2 Unit-J
(3) Insodtuction To Automata Thed\y.
(a Non- Determinstic Finite Automata (NDA)
(8) Deteministic Finite Automata C BFA)
+ Intrcctuction “Th Auwomata Teony?
+ Alphabet: t id a sya to reprerent a Language denoted wit
Aigma " By". — Chinite set)
&: B= Ao}, da,bh *
+ Going? ie the raquence of pyrrbols over Ye alphabet -
Cintinite et )
&: S =4{00, ot, lo, i, hows. of
S~ dab aa, ab, ba, bb-- x5 4 B+ Ka, bh
Gop eceS el aaa? ee
» danguage: It is depined OD she not of atnings accepted by
finite cutomata - /
Note: Reguiax Exprersions:
&: 0% = de, 00,000: }.
a® = fe, 0, 00,000, 0000 ---$
; oe f a « (61, wine 5 ;
~yer se see
ntiaae Coby = {0€, ab, tix, abab, Wensa, tai)
+ 9 ermydy set re ae 5 ‘
anon y
indude at = da, Aa, aaa-- |
Cot)* = for, 0!, O1olol-- = } e
Corts’ = LE, 0,1, 00,01, 10, 1-777 s
(AGS TWA cj ynin feb, ba, Bh aoar Ia Si = 4a€, cab, cabab, aababab : -+ b
by L= 4a files with aubastring abl
(orl 9 L{ aerting vith any me. oF coreeiqgtl
o's g a's and amding with a}
stloalas
i Finite Automatas
x Shudwal Ragmertation of TIS Svs
efefefeleL [ELT s | te
sae!
Automation Model
3 Fe fine awaraia a a ae
veod herd ard prile contrat:
Gnput Tope: Ho 0 bres tape having ‘,
each input aymelnot i placed in each
feo ‘ae ins Tape feade): H reads the cell ©
text to night a oe inpue nypebt oh a
, ’
%
Finite Control: It decides the rext one
top from the input tape.
# Jaq ed Aefinision of Auternata
Mathematically , the 4inite
re taper .
@: Finite set of SatOD
Bi: Finite net of symbols (alphabet
&: Tramsntion function
Goi Initial stale
f: Feo) sede
ixe stase Tramition Ragan: .
are state Aaansition — diagiar © ured to tepreent FA whe
-e ataieon ae reprerented by o 8 gramitiono are represent
ad by =e
&: 0) B= 40,1}
L= 40,0, 1,10, ot}
in Adder to accept the language the sate tamition
diagary > tepreneniad by:
2 440, sae
8
Br donth Fo + {Ao}
f=}
@ B=dorh * f
L=4{000, 111, tot, (00, Col, 10,01, E10}
Ge) Oo) @) o,1 2)"
@ 40, 1 Fa, Fay
B= do,1h
8:
gp 2 Ageh
F {4shNFA to DFA:
slob
3 DFA refers to detenministic
finlke automata te, a finite
cutomata Ww Adaid to he
dotormimtic tf cdheeponding
4d an fapul symbol thee tb
a aingle Yesuttant stote (only,
one taansition)-
Dit & a eet of 5 taples:
M= 48, 2,8, 4%, FS wee
Qe ik in a Mon-empy sinile
pek of
control + f
E= i a non-empty tine
oak of input oymbdo-
B= ik © a tranaitton -qunetion
thot takes 2 cuqurents,
A 2kode & an inp Sgral,
ib yekuano a ingle state
Qo & b&b the aarting stale,
ore <2 sho sialO in ®
PS Tues of Riglte Automata:
a) Determinstic finlke Automata - DPA
@ Non-Determinstic inte Automata — NFA
stakes in the inile
> NFA tefers to mon- determinstic
finite automata ie, a 4{nie
automata i maid to be ron
detorminntic if there are mde’
than one povible -ramition from
ore sate on the same input
symeoo!:
lt w & pa of 5 tuples:
M=4@,Z 8, qo, FY where
Q= ik BW a Non -empy toile set
of states in tHe sinite corbol,
ik in a non-emply. tinile
ack of input rymbols
&= ik ® a tranottion Wurction
Ahok takes & state from
inpul signal §
a nubs of G.
