0 ratings0% found this document useful (0 votes) 67 views39 pagesACD 1st Unit
Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content,
claim it here.
Available Formats
Download as PDF or read online on Scribd
Fanctamentalss
<
Alphabet + Analp habek wa fraile won-emply St 4
Symbols. We Ue the Supmbel (=) te “Veprrenass ar
alphabet
Ex: == fot
Sao aes We
Ze Ja, b,.---F%
Shing: A ching th a Hulle Sequene of Symbol.
| Chosen ftom Some eilphabet -
| Ex, Ol10l ftom the bray alphabet
s=90,1%
The Shing UL & mother ching choosen (rom
this alphabet.
s-labek
422, bbb, ab achbacca oe shings.
Length of a Sieg --
(ne. opsymbels f& a ching)
Th & often useful to Clamhy Shtage by
tet length be, the “0-Of positions for Symbols
fo the Shing for frtance ollol har leugth S.
Lerath enotiet by mod[Iul] operator
Tt common be Say thak the length of the sting
te the number OF Symbol tn the shikq
Empl Shing The empty ching i the shang wth
ero occusence of Symbole. This ig Kn Aewd
by “E' eptolon. This shiwq a Shing that-may bechown prom aey alphabet zs!
Sone. : i a w
se FET emply chive cetof,
. { t ‘cehog
eres Stohegs.
Puoed Of an alphabet .-
(x of cringe Whore lemeihy & kK)
Tp Eke an epbabel, We Can EXPT dhe.
Sel of AU Shingt Of a cerkain length fron thal
alphabet by Wsivg ex poreukial wolstion, we
debe SS te be the Cebep shinge OF length Bice
cath of used Cyrvools CARs
ex sé
no males what the abprabel Sw
Te clea words “S'in the Only sheg of length
‘ged © Ee jabeot
s+ fab 2%
s% Fax ab, ba, bb, cach, ce&
St Foca, aah, aac, aba, axbb, abe, aca
ach, acc, baa, bab, bac, bba, bbb, bbe,
bea, bel, bec, caa,cal> cac, cba, cbb,
cba, Coa, ech, ceed
Peele
Note: Thee ik a hight confusion blo Sand =!
>The homed (Z) ba plphabek voith members
ab& © a Sumbol.
>The lak (=) wa cet of shings with mew bees,
an the shings a fant c of lewgth |
Se sus'ost:: 00
Ex. se Fa, b,c
S*o seb of au ching ovr Ao
Spey bret ce Sevkee
alphabet| |
~> The seb of all shinee Over ain alplaloel Su
conventionally clindial toy sk
Tor ixslarce
Fo,'19S 3 E,0,1, 00, ot, 10,1. %
SS Us S7 0 sete).
—> Somctimen we wish lo exclude the exnpty cha,
fom the sek of Strgs. “The Set of non—crpli,
Shh4e ftom alphabet 5! i Kenoled oe cs
ste s*_jet
s*- stud et
eee clause
Concakinabion of Shbaget—
let KEY be two Shige then 2%-Y cheno
the Concakivation of KEY Le, The sbiteg &
Ps makg a copy qx and flliaoma ft
ly A cepy of y
Ext x=llol B Y=ooll
Z Y= LOlOOW
= YxX= COUN!
Lanemage: (L)
A Set of chiings all of OHER ce ekpocen
Same = idnere Tan particular alphabet a
called a language , ih 2 & an obplibebare
L iw Subset of S¥ then Lia ee
Si xl lanquag'
Ls@ Tre uquade of oll Ching’s coniching of
nN voof oc {ello d by 1. woof Abeer bee
nNzZo
Valid ee
Ls FE, O01, 0011, CONN, COCOII(1--. 2
@ The Set of shings of Be aud 116 with on
cayeal no.of cach
Vali ching!
L=3 F,0U,10, 001, 100, 01010, --- -
@ he set of brrasy no, colioce Valucr i a prime
Valid shivg aca
Le Flo OL, lol, &
@ BS” & abso a language for any alphabet &
© BF wan empty baquage, Ua lerquage over on}
alphabet 4%
© set The language contsting Of only emp by
Shing & also a language over VY alplabe .
