CO2038 Fall 2021 Lab1
CO2038 Fall 2021 Lab1
Le Trong Nhan
                                                                                              Contents
The PSpice for TI design and simulation environment allows you to simulate complex
mixed-signal designs with its built-in library. Create complete end equipment designs
and prototype your solutions before you commit to layout and fabrication, reducing time
to market and development cost.
Within the PSpice for TI design and simulation tool, you can search for TI devices, explore
the portfolio, open test benches and simulate your design to further analyze the selected
device. You can also run co-simulation of multiple TI devices to better represent your sys-
tem.
In addition to a full library of preloaded models, you can easily access the latest technical
collateral for TI devices within the PSPICE-FOR-TI tool. After you have verified that you
have the correct device for your application, you can access the TI store to purchase the
product. Using PSpice for TI, you have access to tools to address your simulation needs
as you progress through the design cycle, from circuit exploration to design development
and verification. Available at no cost, it is easy to get started.
A primary purpose of this lab is for you to become familiar with the use of PSpice and to
learn to use it to assist you in the analysis of circuits (e.g. double check the results with
your exercise). The software is required to install in your computer. Moreover, it is your
responsibility to learn its use in a more detailed way since you will be using it along the
course of this semester and in the future. The targets in the first manual are summarized
as follows:
Basically, you need to login before requesting a setup file. Please follow the manuals from
the website to accomplish this process. An email with an access key will be sent to your
account to activate the PSpice software.
In the second dialog, please select Create a blank project. An empty project is created
and the next UI is displayed as follow.
4 Design a circuit
Step 1: Double click on the Resistor in the device list and then move the mouse to the
schematic design page. This device is in the Favourite library in default. While moving,
press R to rotate the device before placing it (by left-mouse click), as follow:
Step 2: Double click on the value of the resistor, which is 1k in default, in order to change
its resistance.
If the resistance is Ohm, no unit is required in the Value field. Repeat the first 2 steps to
finalize all resistors in the circuit.
Step 3: In order to place a voltage supple, find the component named VDC (DC Voltage
Source) in the favourite list, or filter it on the search area. Double click on the voltage
supply and change to a desired value. The result after this step is expected as figure bellow.
Step 4: Wire all components by selecting the Wire command on the right panel (hot key
is W).
By clicking a start point and an end point, a wire is placed. In order to delete, select the
wire and press Delete. The picture of the circuit after this step is depicted as follow.
Step 5: Place a Ground symbol. This step is very important to analyze the voltage in a
circuit as a reference voltage (0V) is required. The ground symbol is available on the right
panel of the software.
Wiring the ground to a point in the circuit, the final result should be like the figure bellow.
When the simulation setting dialog is appeared, please select the Bias Point for analysis
type.
In PSpice, the bias point analysis calculates the node voltages and currents through the
devices in the circuit. Bias point analysis also takes into account any voltage sources ap-
plied to the circuit and any initial conditions set on devices or nodes in the circuit.
Finally, click on menu PSpice to select Run, or press F11 to start the simulation. The
simulation results are displayed directly on the circuit as follow:
6.1 Exercise 1
Given the following circuit. Calculate the value of the voltage v 0 and the current i . Then,
simulate the circuit to check it out.
Figure 1.17: Find the voltage and the current in the given circuit using KVL
6.1.1 Calculation
Notes:
Explanations, formulas, and equations are expected rather than only results.
According to the: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
According to the: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
v0 = . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
i = ...........................................................................................
Tips:
To get the Voltage Controlled Voltage Source (VCVS) from the PSpice, under the Place
menu, find PSpice Component > Source > Controlled Sources > VCVS.
A circuit used for the simulation in this exercise maybe like this:
Figure 1.19: Find the equivalent resistance value between terminals A and F
Insert the rearranged circuit here. Don’t forget the resistance values and the nodes’ names.
Convention:
The equivalent resistance between the two terminals A and B of a circuit segment contain-
ing only R1, R2, R3, and R4 may be named R AB _1234 .