Jez Ub wo ne atorting Mode,
ore of tre axcde 108.
Sa an
rekunnegro. non-empty set Fe ib th the # non. g,
ah yinlle states dy q
alates from the
Feit bo
ob finite states dy accor
prakes fom RH cat belongs
0, Q.
to 8
> DEA cannot une empty String | NFA carn une emply
€) Ramition. transition,
> DFA can be understood ap |-5 NFA can be
ore machine multiple Atle 2
sting at the pame
mae "i
St ib equ, dificult ' 4
4 a Ae tt in earter to comtw
Conntaurck
3 AU DFA oe NFA -) Nok all NFA’ are
-> &GxE 4g 3 8: @x(e0ej ae
5 DPA teauires moe space. ? on ate
Examples of DEA? : a
——————
G) To derign a tinike automata , F = 40,1} ‘
which ptarto wilh 4 & onde wilh me hon
107 100, NO, \N09, 1010, 1110, 1000+ F + 1.
@ ear, qa}
z= {0,14
=
aF= 4rae Design finite cuttomata == do, 1} accepto even no. of
@
zeroon A RED KO, Of crm.
©0, W, C000, ILI, COt!, 1190, L001, O10, O101, 1010
9= {92,5 A, 434
T= doh
%o = I
=o
oe ae a tinile automata wilh z= Xo, th pera only
tre
ee bk O Exe
ze eh
% > Yo Ys
=
) Comtruuct a finite automata *& F-4o,I) f% 3 connecutie
O94, 0001, 1000, \CC0!,
4
a ee °
ale ey AAs) pe bro | \
Pants
@ = 44e.4» 43,43 % 1 \
rx dor ry
%. 7 fe
Y= 4o 1 FE %3 :Alor ju
# deorminctic File Adoroaas
€gu): Comtauct BFA oen on alphatbety =={o,ih
larquoge = atevits with 200" 4
9219, dah
es z= do,15
% = Vo €Q
F> WER
nel
(2) Comtauct DPA over an cdphabet == {a,b
Yorguage sow wih b a endo with: a-
Q~ {a0 A, 991935
r= for}
qe = Go 9
Fy EQ@ Combuct DFA RA an alphabet Z- {0,15 fy L={oo;10, 11,
ols.
u
“OF O$_@GH® awe
= 19, WW, MD Bo
z= {o,1}
42° %
WF = Ia
{ Pe
(8) Comtrick DPA f& E=day, LAGa,an,aaa-.-}
R
=aaloalay :
= NFA => ton Determinstic finite Aemeter 7 wy
ta i ; pevhamiive text t
g: 2+ fo,1f Pearls daacking
L= aning end wlth one: 4
FS thin language ovey = construct NFA §
WAVO, OOl, 0, (Ol eee 5
State aoe atte
NEA: ag es
an @ > =: lout
Fa, =% €8 le
Pe Rig
@ conmmuck NEA {By the language aoting sans
& ord wif} -b-
NEA =(3) Conatauct NFA f& Are atring BP 9 length =-fo,1f
w= 400,10, 01, 11}
& on Gee ©) 69> 4%, VW}
Re © ©) z=4o,1s
Q =" EW
€= 9a Gg
NOTE
> Bey NEA b a DFA ie, We CON comet NFA's #0 DFAS
became NFA machines dasa not exint in real tit ite
pepo tw, thee one eany to comic 9 it will be
wed in back tacking, oxhountite pooch techniques. but
eveuy DFA to nok oO NFA- {
% Cryesion of NFA tQ DEA:
“a
& convert the Ruowing NFP
Oe. 8 = K40, 25
w a) 3 Q—+@) "Zoo, by
Yo = So
Fem
into BRAYNeco -vansttion table 48) BFA‘
danguage : String eis ed ending with ab -
tre NFA DPA occept> the language dhe.
endo, with ab: : + fg
ci ) as tes OF @
g= {90,495
z= Loh 7) Sp. S07 Rca rNeo xansition table fh DPA:
ot 1 (ofry*olofiyi0
(fy
° \ Qo,
DEA: aS CS
tangange : The NEA dy DRA acceptin the tanguage with
in any mo. of Os & 4'S
tw)
@= {0,1,2,3}
= =4a, by
ae = {05
F=fons
&.
