0 ratings0% found this document useful (0 votes) 69 views14 pagesLec1 - Multivariate Calculus
Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content, 
claim it here.
Available Formats
Download as PDF or read online on Scribd
4 Nfittivariatte Caberttes
» Lunetion of trop Varia btire.
/) sfunetren x of fin Variables a rete Mot
Arrtgne fo each pyeleyeot Paty of peat numbers
ee Is gen
Cny) ma cop 4 COMA, umber olenoted
bw {Ooy): jhe Get © iy the coma of F
Gd \
and tb vor ty the Aet of values teat f
Baker ov) he
Domain = ; (pe a Page el
Rovge = } foupa (my) E o}
We offer ‘write z= fy) to make enplicit
tte vatec taken on ly f « ‘the gue point Cry).
The Vordables and are tyolep nvolerat rvon'able,
Variable
ad 2 th te capex ont
Simply we or say that
1 fo vonventes B ust at function wilole
demain th q Subset of R? and tohose Tonge
ta Susee Of Rep
feng)
qd
—_—?
a —sS._—> °°
ehh), xX
+feayb )
( Pyosow Dirge)
a functionde —_—
By Gives Op) = Jute! . End ~02) and Su
x) the Comey
bel f03n)= (ROG LE
3-) 2
fo Ue demain of 7 4
be fp Coy) / xigt!2o , wt
ihe (mequality Wyt} Bo er Bou]
ducnbe dhe Petats that Lie 01 oy vbove the
Ling Yerr-} , while %#) means hat
hs point on the Wye %=/ must be excluded
from te domain.
y
 
@) 400 4) = % bea (yx) Fenel 03,2) and Sheth the
n oman -
Ge fa9)- Blog (2% 2) = Blegt = 9
Sine beg (f-™) uy deed only tolen n>, re veg?
Bho Aomety 4 de Pou) ney}.
This & to Set eings bo the ee
Ayt gf The parabola xy"
 
 
aE f in t) Y
ye the domain of Joltoustng functions: Y
Fry) = Tey © fog Fp
@ 1
: Pays ® FO p 2) = G7*q*
O yy-11 © foo- fo
X-I
ain and wenn e of
amb le + Finot the olom
goog) = (ey
Sof" The domain of g 4
b= fom [ry zo}
= flay) | weed f
tohich & the disk with centre (0,
The ‘verge of g 4
Renge = §zfeslPey; (mg OF
Sine Zz 4 4& positive Snare woot, 270° Ave, because
q-wey £49 1 We ei
c) and reckius 3.
= 9 yy 28
So the remnge bw
Sketch the preps Y the fonction
flruy)= 6-3x-2y
Seg Te Pps of f hay the equation
zZ2= 6-34-24 ox but yz = 6
telteh veproucts a plene- .
To Grbh Be Plone we first find the brlevept,
Pdting qrr=e in the eaustion we ge
uU=L ay Lhe X- Entercept -
Staniterty the y-titenent 5 8
2— Intercept 4 6
Te
helps YA to Abete, tthe Portion
diet Dies In “he fi
St — Octaart:
; This exe fe ba Apectod cone
gy phe ction
= AX Fey HE
slick & catered a Linear tun
Me rr g Suck, fur a a plone
   
  
¥ te PP
 
 
    
6.29)
5 I
€:9 Sete the Hoes of grny= IRF
Gof Be gape Hore 2 SeaTp 2
i Sqesring on be
ga QW L
. 2
wp pres 9De Minn?
bold, we Qj
Notes
ej
Sol’
SerngNlee O4 ay Bpolien of the ~
Aphere oll hh, tre He ony’ and dedblus 4.
Beet ) Aince zzo, te qr of q%: gut Bhs
dep ‘hay of Abe phere 2
An erttye Iphere com’
be %efreysetod by a Cyt e (
unclion of “end BS We Lass try Lat “7
2
  
