanging B & E .
gradeup
                                                                                                                              gradeup
 Specifications of An amplifier :-
                −hf                                                           Av .Zi         AI.ZL         AIs.ZL
  •    AI =                        Zi = hi + hr AI ZL                Avs =              =              =
              1+h0 ZL                                                         Zi +Rs    Zi +Rs             Rs
               AI ZL                                    hf hr                 Av .Rs        Avs .Rs
       AV =                        Y0 = ho -                         AIs =              =
                 Zi                                    hi + Rs                Zi +Rs         ZL
 Choice of Transistor Configuration :-
  • For intermediate stages CC can’t be used as AV < 1
  • CE can be used as intermediate stage
  • CC can be used as o/p stage as it has low o/p impedance
  • CC/CB can be used as i/p stage because of i/p considerations.
 Stability & Biasing :- ( Should be as min as possible)
                  ∆I                          ∆I                           ∆IC
  •    For S = ∆I C �               S ′ = ∆V C �                  S ′′ =   ∆β V
                                                                               �
                     Co   VB0,β                   BE    IC0,β                  BE,ICo
                                                               p
       ∆IC = S. ∆ICo + S ′ ∆VBE + S ′′ ∆β
                                    1+β
  •    For fixed bias S =             dI       =1+β         eu
                                   1−β B
                                        dIC
                                                        1+β                                            1+β
  •    Collector to Base bias S =                          RC        0 < s < 1+ β =                     RC + RE
                                                   1+β                                       1+β�                  �
                                                         RC +RB                                       RC + RE + RB
                              ad
                              1+β                        Rth
  •    Self bias S =                RE       ≈ 1+                 βR E > 10 R 2
                           1+β                           Re
                                  RE +Rth
               Vcc Rth                 V      R
  •    R1 =      Vth
                           ; R 2 = V cc−Vth
                                        cc        th
              gr
                                                                                                                        VCC
  •    For thermal stability [ Vcc - 2Ic (R C + R E )] [ 0.07 Ico . S] < 1/θ ;                                  VCE <
                                                                                                                         2
 Hybrid –pi(π)- Model :-
  g m = |IC | / VT
  rb′ e = hfe / g m
 rb′ b = hie - rb′ e
 rb′ c = rb′ e / hre
 g ce = hoe - (1+ hfe ) g b′ c
gradeup
                                                                                     gradeup
¾   3 Configurations are used on BJT, CE, CB & CC
¾
¾   Common Emitter,         VI characteristics
                                                  IC
                                            β =        VCE
                                                  IB
                 ΔVBE                    ΔV
¾   Ri = hie =        = β re ; rce = r0 = ce
                 ΔI B                    ΔI c
                                          p
                                       eu                         AMPLIFIER COMPARISON
                  COMPARISON
                                                                      CB      CE         CF
                       ad
                            BE            BC
                                                             Ri       LOW     MED     HIGH
    SATURATION              f/b           f/b
                                                             AI        AI      β         β +1
        gr
      ACTIVE                f/b          r/b
                                                             AV       High    High       <1
     CUT OFF                r/b          r/b
                                                             Ro       High    High       low
gradeup
                                                                                                                   gradeup
   For CE :-
              g ′                                  gm
    • fβ = 2π(Cb +e C                 =
                     e       c)              hfe 2π(Ce + Cc )
                                                      1                gb′e
   •    fT = hfe fβ ;                      fH =                  =                      C = Ce + Cc (1 + gm RL )
                                                  2π rb′e C            2πC
        fT = S.C current gain Bandwidth product
        fH = Upper cutoff frequency
  For CC :-
                1+gm RL                gm            fT Ce           gm + gb′e
   •    fH =                  ≈                  =           =
                2πCL RL               2πCL            CL         2π(CL + Ce )
  For CB:-
                     1+ hfe
   •   fα = 2πr                                  = (1 + hfe ) fβ = (1 + β) fβ
                    b′ e (CC + Ce )
                  β
   •     fT =       f                                            fα > fT > fβ
                 1+β α
                                                                          p
  Ebress moll model :-
  IC = - αN IE + ICo (1- eV/VT )
    IE = - αI IC + IEo (1- eV/VT )
                                                                       eu
   αI ICo = αN IEo
                                        ad
  Multistage Amplifiers :-
                                                                  fL
   • fH * = fH √21/n − 1 ; fL∗ =
                                                             �21/n −1
                           0.35    0.35
   •   Rise time t r =           =
              gr
                            fH     B.W
   •   t ∗r = 1.1      2      2
                    �t r1 + t r2 + ⋯
   •   fL∗ = 1.1 �fL21 + fL22 + ⋯
        1               1               1
   •         = 1.1 � 2 +                     +⋯
       f∗H            f H1            f2H2
  Differential Amplifier :-
   •   Zi = hie + (1 + hfe ) 2R e = 2 hfe R e ≈ 2βR e
                α0 |IEE |         I
   •   gm =                  = 4VC = g m of BJT/4                                α0 → DC value of α
                 4VT                   T
                         h R
   •   CMRR = R fe+he                        ;       R e ↑ , → Zi ↑ , Ad ↑ & CMRR ↑
                         s     ie
gradeup
   Darlington Pair :-                                                                            gradeup
    •   AI = (1 + β1 ) (1 + β2 ) ;           Av ≈ 1 ( < 1)
                (1+hfe )2 Re2
    •   Zi =                    Ω      [ if Q1 & Q 2 have same type ] = AI R e2
               1+hfe hoc Re2
                  Rs         2h
    •   Ro =               + 1+hie
               (1+hfe )2          fe
    •   g m = (1 + β2 ) g m1
   Tuned Amplifiers : (Parallel Resonant ckts used ) :
                 1
    •   f0 =                Q → ‘Q’ factor of resonant ckt which is very high
               2π√LC
    •   B.W = f0 /Q
                    ∆BW
    •   fL = f 0 -
                      2
                     ∆BW
    •   fH =   f0 +
                                                  p
                       2
    •   For double tuned amplifier 2 tank circuits with same f0 used . f0 = �fL fH .