‘i
70 \ Ana | Zh. 5
{ia} } dias dosh
adray| 425
Corguage 4° aa*(bay 3 S= 4a, a0b,ab, a0.) -- i
Stun 9 seviting eith oOoS|o0 [oul :
« Epsilon © ~ neh:
NEA witty ermpty ip (ataing) aymbol
0 1
* O5H56
Ce 5: input oyrnbolo
m= 4g, 2,8, %,F } 3
Sox s ufey 3 29
Covet the Busshg epsilon, neh +o, NFA
, oa: és Ceti j
W Qs , of } a7 4
© | Z (ite tnaee
qn
—€ le
4 ~92- >)the #AItion function S' 4& NFA ia:
ais aN es ‘
=e fa0.41.49) 41%}
% \ fash don ae)
82%, VW 142
4% “| Lay} far} arom
90! Ww
Fp 1042 ,WUB
We fo.) [Lon ar}
*Laaidrs iaeande) | {ar.q0)
{ain} | Mars {4.92}
* 42 WM '
\ 0,1
Qo, Ve V2
} 8 fear Gare iae- CoH 92, (09)
2 fo, 7 8: al
= fo, \5
Qe: He O
eq > 18,3
ioes ° “fi ¢ 0,1
d ‘Seas me!
€ - closure (A) — 4n,8,D}
€-closwe (8) — 48,D4
E-closwe Ce) - 4c}
€- close (2) oy
x
ae ((pe
— has
es
& Be
—.
CO ee
c—c—?¢
*
EC eo ee
The tnarsition Tundion =& NPA DSEe is aud
SA \{n.a,cdh {of
‘ ee a 8: ALH, B,C, df
Z doth
{oh {4,D} Qo: A
Fs D, Ned, BD, cD
Dd \ {dy {vj
> NPA
":
25% sje) a\aaoy
s4ps0o} {anacado} spe) gs h, ABCD, D, MBCDS, DB,
x to} any ae a e Lol
s4faccpey | frac} soe5 a A
e: {necd, Dy AncDd, DB,
‘py de, db)
x{oay {pc}ZT Aah} whore [w]e
2) Constauct DFA over ‘
W
DY Grn f= 4a,by Us| med =
Saing: fle 9 =O , |W 2 =o
y
language: fan, ab, ba, bb, aaca/bbbb ,abab |,
\wlpp 320% faa, albb, bbb, bab,
OS OHO trates
(A i
nlmod2=0 =) Ob { yy
? -
Ob :
Oe
+;
*S) covinick “BPA Ghat ooels 6
bs both we een.
> GosS product method |
ab UW a
Oe fas we | |
CO e cee pS? nal
a »
OOF 1 « see wen
b a : [4
GJ.) YD 1a
i he |
oO |
7
on» Unita *
y Finite Automata ond Regwar Grammar
Requiox Explesions: These ue mathensatical expressions descnhing a
language which » accepted by finite automata and the
language & called an regula, language -
lek & he 0n alphabet then tre RE over
td — a vequiar expresaion that desenbes an empty Set
5 defined as folly:
@ E -wabo a RE that descnbeo enul stning sels
i) A- ib a RE Oler & than thet describes tre sat witha.
@ 4 a © ae 2 langiges ae
Gi
(iy let 'A' and 's" te ae tre RE
described as:
shts © equivalent to GUL
+ NS bb equitalent to Lidle CG) le
en® io equivalent to ut
&:a) wite tre RE fd the tang accepbing all combinations
of o's over tre ==Lak
w= 4E, 4, 00,000, aaaa.... &
Re = aX
@ waite te RE fd the lang accepting strings any —™: of
a's followed by ony ro. of Bs followed by any 0, of
CS Over the z=4a,b,ch
Ww= £E, abc, oabbce , aabc, --- J
Re = fay? Coy we
unite a ER the lang accepting set of al stvrgo
which containo “he dd chuvacter hom the ight ond
Of Fhe Shur % aku @! rey E=AI DY
L =4aanbab, apa... + Re = fatby’ ala rbyatb)ep eye tree Rr the lang, accepting Saws wilh g erdy |
Mie Gi, ARG
fe)
W = dab, aab, abb
pe - A (atby* 6
tro nare of = the state arts with
RE fh
sna letter «
4he
a follows wilh
©) waite
capital tether
ee = [A-z3[o-2]"
sdoogunge Assodated wth Mailer peso:
DTre language which
regular languoge-
te the RE, ne(ea)* tren what» tre lang of thin RE:
w- £€, ba, baba, babala - a:
of substury of (Ba) +
% spgetbedl ley ties GS Ce
&. 0
>
Lla) = any no.