Notice that P= 3 EL. The former har no shing
aud the later har 4 Shing.
Prefix: “The prolix F ching, ‘u a ching forest
by taking any "0 ot Symbols ftom the stort
Of the Shing
We Olll
Prix. &
°
ot
Ol
OlExteel or ia Ce
Po defi
A cling the qywen Slvkey
we Ol
pe te aprefix = €,0,01,011
|
—_peeper Suffi
i excluclng ‘the given Shing
| €,0,10, 10
Patoduclion fo Regular Exprorsions
E=Jad an
== 3 Ea,00, aaa. aS
a= 8,a,4a,c00.
Usion(+>
z= fab}
O+b= 3a, by
(a0) } 8,0) bac, ab; barbbranal-t
> ConSi = FIL OU, Wh, OoU, OWL
The whole RE will Paes aks ties: shings
end with
> I= 71 10,100, lo00..- %
AU sbivys rust beqin voila 4
> atbatbat = Ybb,.--.4
“this RE qereraler excctty two Ke fr emery
hig> (brabby =} &abb, b, babb. bbabb....%
every ae frineckicety follouecd by alecrat
duo be
=> Ree tho 2 own mut be folloused
Any wo-of ae pollowect by any hoof be footy
by aanyne. CS A
> abe, ac, ab, bbe. +++» ABRACE “fh
> RE- a
& followed by b followed by c fy epsilon wot
there
—> Wilk o RE to Aenokd Love = usheae
Sa fabt Such that 24 chovadlir heen the
might ead OP the Shing & alianys yy’
Re= Carb’ a (arb) (arb)
> Coreliuct A RE forth language b votdicl
ee ae age aah akeet Bo Bs
ov the S=fabt
RE= (at Bb (any berb*
> WHE RE fer the lavquage Lom which the
shvgs uhh are Stating ul 4 and evdig
ust 'o! over the Set s= 30,18
Re= (Co+l)‘o
> RERT CYS Fyne una... %
odd vo, of fieDef inition of a Reguterr exprexsion aa
Avy Any sHearttval Seyrnl a [element of = RE
ee DEA HE
= Union & two RE,
expwosvion &
fe Rr Ro)
Ra, Raab
R= RR = (ath)
—Concolinakion of bso RE, R, &Re writen oy
RR wahoa RE te R
(Re R-R2)
~~ Thetalion (dlosuse) of RE, RB unttien ar ef
ik also a ee
ow Leb al be a tecqlon expeewion
A= &, QjOOQ,--- -
Finite Set_Autometa
A lawquage Wa Subcet Of cet of shigs
Ov an alphabet: A lanquage Can be vecagnige!
by a mission, Such a detee UW Codd a ite
dorce. Here a language. cam bave a Mreprescuktts
fo teers, Pagenesating device AL Arama x4
Vell as fo beams of secoyrtion devices tsheh U
called an “Acceptos’
ee ae ee elagttion hewiee
the fini Stati outomalon |
ceaulas
R, ard Ro wa”NE
TY
OFF
Sesitch on
= exanp of FSA
O%
cvs ove
eS “
&
ae Sues adden.
Deketaniniste hit Stale Automata (OFA)
le can look ab the FEA, tsith an hput teRe,
be tape head aud a brite Conlecl csbich tenotes
the Stake
Fitak a Vecoqwizen |The fomnal definition & a folars
i A drsa & a S- tap
Ms (@, % 9/40, © wahere
So & a iale cet of stealer
> Ee a ffeil Sek OF Papa Symbols
(5a ia @ ob the Steak Stak or frill state
FSO ib cok OF bal Stats
> Sate banution fanckon A a mapping
from QX ESQ
© cramper Leb a RSA have o shai cet 3Yo,4%a,ih
Ayo f the Pital cet ait the only bined Shale,
The state diagram of the DSA U to 1g,
etidoen bba
a ae No
aabba
”
yy
Peal cla Aalbba
nN,
aabba
a
An
QAabbha
Ao aaabl, *
oes ae Babba
iq Acceplee| 6
bb Frral steuit a om
DOAN :
c Le sane” (nneid ak Nhe
E
aaabb § Qx2z3@Q Fenton i
\ CH,
2 §GoD24, Ege
, S (4-b)>d
a0abb § (4, D>,
S$ (a. by 4Nee Big. chows the transition cMiagsam for DFA
that accep& all aud only the shige of Os aud
gig that hae the saqpence. O 1 Somewhere
dhe Shing.