                                               eu
   FIELD EFFECT TRANSISTOR, FET is Unipolar Device
                             ad
           Construction                     n-Channel                 p-Channel
   ¾    S=Source, G=Gate, D=Drain
            gr
   ¾    GS Junction in Reverse Bias Always
   ¾    Vgs Controls Gate Width
   ¾    VI CHARACTERSTICS
   Transfer Characteristics                     Circuit                Forward Characteristics
gradeup
                                                                                                    gradeup
       ¾    Shockley Equation
                                       2
                         ⎛ Vgs        ⎞                  ⎛ V       ⎞
       ¾     I d = I dss ⎜ 1−         ⎟⎟ ,   g m = g m 0 ⎜1− gs   ⎟⎟
                         ⎜ V                             ⎜ V
                         ⎝    p       ⎠                  ⎝   p     ⎠
       MOSFET (Metal Oxide Semiconductor FET, IGFET)
       Depletion Type Mosfet                                  Symbols                  Enhancement Mosfet
   ¾       Depletion Type MOSFET can work width Vgs > 0 and Vgs < 0
                                                       p
   ¾       Enhancement MOSFET operates with, Vgs > Vt , Vt = Threshold Voltage
   •
   •
           NMOSFET formed in p-substrate
                                                    eu
           If VGS ≥ Vt channel will be induced & iD (Drain → source )
   •       Vt → +ve for NMOS
   •        iD ∝ (VGS - Vt ) for small VDS
                                      ad
   •       VDS ↑ → channel width @ drain reduces .
           VDS = VGS - Vt channel width ≈ 0 → pinch off further increase no effect
   •       For every VGS > Vt there will be VDS,sat
               gr
                                          2   1        𝑊𝑊
   •       iD = K ′n [ (VGS - Vt ) VDS - VDS ] � � → triode region ( VDS < VGS - Vt )
                                              2        𝐿𝐿
                                                                  K ′n = µn Cox
                   1         𝑊𝑊    2
   •        iD =       K ′n � � [ VDS ] → saturation
                   2         𝐿𝐿
                                  1
   •       rDS =           𝑊𝑊                → Drain to source resistance in triode region
                       K′n � �(VGS − Vt )
                           𝐿𝐿
gradeup
                                                                                             gradeup
  PMOS :-
   •   Device operates in similar manner except VGS , VDS, Vt are –ve
   •   iD enters @ source terminal & leaves through Drain .
       VGS ≤ Vt → induced channel                VDS ≥ VGS - Vt → Continuous channel
                  𝑊𝑊                  2 1
       iD = K ′p � � [(VGS − Vt )2 - VDS ] K ′p = µp Cox
                  𝐿𝐿                    2
       VDS ≤ VGS - Vt → Pinched off channel .
   •   NMOS Devices can be made smaller & thus operate faster . Require low power supply .
   •   Saturation region → Amplifier
   •   For switching operation Cutoff & triode regions are used
   •          NMOS                  PMOS
         VGS ≥ Vt                  VGS ≤ Vt           → induced channel
                                                p
         VGS - VDS > Vt           VGS - VDS < Vt      → Continuous channel(Triode region)
        VDS ≥ VGS - Vt           VDS ≤ VGS - Vt
                                             eu       → Pinchoff (Saturation)
  Depletion Type MOSFET :- [ channel is physically implanted . i0 flows with VGS = 0 ]
   •   For n-channel         VGS → +ve → enhances channel .
                                 → -ve → depletes channel
                           ad
   •   iD - VDS characteristics are same except that Vt is –ve for n-channel
   •   Value of Drain current obtained in saturation when VGS = 0 ⇒ IDSS .