RE = arta
we {aa,aba, abba... \
gaing starting wih o Fllowed hy any ro. F
bls ard ending with a.
®
2
=
c(Re) =
Po - any ro, of IS ending with o
©
~ sinicg Starting wih o Q enditg with any
@) oo*
of o's
*
© (tot) » (10 (0.c0,000---))
oS
w= AE, 100, loo0, 10000, -
L = Alning Startting with 1 fotlowod by oY ro of
os.of — Finite Awotncda
check whether these 2 fats we equidlert or Mot +
= Gu
(34)
(Hn) (2,2')
(23) | 6) 6,8)
fivie
Sep: tre above «2 Feal automata’s are equivalent in the
ready arred transition ‘able, wo we geting the paU2s of
states: os. (zF, 1F) 7 WWF, NF)
Slep-2: Suppose if wo gek t2 paias ao combination of
(Fine) cB) (NF, F) cB) CHE) BILEL) @ GF, me) ete
we cot equivalent
2 “$$ Omm &§
ooh ecm ard
si
F(-99)|( 2,43) [o.95) “to the pain (qa 43) 9
(43) Car.93y | tas ay) A camanodion of
QAP) tren trese 2
a
@is4y) 2,94) Vana) Bis ©. ridcniuet308194) (864)
(@>,8¢) | (8s)
(@,Q) (82,3) | (Gs, ¢)
(82 ,@3) (@>, @)\_ C@@x)
(Q2,Q5)
(81, Qu)
sofas
oe oe
A Tre abowe 2FAS we
equuivctlent
let BST ae regular expressiay> then
@) (Rts) +7 = R+ (S47)
© Ra R=aK
@ Rep = +R =R
HW) R= OR = > (empty set)
O Res =S4R
@Re = eR= QR
@ R(ST) = @)T
@) &ls4) = es + RT
( B+T)R = SRR
() o* = Le
ay at e* are (ey
(2) RR = RR =R*
i +
(13) R+s)* = (Ge st) = (Rss)
+
CM} (&)* = (RR 3) -Us)
.ee. oF RES! en
ye Equivatans
a converting of
® comating of FA to RE
RE to FA
¢ oonyertiog RE fo = NEA,
& hae) = S then FA
r= € C accepting ompty string )
ompky ne
nok accepting stning fees
wed a sving
wie Ae, Reo) then eA
OD (AP) (Cr s
628.
Wen 5 =Ap-8 QHDailol? 4
convert
MwA
tho flousing %e into PA a alo conchud
4
x
(ab VU aba) a *) (ab + aba) a
i)
a
w= da, Aba, aaa ---- 4
CanbaetOn NGA :
e-dosine of (46) 2440, W. 43, %.4a}
i) > 44 Aas
(2) 9 {92,93,4.,44,49 4
() ‘wy aa) =f
@) » Jan) (4) = 40, 9 649 93-44,
COR e Gti gy
(48) 2446» 92143449, 40}
Gy) » {tJ |
Se (a) aeyCiregce ee
anes AM oe Pataca? —ip
oo Vo
QW Sem
weer ae ee.
4% —8— 4s —4s er a
= Qe ais
& a & 2 6 &
G —C —Gy — Yr Te Dacian sa
a —4s
me US
ee Owe ae. Ao ES Tse
% — ®— W—WW Vien ee ee?