 
The upper them sphsre of om a aa
% vepresendee mn tee Funchon any= Sry
Jha lower hemiyphere ‘4 rep: by tw jnkier
Bowg= — Seay:
Pind the domain and renge ef 40oy = Yay
ont also Sketch the Grebe
ay hOwug) & olepd- i at possible oxelzved pairs
of weal ‘Dumbest Cuy) , 40 Ue cleanain & IR
FHhe  Qutive ye Ik as of Ra
dhe Set [9, “) non-négehive tal 0%.
[ovetie Tht Wz0 ca aan 4o hong) z0 Yay]
[he Gap za tty” OG the elliptic
etanoiwig! Horizontal traces a7e ellipses and
\ Vertes dvacey ,Q7e Pasabotas:WE Find thy clemain ane Tenge of following P
f tr
TT @ JOop= Coslxtty)
° (Cope) = ae Mo-y-y-e
40) = x3 +
gouge 2-4
x+
Ry g
© fope sate
| > Umit of functions of tive vaatabtes »
la # bea function & two verabley whose
) dlomain D Inetudes polrts aati close fo
Ca,v). flow we Sey West the Um Y fry)
UW (Hy) approaches C%b) BL auol we write
im yal
oyroesl” p
if for erg ero Ja 6>o Luch tet
Cy) ED andl 0< [GaP yyy <& thew
oe [fo0p)-L/ Zé
Othes Notatrons for He Limit re
rae fly) =L aul FOyyJOL % Cu) &)
yo2
f YY
ture . :
bi, ft |fug)-e] by te disterce between
L Number ——_
‘  o forg) ord L, and Ser 3 ly-v)
4 bee histone between ts pert (ny) ond
Ha pelt (arb) ~ Tas df” of Omit Sup that
Hs ditteme baeen 4004) and L com be
meds orvb(teeril, Swell by making the bis bere
xrom (yy) Fe (esb) Supciertly Small (bet not ©).
 
Exiskomce Gf Lindt tn tee variables fection?
for fon f Ge Comale Vadiable wwe tet @'X!
op cad, ', tere We onl, two posstble drvect&ns
4
appreach » fom Us en from the aisle -
3 i Lim 4 , be
“4 Len 40) F Pe 2), Then Ly, #60 i
for Fundkion of tuoo Varinbles the Sitiet(oy & Hot
as Simple beesuue WE can Let Cry) approach (4b)
from am tnpinide DUMbEY of drrections 7 ang Mamey.
Timi Gf? dees vet sqfor te the direction’ ¢f ap
Therefore 7 if th Unit Guish, then fey) Muse Perch,
s approach tha Some Limit 0 miter hots Ory)
ee approaches Cosy
SSwe 64n find two clipperest pots g
along wlueh the qenction cpa
Libity , thes Potowws that byt a
   
 
neq exist
 
Huy ln @ Cy) > (arb) along a
C, and Foog) 34% Oug) > (a4)
2a prt C,) where L-L, , Men dim fou
Crys)
mot oust
c ‘ 22° t
Sher thet Lim nay dow ‘ot eric
Oy) Cae) way?
—
wy
Oo
 
Sty Let Hoy) = C97)
C4 PD
Eixst Lot approach (oe) along he H-anis-
a = i = -
> [han Ge" ee five) x= ' Leeaeo
So p
57 & (my) loe) olen the
Foy ) a ny oaous
rye mew eppresch along the gran by pitting
te Tha ss
#loyy=  =7 WY yFo,
4 9H)? (0 alens
5 fopot 8 COLDSINCE yp
oP Bo Ee ey
Line, { WA tivo ete a
» lhe hve oven
0 i loonie does
“Tf 4
oy) oy
i= ay » doer Lim F004) exist P
Gor r d Copter) ©
9
f {=e 1» then
bp ©
Lin'ty atong two diygeret
OL cause |
ftjy= 2 =o , therefore
ae
fOop> o Ww Cuyy) — Core) along te
armanl's
5f x=0, then
“flow)= £ =o, 40
Cryo 4 CH) —) Coy0) ato the
fog pee a
D toy, log be howe Obtptned tclertrerl Lenits along
tie Grer, that dow Not Show that We gives
timt 6 O- lets now approach (0,0) along
ono tar Line , ing gr « for all *#O,
L
t = u Ss
4%") yy =
Terepere Aly) 2 eB Ovy) > Cert) Ueng’ yor
hone Obtained etperent dianrts ateng,
imid does et easy.
 