                   1        𝑊𝑊
                       K ′n � � Vt2 .
              gr
        ∴ IDSS =
                   2        𝐿𝐿
  MOSFET as Amplifier :-
   •   For saturation VD > VGS - Vt
   •   To reduce non linear distortion 𝑣𝑣gs < < 2(VGS - Vt )
                    𝑊𝑊                                            𝑊𝑊
   •   id = K ′n � � (VGS − Vt ) 𝑣𝑣gs ⇒                g m = K ′n � � (VGS − Vt )
                    𝐿𝐿                                            𝐿𝐿
        𝑣𝑣d
   •   𝑣𝑣gs
              = - gm RD
                                            gm
   •   Unity gain frequency fT = 2π(C
                                         gs +Cgd )
gradeup
                                                                                                                   gradeup
 JFET :-
  • VGS ≤ Vp ⇒ iD = 0 → Cut off
  •   Vp ≤ VGS ≤ 0, VDS ≤ VGS - Vp
                                                                                                     2
                                                                𝑉𝑉𝐺𝐺𝐺𝐺    𝑉𝑉𝐷𝐷𝐷𝐷       𝑉𝑉
                            iD = IDSS �2 �1 −                    𝑉𝑉𝑝𝑝
                                                                       � �−𝑉𝑉    �−   � 𝑉𝑉𝐷𝐷𝐷𝐷 � � � → Triode
                                                                              𝑝𝑝            𝑝𝑝
  •    Vp ≤ VGS ≤ 0 , VDS ≥ VGS - Vp
                                                      2
                                               𝑉𝑉                      I
                                  iD = IDSS �1− 𝐺𝐺𝐺𝐺 � ⇒ VGS = Vp �1−� 𝐷𝐷 �
                                                       𝑉𝑉𝑝𝑝                          IDSS
                                              2IDSS        𝑉𝑉       2I             I𝐷𝐷
                                                                                                 � → Saturation
                                     gm =               �1− 𝐺𝐺𝐺𝐺 � = DSS        �I
                                               |Vp |        𝑉𝑉𝑝𝑝     |Vp |        DSS
 Zener Regulators :-
                                      Vi − Vz
  •   For satisfactory operation         Rs
                                                       ≥ IZmin + ILmax
                  Vsmin − Vz0 − IZmin rz
  •    R Smax =      IZmin + ILmax
                                                           p
  •   Load regulation = - (rz || R s )
  •
      Line Regulation =
                                rz
                              Rs +rz
                                        .
                                                        eu
      For finding min R L take Vs min & Vzk , Izk (knee values (min)) calculate according to that .
 Operational Amplifier:- (VCVS)
                            ad
  •   Fabricated with VLSI by using epitaxial method
  •   High i/p impedance , Low o/p impedance , High gain , Bandwidth , slew rate .
  •   FET is having high i/p impedance compared to op-amp .
  •   Gain Bandwidth product is constant .
                                       A
          gr
  •   Closed loop voltage gain ACL = 1± βOLA       β → feed back factor
                                                                    OL
               −1
  •   ⇒ V0 =        ∫ Vi dt → LPF acts as integrator ;
               RC
                       −R                                                                   −L dvi
  •         ⇒ V0 =          ∫ 𝑉𝑉i dt ;                                           V0 =                    (HPF)
                        L                                                                   R dt
                                                  −1                                                         dvi
  •   For Op-amp integrator V0 =                       ∫ 𝑉𝑉i dt ;            Differentiator V0 = - τ
                                                   τ                                                         dt
                        ∆V0       ∆V0       ∆Vi               ∆Vi
  •   Slew rate SR =     ∆t
                              =    ∆t
                                        .    ∆t
                                                  = A.         ∆t
                                                         slew rate            slew rate
  •   Max operating frequency fmax =                                     =                       .
                                                          2π . ∆V0           2π × ∆Vi ×A
gradeup
                                                                                                              gradeup
   •   In voltage follower Voltage series feedback
   •   In non inverting mode voltage series feedback
   •   In inverting mode voltage shunt feed back
                                𝑉𝑉
   •           V0 = -η VT ln �𝑅𝑅I𝑖𝑖 �
                                     0
   •           V0 = - VBE
                                         𝑉𝑉
                   = - η VT ln �𝑅𝑅I 𝑠𝑠 �
                                          𝐶𝐶0
                                                  1     𝑉𝑉
   •   Error in differential % error =                 � 𝑐𝑐 �× 100 %
                                                CMRR    𝑉𝑉𝑑𝑑
                                                     p
   Power Amplifiers :-
                                                                   B    2            B21
   •   Fundamental power delivered to load P1 = � 21 � R L =
                                                  eu                                       RL
                                                                   √                 2
                                                                       𝐵𝐵12   𝐵𝐵22
   •   Total Harmonic power delivered to load PT = � 2 +                       2
                                                                                     + ⋯ . . � 𝑅𝑅𝐿𝐿
                                                                                      𝐵𝐵   2     𝐵𝐵       2
                                                                   = P1 �1 + �𝐵𝐵2 � + �𝐵𝐵3 � + … … �
                                                                                       1              1
                                                                   = [ 1+ D2 ] P1
                            ad
                                                           B
  Where D = �+D22 + ⋯ . . +D2n                     Dn = Bn
                                                               1
  D = total harmonic Distortion .