1 D Oy
Be SS
Cromation Magsam.)
ion table: 9
Transition “A (40,0)= 4%
S (40, =4
SQ) =4
$4) =e
S$(Ar,0) =e
SG = Ve
@ Lt w design a OFA to accept the auquage (L)
L=J wl oh eres length and begins usith noth
Sp es
S(4o, oj=M
Rantition table + $(4o)= 0
S (a> >
S(a,= !
S(ft -
@ Detign a finite automata, heh accep even ne-<
| ER Os and even vo of 1s
a poseiblities (a states
© even wo. of Os & evn twa. OF Al
@ odd us of O's 2 even vo of Als
@ ervey roof Os & O44 wo. of Bc
&) odd uo, of os & eAL wo. of ac:
$(4o,0)= a,
anne
SG@eN= + ies Vw
S(%,0)= 4 Ra ye
S(%,.0= 4 Teas a,(>) Dokign a pike automala bo accept Sb\gs tab :
aloays ends with OO
Gee”
a oS
m= (@, =, $/AVe, F)
> B= 3%,U,140$
> s2 G01 { j
> F = 840k
> Aoz in @ iu the Steut Stak ox Wwihal cla
> § tomilion funclion
$(40,0)=%
SCD =e
§(a,,0= WW
S(4,/)= 40
S(42,9)= Aa,
S (%,'\ = V0
© Design DRA ushich can accept dregs haxing
Al Wak Subshing
S(4e,9)=%e S(42°)= Veo
SG@o.9=% Saaz %
$ (4,10) =%e S44 =
$4, = An Slay!) =A© h pe BON | mnzod, Desdq PPA feces
“Oe Les 2
a)
(Bead Clate
m= (& 2,
= $4),22,424
Z= fo, %
Vee UV UWQ ta tied det.
F= 34,42
S= Lamaition functions
S(Ve,D=
S@ = 4
= 4%
S@o = An
S42D)= ay ;
S(4ni) = 45 ;
Be :
Stained eee He cicehe ct
fn boincany - gk He Mivictble Bis BANA hen: ee
4
1
|
|
\
'
A
A
NeConsliuck the — tancition avaph jor EA hich So
ocepk a language L over =20,1% tn wohich
go, 14 i
anes) shings Steal, worth geo(Jaud end coith't
2 Laith
vnplyr
@ Deviqn finite automate be accept b whee ost
the shimas fe Lave Such Hak total wo-oh AS
wo them ae Anicible by a
Aweble by c!
Non- Dekeaministic Exnte Stoke Automela
Th the previous where
> O- ka fee Sef cheater
7 Eo tha ire Set-cp Inpak Sinbad }
> 4p, A member HA, in the dark Stub §
> F, & Subset op@, & the Sc of tival ctaby
| So the bankition function
@ Tk ctete Aegram & NEA talich accept bia!
chs hich have otleask ome pakk of Zes0 310 0
© of Last te mk
tora i.@® The Shake agin x an NFA tslich except
bina Stings which agen ‘oo or 1a"
G22 B)
Ge)
'
@ peur NPA which accept. shies having I
hat apei. |
ee ae ee ea De
| Evy DEA ik a NEA, but NEA & ota. Bey
So, we cannot comet REA to BEA
| CRA —> NFA
(NEA—S DEA |
me Comuk ‘the following NRA to eatilvalout DEA
“Rantiten Kagem of NFA
Os
=
Q=3 Stoln
2
Ras
S= Qxz=
> $4103
Sah
3423
V* S18
ore}@ Papalene of NPA avd DFA
oO o5A
—=@) ee )
?