Notes:
Explanations, formulas, and equations are expected rather than only results.
RC D_3456 = . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
RB E = . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
R AF = . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
I AB = . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
6.2.3 Simulation
Figure 1.20: Find the whole-circuit equivalent resistance and the voltages at A, B, C, D,
and E
Insert the rearranged circuit here. Don’t forget the resistance values and the nodes’ names.
Notes:
Explanations, formulas, and equations are expected rather than only results.
R AF = . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
VA = . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
VB = . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
VC = . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
VD = . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
VE = . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
6.3.3 Simulation
6.4.1 Calculation
Notes:
Explanations, formulas, and equations are expected rather than only results.
I2 = . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
I3 = . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Va =. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Vb =. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
6.4.2 Simulation
Figure 1.22: Select resistor R from the standard resistors list and do the following require-
ment
Notes:
Explanations, formulas, and equations are expected rather than only results.
R = ....................................................................................
   b. Use Table 2.1 in the lecture slide to select a standard 10% tolerance resistor for R. R
      in the circuit may be a single resistor or a combination of many resistors as long as
      these resistors are meet the standard values and are available in the market.
........................................................................................
c. Using the resistor selected in (b), determine the voltage across the 3.9k resistor.
........................................................................................
  d. Calculate the percent error in the voltage V1, if the standard resistor selected in (b)
     is used.
........................................................................................
PR = . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
6.5.1 Simulation
Figure 1.23: Transform the circuit, then find the equivalent resistance R ab and the current
i through the circuit.
............................................... ...............................................
............................................... ...............................................
............................................... ...............................................
............................................... ...............................................
..............................................................................................
6.6.2 Calculation
Notes:
Explanations, formulas, and equations are expected rather than only results.
R ab = . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
i = ...........................................................................................
6.6.3 Simulation
Figure 1.24: Transform the circuit, then find the equivalent resistance and the current I S
through the circuit.
............................................... ...............................................
............................................... ...............................................
............................................... ...............................................
............................................... ...............................................
..............................................................................................
6.7.2 Calculation
Notes:
Explanations, formulas, and equations are expected rather than only results.
R equi v al ent = . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
IS = . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
6.7.3 Simulation
Figure 1.25: Determine the unknown elements and calculate the absorbing power of each
In Figure 1.25:
p 2 = . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . −→ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . element
p 3 = . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . −→ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . element
p 4 = . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . −→ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . element
Figure 1.26: Find the unknown elements and variables, then check them out by simulation
6.9.1 Calculation
Notes:
Explanations, formulas, and equations are expected rather than only results.
According to the: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
We have:
v =...........................................................................................
ix = . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
So, we have:
p 1 = . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . −→ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . element.
I AB = . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
I BC = . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
p 2 = . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . −→ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . element.
UC D =. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Tips:
To get the Current Controlled Voltage Source (CCVS) from the PSpice, under the Place
menu, find PSpice Component > Source > Controlled Sources > CCVS.
A circuit used for the simulation in this exercise maybe like this:
Answer:
..............................................................................................
............................................... ...............................................
............................................... ...............................................
............................................... ...............................................
............................................... ...............................................
............................................... ...............................................
............................................... ...............................................
............................................... ...............................................
............................................... ...............................................
............................................... ...............................................
............................................... ...............................................
..............................................................................................
            DC Sweep Analysis
1 Introduction
DC Sweep analysis calculates the steady-state voltages and currents when sweeping a
source, model parameter, global parameter, or temperature over a range of values. You
can view the results of a DC sweep analysis in either a text output file or in the graphical
display of the Probe window. The targets are summarized as follows:
• VDC
• Ground GND
• Resistor
5.1 Exercise 1
Change the value of R1 witch 220 Ohm, 330 Ohm, 1.5k Ohm, 2.2k Ohm.
For each value of R1:
   • Check View Simulation Output File to check value of I, Voltage on R1 and Diode
     (recheck with theory)