Lime
diperot pate the § iveneq Find abn 3ty ip CH @nisty:
» Sole
|
OF OP fery)= , does Lim Hlry) oire
     
 
x a (my) (oe)
Cry) (op) PY”
Here we vcoutd Show that the Limrt ven
any Line “through the ovigin iy O- This doest
prove thot the given Limtl & 0, but Lhe
ene along di axparabotes y= amd x=i7
also tuvn 0 src to be ©, 40 we begin to
Swpect Usd the Limit die exist and &
eqns! do o-
lef 50. WL bmt to fined S>o Such tet
O< fete g? <8 Sheu
[3
wg
he if 0 < fone <8 Elen Bll 26
a ty
Buf Ve wae Once ze, de we gy
 
(tty?)
and Horeore  SelH za tyl = 3dy S Ni
" hy ie@
(Ts) if lve Choose be C aygl tet 0< Spy cS thes
a
aw . /
. hes , “| Bara) < 3h: 3(£) = €
(
oe?
Levee Lin SY we
Cry) Mow) Mey?
= Comctinu ty “f functions Of choo Vawlnbhes «
A function f ef Woo Varinbles b& callecl
Continues at (a,b) if
; a = Playb
i ar
hue Say f & Continuo on D if ag & Continuous
at every petsrt (a,b) Im D-
fhe (mtuttive meaning & Continued, & that af the ?
petrt doy) chonyes b» a Sma ame se Pho:
Velut of FO chomgey by 4 Seat Gmetuct +
Ts yntens that a Auafoce thet 4 the Pers
of 4g tontinou Suncti» hu Ro hole or boeak.
 
Nees AL pots somials axe continuo oy RR. Lkeewlce
= , . , ‘ >
any Totter function 8 Cortimwou eu ty
Comain hecaue Mb a quotiest
ofernctions- We knoe That
dim wea, lim yb, lin cze
C Wp) Arb) (ny (a1) Crag 9 Or)
a Contras,£4 z
= KH Valuote Linn D4 ak
Wy. oh ry, ~
Cnt) C GG 1am dy )
def ¢,
= Since fo) YP tBu 424 i a Poly omiat
Ck & Comtrnmns everyotere , 40 We Can find
the Lt mee by cree? Aubeatituton :
diy (vA A 43424) = PEP aeser2
Ouyoln) ir i d 7
oy Lokere & He Function forp= iar deostineec?
wey?
Ao’ — Ihe Junction fF 8 cliscontnucns at (00) because
(tu Not ch there. S/nce fF 59 Tactienal
function , Hs tontinwew en thy domain , wth
uy be Set
= PCy) / Cry) Cebsy
3 2,2. ,
Gf go wis F Cp Flow)
6 HE Coy) = Cero)
Gol Mere a 8 dapined at Coe) but i & Str
Atseertinuens Lhore Lecaes ees pf OO)
door Not oxuc# (tolved tn Last pow eromple):Ge Consider Whe 3 finetion fouy)= a Bind dee oe
V4 y?
clini atone the following curves Jay Cug) (0)
(a) fhe x cath (h) the ge anc
(C) fhe tape y= (d) the toe yet
@) fhe parabotts ae x
Sol (a) is ye ous Aas Poremetve ogussteon tat gre
| Loi (0,0) , 40 we toe
Lim Fug) = on F(L,0)
) pate) © j i
= ' ~ 9 \ = bin O=
= fim [-g)= Peer’
) Ihe ans ADS panomedtare equation X=0, gat
with ‘ (e,0) Correrponcling to t=0
Li gd= Es Ort, §
gee” y= tim Fem) OR
= yen fia +) = fin ozo
(c) Fhe Line y=eu Bw parermetore eqpation U=t y=t™
bottt, (0,0) Cor vesponcting to t=0 4o
Lim Fong) = fim FlOrt)
Og) 0) >
= dim =*€. = tim -) =
2 go 2
= -)
%QD"
me - SB i
: | FOp= per if (oy) # (0,0)
6 ¢ Cogy= (0,0)
Aine tt ¥ i bel cots a atlensl funcion Bar:
Also , from “exemple we hove
Lim Flog) = lim 3% sox Fle0)
Si Sot tue lenow f & Continucus for (uy) # (oe)
) (Hy ralere) Ory) lee) Pt
Ther ve Ff ys tentinuers at (0,0) ond Ao ne
Tilson & R:
At find the Limit , ie LE enisty ov Show Wet dim
, doe, Not emst-
) di P49 4 yer
» e Cp ” ips, yg
him ‘gin (1g) (Q Lim — 4
Cy) Ompatee) — Varag