Subset Commmution
is ° {
S [2 g
$0% [awd | tnd
Y3a,% | ind PU
S40) [Rory | WV
DRA
“© ; Se
ef
So \
Ao (Bork Ivd
4, [ia
NEA
A= ,=,S%0F)
Q= 40k
S=1o/l%
Qp = Tnitad Stale
F=ja0hif
ut ;
@Comerk “the followhy NFA te DFA
ty
{
Qn”
° l
> &)—&) —>@)
NEA
A-@,0,5,6,%6)
T= loi
B= 140,4,A2Y
Fae
Vo= Tnilial shale
$= Qxte2= Be
Subshing contbuction =
S = >
2 2
PHS | otk | snag
yak é is
39.3 g 2
Bord | Bens eval
AVY, Hout a
eaah e et
M7293] Jawad antcome dhe fellowng NEA fo BFA,
2 ies
nn an
NRA
Ac = (8,2, $,F 40)
R= 340,41, 42, 42%
Ge Trial stoi
s=-%0,8
F= vo.
4
Ss Qxera= alle,
sub shiing Conshructiod
aan ae x
a | Sas |
a| 2 842
4a | funds | 2
Ss ° !
p w zx
13403 Sa,a& o
{ak furr | #
fant Jared
£453 Bante &
* 340%V14 wt | F
€Syo4gh Sirah | Bd
oat | BAVed a
43,403 Hi %ed oe
S442 $04 g
faatd | Jaiark twat
“Wtontet | RUGd — | AnAak
34 49433 $4,403 | tA,%ab
Et eh | 8,43 | 2hash
Titadoui IHW} | we
IWAN 34,0 2S ak he |1° posk te AudomolA
Regular expression to fini A
| Owe. Crd*u ea ceo”
SB >@@ Pe
Re Ga)
| @ge: (oD* We
“One ©
RE:
@xe: (oxi) tot (o¥y* 4
p Re $B SO)
| G28 |
o*t*o (0 ou Fo)" (o-+t)*
Eas GP
Theorem 1 bet R be a veqular expresion then
there exicti. oo NAA Usit, E. bauriteiony hak occeptt
L(®)
v= 7) ~@) |
ah & to brad Stat)
@2>@) ._. |Tuduction
_—_—_—
Casett Uslon.
Lek vem t¥. tohete Traud % be “the ~weqular,
expression there evict 2NEFA's for MAG.
BAVA
Concativalion Cate 2'-
Let ve*(Fq where %%,%a ate 2 rreqular expreor
the MoM, Aenoltt the tes machines Such het
(m= EQS ane L (Ma) = E(m) . the conshuckion
of macdhire M vill be. td
36 » }-[6 » ©
Cotesi- .
Lb we) © whee % be a vequilor exprersion the
machine -M, & Sucbthak L(m,) = Ln)
coma & ¢
&.'S
Ex. Conthuck NFA usith & breaunsicsion’ for 4.
yeqular expreion bt ba®
y= b+ ba*
Y= Ut Va
| meb Mygeb
t= bak rye
—Bge Vy
\ For vj=b
(Fox wa=b
For Weutbo
a eo
€
&)
b € G4Consbuct NFA with ¢ moves for the vequla
expression (o)*
y= (o#'*
v= (m+%>)*
=0
i=l
For ‘= °
—_>
For Yo=1
@@)
DEATij STN a rg gee 2 Rg Cheeta 9
| \. Combuck DEA fox the aiven vegulat evprertion
| CarbYrabb Mts
pS + 94" @)
|
|
‘ b>
Subset Conshuction:~
§ a b
4% 34ut 3404
| York Iaork torah
| Yoel Hent —eos}
! os vk — oh
“Famdlion dlagram:.~2. Conbuct DFA for the apien We previo
“1 alos
Cony ot (or vr a
“\,0; 4
Qo, ' i yV
2B" @ OL
cabest conbcton
$ 3 \
Wo Vo Jao
Jaoth = Pwo LO
Jase — Fak we}
WAS Fase 320
nts ore OWA
Jae} Yarns lwnnt.