  Class A operation :-
           gr
   • o/p IC flows for entire 3600
   • ‘Q’ point located @ centre of DC load line i.e., Vce = Vcc / 2 ; η = 25 %
   • Min Distortion , min noise interference , eliminates thermal run way
   • Lowest power conversion efficiency & introduce power drain
   • PT = IC VCE - ic Vce if ic = 0, it will consume more power
   • PT is dissipated in single transistors only (single ended)
   Class B:-
   •   IC flows for 1800 ; ‘Q’ located @ cutoff ; η = 78.5% ; eliminates power drain
   •   Higher Distortion , more noise interference , introduce cross over distortion
   •   Double ended . i.e ., 2 transistors . IC = 0 [ transistors are connected in that way ] PT = ic Vce
   •    PT = ic Vce = 0.4 P0       PT → power dissipated by 2 transistors .
   Class AB operation :-
gradeup
                                                                                                gradeup
 •     IC flows for more than 1800 & less than 3600
 •      ‘Q’ located in active region but near to cutoff ; η = 60%
 •      Distortion & Noise interference less compared to class ‘B’ but more in compared to class ‘A’
 •     Eliminates cross over Distortion
 Class ‘C’ operation :-
 • IC flows for < 180 ; ‘Q’ located just below cutoff ; η = 87.5%
 • Very rich in Distortion ; noise interference is high .
 Oscillators :-
                                                   1                            29
 • For RC-phase shift oscillator f =                         hfe ≥ 4k + 23 +         where k = R c /R
                                              2πRC √6+4K                        k
                                                1
                                         f=                μ > 29
                                              2πRC√6
                                                 p
 •     For op-amp RC oscillator f =                 | Af | ≥ 29 ⇒ R f ≥ 29 R1
                                         2πRC√6
 Wein Bridge Oscillator :-                    eu     1
                                          f =                ,
                                                2π R1 R2C1C2
                                                                              1        1
                                          if R1=R2=R, C1=C2=C , f =               ; A=   =3
                         ad
                                                                            2π RC      β
 Hartley Oscillator :-
              1                  L
                        |hfe | ≥ L2
             gr
  f=
       2π�(L1 +L2 )C                 1
                                 L
                         | μ | ≥ L2
                                   1
                                L
                         |A| ≥ 2
                                L1
                           ↓
                         Rf
                         R1
 Colpits Oscillator :-
              1                 C
     f=        C C
                       |hfe | ≥ C1
          2π�L 1 2               2
              C1 +C2
                                C
                       | μ | ≥ C1
                                    2
                                 C
                       | A | ≥ C1
                                    2
gradeup
Phase shift oscillator:-
                                                                                                         gradeup
                                                             FET MODEL
                                                          1
                                                 f =           , A = 29 ,
                                                       2π 6 RC
                                                Minimum RC sections 3
                                                                 BJT MODEL
                                                                    1
                                                       f =                      , A = 29 ,
                                                                       ⎛ 4R ⎞
                                                             2π RC 6 + ⎜ C ⎟
                                                                       ⎝ R ⎠
                                                 Minimum RC sections 3
                Comparisons:
                                                                                   MOSFET                JPET
              BJT                 FET
                                                                                High Ri = 10              −108
                                                                                                   10
     Current controlled    Voltage controlled
                                          p
         High gain             Med gain                                           R0 = 50 kΩ             ≥ 1mΩ
          Bipolar
      Temp sensitive
                                       eu
                                Unipolar
                            Little effect of T
                                                                               Depletion
                                                                           Enhancement Mode
                                                                                                        Depletion
                                                                                                         Mode
        High GBWP             Low GBWP
                                                                                    Delicate            Rugged
Rectifiers:
                       ad
              gr
Comparisons:
                                                                   HW       FW CT            FW BR
                                         VDC                      Vm        2Vm              2Vm
                                                                       π          π                π
                                                                  Vm        Vm               Vm
                                         Vrms
                                                                       2           2                2
                                           γ
                                                                   1.21     0.482            0.482
                                   Ripple factor
                                           η
                                                                  40.6%     81%              81%
                              Rectification efficiency
                                        PIV                        Vm       2 Vm              Vm
                               Peak Inverse Voltage
gradeup