Al-Hussan Model Schools
International Section
2022-2023
Math review grade 10
1
Q1. Describe the interval shown using an inequality, set notation, and interval
notation.
1. 2.
Inequality: _________________ Inequality: _________________
Set Notation: _________________ Set Notation: _________________
Interval Notation: _________________ Interval Notation: _________________
Describe the domain and range of the graph using an inequality, set notation, and
interval notation. Then describe its end behavior.
3. Graph of f ( x ) = − x 2 + 3 : Domain:
Inequality: _________________
Set Notation: _________________
Interval Notation: _________________
Range:
Inequality: _________________
Set Notation: _________________
Interval Notation: _________________
End Behavior:
_______________________________________
Draw the graph of the function with its given domain. Then determine the range
using interval notation.
4. g ( x ) = −3 x + 2 with domain ( −1, 2] :
Range: _________________
2
Q2: Use the graph to answer Problems 1–4.
1. On which intervals is the function increasing and
decreasing?
_________________________________________________
_________________________________________________
2. What are the local maximum and minimum values?
_________________________________________________
_________________________________________________
3. What are the zeros of the function?
_________________________________________________
4. What is the domain and range?
_________________________________________________
_________________________________________________
Q3: Let g(x) be the transformation of f(x). Write the rule for g(x) using the change
described.
___________________
1. reflection across the y-axis followed by a vertical shift 3 units up
2. horizontal stretch by a factor of 5 followed by a horizontal shift right
___________________
2 units
1
3. vertical compression by a factor of followed by a vertical shift
8
___________________
down 6 units
4. reflection across the x-axis followed by a vertical stretch by a factor
___________________
of 2, a horizontal shift 7 units left, and a vertical shift 5 units down
3
Q4: Find the inverse of each function.
1. f ( x ) = 10 − 4x _____________________________________
2. g ( x ) = 15x − 10 _____________________________________
x − 12
3. h ( x ) = _____________________________________
4
3x + 1
4. j ( x ) = _____________________________________
6
Q5: Use composition to determine whether each pair of functions
are inverses.
7 2 10
1. g ( x ) = −5 − x and f ( x ) = − x − _____________________________________
2 7 7
1 7
2. s ( x ) = 7 − 2x and t ( x ) = x+ _____________________________________
2 2
1
3. h ( x ) = x + 4 and j ( x ) = 3x − 12 _____________________________________
3
Q6. For each absolute value graph, identify the domain, the range, and the vertex.
The first one is started for you.
1. 2.
_______________________________________ _____________________________
4
Q7. For each absolute value function, identify the range and the vertex. Then graph the
function. The first one is started for you.
1. f ( x ) = x − 4 2. f ( x ) = x + 3
_______________________________________ ________________________________________
Q8.Solve.
1. How many solutions does the equation x + 7 = 1 have? _________________________
2. How many solutions does the equation x + 7 = 0 have? _________________________
3. How many solutions does the equation x + 7 = −1 have? _________________________
Solve each equation algebraically.
1
4. x = 12 5. x = 6. x − 6 = 4
2
_______________________ _______________________ _______________________
7. 5 + x = 14 8. 3 x = 24 9. x + 3 = 10
_______________________ _______________________ _______________________
Solve each equation graphically.
10. x − 1 = 2 11. 4 x − 5 = 12
5
Q9. Solve each inequality and graph the solutions.
1. x − 7 − 4 2. x − 3 + 0.7 2.7
_______________________________________ ________________________________________
1
3. x+2 1 4. x − 5 − 3 1
3
_______________________________________ ________________________________________
1
5. 5 x 15 6. x + −22
2
_______________________________________ ________________________________________
7. x − 2 + 7 3 8. 4 x − 6 − 8
_______________________________________ ________________________________________
Q10 . Find the square of each imaginary number.
3i 21
1. −21i 2. 2i 97 3. −
5
_______________________ _______________________ ________________________
Q11. Determine whether each equation has real or imaginary solutions by solving.
1.
1 2
3
x + 15 = −21 2. −15 x 2 + 44 = 2 ( ) (
3. 6 3 x 2 − 1 = 3 5 x 2 − 7 )
_______________________ _______________________ ________________________
_______________________ _______________________ ________________________
6
Q12. Solve.
The length of a rectangular garden is 4 times its width. The area is
102 square feet. What are the dimensions of the garden? __________________________________
Q13.
Write each expression as an imaginary number.
1. −25 2. 3 −49 3. − −81
_______________________ _______________________ ________________________
For each complex number, identify the real part.
4. 2i 5. −3 + 3 − 2i
_______________________________________ ________________________________________
For each complex number, identify the imaginary part.
1 1
6. i− 7. − 5 + (1 − 2)i
2 3
_______________________________________ ________________________________________
Simplify each expression. Write your answer as a complex number.
8. (4i) + (2 + 8i)
9. (2 − 7i) – (5 − 3i)
10. (3 + i)(1 − 4i)
7
Q14.
Solve using the quadratic formula.
1. x2 + 10x = −9 2. x2 + 2x = −4
_______________________________________ ________________________________________
3. x2 + 5x = 3 4. 2x2 + 7x + 10 = 0
_______________________________________ ________________________________________
Find the discriminant of each equation. Then determine the number of real or
nonreal solutions.
5. x2 − 3x = −8 6. x2 + 4x = −3 7. 2x2 − 12x = −18
_______________________ _______________________ ________________________
Solve each equation by completing the square.
8. x2 + 2x = 3 9. 2x2 = +
_______________________________________ ________________________________________
10. −3x2 + 18x = −30 11. 4x2 = −12x + 4
_______________________________________ ________________________________________
8
Q15.
Write the equation of each circle.
1. Center (8, 9) and radius r = 10 2. Center (−1, 5) and containing the
point (23, −2)
_______________________________________ ________________________________________
3. Center (2, 2) and containing the 4. Center (3, −5) and containing the
point (−1, 6) point (−7, 11)
_______________________________________ ________________________________________
5. Center (−3, 0) and radius r = 6 6. Center (6, −1) and radius r = 8
_______________________________________ ________________________________________
Graph each circle by rewriting the equations in standard form.
7. x2 + y2 + 4x − 4y − 1 = 0 8. x2 + y2 + 2x + 4y + 1 = 0
___________________________________________ ________________________________________
9
Q16
Write the equation in standard form for each parabola.
1. Vertex (0, 0), directrix y = −2 2. Vertex (0, 0), focus (9, 0)
_______________________________________ ________________________________________
3. Focus (−6, 0), directrix x = 6 4. Vertex (0, 0), focus (0, −3)
_______________________________________ ________________________________________
Q17. Solve each system algebraically.
x 2 + y 2 = 101
1.
10 x + y = 0
3 y = 4 x
2. 2
x − y = −63
2
10
x 2 + y 2 = 34
3.
3 x − 3 y = 6
x + y + 2z = −7
4. −5z = 25
3 x − 3 y − 6z = 3
20 x + 20 y = 46
5. 50 x + 20z = 126
60 x + 10 y + 50z = 263
11
Q17. Calculate the reference points for each transformation of the parent function
f ( x ) = x 3 . Then graph the transformation. (The graph of the parent function is
shown.)
1. g ( x ) = ( x − 3 ) + 2
3
2. g ( x ) = −3( x + 2)3 − 2
Write the equation of the cubic function whose graph is shown.
3. 4.
_______________________________________ ________________________________________
12