DPA———
* Distinguish bebacen keeprelia aud Compiler,
aM peak
| Tnkeduction te te Compile. |
be
Saset peti (alles | et Page
ce pero, [or] Boe PT
L A compila isa tanslatn thab Converts the
Nahlwed lanquage ihe mackinclevel language .
Compiler Uw wed to Shod® esron to ~the
The Ce ipa: op yigtltFe tioned ota ak
Witten fo One lanquage usithout Changfing the
meaning Of the program
i Lexernts — Sequena of character.
Jokes — (durbliak, kona Comleuts
4 Operators — Synkorr fee fubemalluocderPhases of the compiler .
Scume Progam
we
a ag Tegel preqrann
one: EE
Code :
vey Sum = olelsum + Reale 3 50
go Hextca) Analyzer |
oat +
leepres a dye ida hy
tokens 4
[ayaa vale J
v
rN
(ao
¢ ete,
Bo aNPhases ef ‘the compiler
code
ee Sur = olelsuun + Ralle 50
lexice! en
om
a, iF
lexere® og. thas idem Ay
forens iy
Syntax Analgget
Vaya re
Y
ae 4
ee
1 a oad
+ ase A gs0
4
ae
: Riles
0 >
z
|
4
$
ae
int toveal
U Y
t f 4
tempi = tabtoveal(S0)
| temp = ida temp J
| temp3 = iAattemp2
idy = temps
| L
‘
kemp| = id2 %£0.0
TAi= idat terp)
Y
code generates
mF ide RR
opener MULF ttooo, Re
Move fhe R,
APD RAR
Move R, eh,The pass avd the Phaser Of “the Compiler
Dw ts 3 complete travettol of the Soure
pemem: Compiles has too pamer be tavern. the
cance pepe.
(D Mutkipace Compiler
@ One- paw compiler.
Matti-paxs Compiler
Mulki -pas Compiler, Ic Ube be proud the
courte Code Of a progam Several Hines.
Tn the pack pam Compil Can eae the ae
programs exhack the pre tokens LOA Sheree the
nesutt fy an oukpus pile. .
wy the.’ Secor pars Compiler can cand the
Giukpat podued by posh pee ull he
-Sypptactic bee cand. peryonr, the Syxtoetea!
5 the oudpet of thin Phase wa fle
thak contains the Syntactic tree.
this pous ob faye On uvbl the touget
Oukpuk & produced.
Ore-Poss compiler:
m Uthech to thrawelte the
One- pat Compiler, %S
p only one }
i A compiles can brasdhy be Aivided to
teso phases bared on the way they Compile,
© Araliyeic OY
@ Sypntheaas Way,ft
Avaly As Naat i
a the peonkend OF the compl,
the analysis phase Of the Compiler seals the |
Coutce program, divides it tuko Goy pout due
checks for lexical, aprarrimen oud Sanda ely,
The aralysic phase generates an wkend),
Ne pretentertion of the Source Reda
Frontend |
\
Eis Me
‘eprakeukabion
Keun Qn the baleen situs hiss
ath en ta fase: apneic ice :
usit help of inteamedliate ; eg
Fass— A pats ths tothe
thuough the ew reveal Of. Coreplle
Phase A pare of the compile 4 ae
phase which takes frput Lens ees ae
Chage POO oud Yield oy fev ie
ee eae ees de han ei hand
rnore than one PareBook steapping +=
™ pesign a Compiles
1. Scutce Lanquacye
2, Taugh language
8 Trylementabion language
T-Aiegram .
a Sauce
oy Target
Sa TS eae tes
bw Pees cFT Owl
ef Compiler (lL lake~a Ihe
hase tr be iver Mhe gy
Chasacte og a
fp aw a beam of
as tokens
Tokent cam be Clarcibied tbe Auubibion,
Keqpoovels- operator, cones and Specick
Chrawekers
Cc nak LEX foCompilr clevign 9
LEX & atool/ acompulin program that qerciele
lexical analyars (coruts the stiagnof chonractinr
Gute tokens) Lb
LEX bol tselL a complla, the (EX Compiler
Laker the Vp & tearspoms the Jp ME %
pakke .
Te Fuvttion gf LEX
Lex Source
ae Lexicak lex YY’
rere > Comp}
weve 5] € conpita SES
exicad arerlyger.
Setten [ar Po
lex & anaieble W Lux
Help lex Progenwre obich G& fo
so the fit Slap. the Source ce
le name files
quege having the fi
Ex Compiler commonly
jy. oukpuk Os len W.c!
cl alll be Uded of
the lex law
Fives ae Vp to the iW
kno ab LEX b act
> Ale thak the Jp “lacyy-
Snpub to the C compiles hich qer tee Sp
fh He fom of ‘a-ouk! Mle. ard finally, the ofp
ple aad’ will take the Stream of Chounchean
and Geveale the totems as oukput -
LE hile_ fpr
A Lex program comic ot 2 past, aud &
Separated by ‘76 %' delimiters.
keewt: Declaration
ur
Translation wher
ht
—Declaration
Ie ean ya ees
He & Headerhiler ,
—Trantlation ovules
These rules Conristi of patter & action
— Aruviliasy pyocedssre
the aurilasy Section hols auxile ,
ured fo the actions aay punctionsXe pakkap
pee Waite @ LEX proqvem to Yeognige a
fecy Wow ls ven Aw Und fo -
cyatement
% 3
qe include
ws
Ch
ib |
cle|
paintt Lpantt (* Ts iw a keyword , Vitek) 5 %
[edt Eptrif. (7s ba rumba", Yyted) 5%
[a-zA-Z]+ Ipatt CZs & a Words Ybor) 2
*[\» LecHos<
LG [4 yriliosu procedure
Trt mail)
L
Prfatt (Wo enter the Shing”)s
yleOs
gj Y Unde hunctten
Pi Whitt a LEX Prapram te theklby the captel
Verde been the qven faput Shing.
at peels
At frelde < Sto- h>
“&
tte (Trorslsic
oo a+ evi Ape ( ZS! Yrtext)s 2
5nan
mataC )
Ss
prt (“ertix some Stung, Cott capihh urls to
bebieen\n")
YlexO) 5 ;
s me
Pe Whit a LEX proqenm be Ge the) count the
wo. of Vowels §- Consonant
voz :
dtirclide
ft \Wows0, Con=0%3
Wy
rote My A
Tews 5 sg tedecion WOK ‘eee
[aciou AE lou Jrowets %
[retovAbIou] — Reonets 3) Sohieats weoat
nh
fat matn( )
P ¢
Pret® (* Enter Some String 4 \n)s
YY lex()s. "pot Sing \n
print (* Number Of Vowselas Yad \n", Vow) s
prict® (* Nuraber F Contorawl = %ah\n", Con 5
4pie Waite a LEX progam fo Count Ube nuunke, of U
ieen,
tools Spves amd Chetactr ty oa iver halreetas
Stal eens
22
Y brelucte < Stio, h>
wnt Se-0, we=0, kez, CC=05
“%
Lt
TW] Edcrts ca== Yrleng 3f
[xe] 3serts S64 == V9 legs &
[A\ENe] + Buoctts Cotas Vy leng 5%
L% @
ft mand)
ee ‘
Print (« Enter “the . fnput = \n")s
YylexC D5 (pos injp to the leh)
print CThe number of Uner= %A\n", Lc);
pote" The number of Spaces = %el\n* Se)s
punt® (The number of Word = % alin’ usd);
prot} (tthe number op chatadeer = ZA CC);
g