& anes ep & &
W UH Ue — Ys wy ayo -$
LT So ee
ho eg Cie» &
I—%-o—-b eee ee
; Wea 4 < Quy Ar}
> ome wee
%—DdD —. 4 — ay G% —D —$ ty
me
—% eeee oO e e € is PT) tee ae
Ghetto G-w- o+-
:
Bee ie.
att eesti te eta
a eae Cx, ' ef chieg®
= 4- WT faorA, -q— — >
a4 9a, Iy os
aa : 3
eo Chop fb 9
woes ote — Eb
alte 4s
a an — Ou
ty 7 +
epic? es x re
et €
an—9 —P— > ayy == $
a
444 49 cu}
fs any
4, ivf Jee a. —
3@ {au 19aqunry >
fay, 4a.qu} 5 dass $ §
ri 4394 46%
fas ac} om 2
lar aeqaqureqa tay fie 9s ananaes os :
%3 400
sq on Fa Aa Io} das Ge qu j ‘ me Neca”
faz Ge anany | Lash Hinas wsancetot}
\ as} ay Jauqrasew 9699)
{a PI A446 qa f 495 444 J i $
| am. Is Fo + 45% te P4994 V649 44}
v
diy
- ol (o-1)*
‘c3)
Sa i cuca €-nFA +t DFA:
a 0) Co,
0 2? ©
Bee f(y), ~ oe aye A
(a) = {aaa}
(a2) = Age}
é ° x - a
Yo
ao) di) Sl) 540 =
hy —> & ¢ go) a)
%» — 92 —42 Y —3 ©
et oe
son => se!) —a) — 4)
% —9, —@a)c RP —W Ean
iron. e !
Slo) -—Q2 — 4.-@) slo -42 — & -@+ tomerting” FA to_8E'
a
eae
Fa converting PA to RE ve we Adens Thederm,
¥
xx,
He Dandents “ThedeM) :
tet PA Q be, 2 RE over the input alphabet & » The
RE ty giten 9 R= Q4RP | which hoo a wnique
solution R= QP*- j
a Conversion KAM |
G) tee g, ve on intial state.
@ ree WE AQidaqu-.. gn we no. & states. The tina],
Stade rau be ROR «Qs Where YAN.
@ tek ty be qj sansitlon fom qi two qy Hale.
W) Coloulate 43 = % =%M+tE FY R=4%; G=& P=0
Rage 9 Yo = Eo%
®» q- 14 + 19, to* +14,
R= 4, @ = Io
) ps)
R= gp =) ag =
“ lotr? 2ae
® > w= Of +O +H1Q0 * oot 4 ost 142
OM 4 0g + 142
= oF + (ott) 4
Rego, gzoti* 'P=o+)
R
"1
fee tT Ot)
= of ort).
tee)
fh the andorra he RE o Cont
sos
pumpin leoma RA Rguer lonauate?
sit lo Wed to pole that a nguage nob regulon: -
> Buk cannot be ured to do thot a language io Megilar
SIE IA a requiow language they A has a pumpirg
length spl puch) that . any ating ‘Ss! coher isi zp may be
diided ito 9 parts s=ay2 oud that the fuow'ng
conditions must bo tue:
a) aye ¢ A fe avery 120
®% wl>o
@ Wy) Sz dod = ol = & © equbr
wxt=2 >) S= alam 0 yore
“KRW rok a nequlay Aanguoge,lomma— prole
0 ae pumpryy tes
{wil ye (0, yt t ip rot a requlay, lang
0 |
ii: fio = oo Y= did) \
mee Yq al ale (
J
tat p27
= codecs (o000000 |
4 nw mab 2
if i
ceayla + (8) D1 of}
wt 10 9 B= SF MJol OF = Foolol = S107
€ sequlan,
“The gien language in not a regular language
¥ Qpet hee Grammar (CAG) |
> Tre context fee gamma, G v Acted od 4 tuples:
S| S151, 28)
l
where V5 variable 6) ron fe Cpa git )
a care letters
T=) terminals Gepesented with tower care itis )
P=) productions
$3 sta symbo) (1% aymbd fo LHS)
3
Wee ae too types. of denivations: -
) WY most denituation (Und)
® Right most donivation (RMD)RmD ‘
Sat
The preduction i of the iM 3 The production is of the fy
thei ’
A—f\a then ik Wb lied od Aaa 4 n ik is Called 4
night Urea, fm
lek Unecn, fern
62 can derive the Shing by
Yepacing left side symbol ?-e,
the vorable can be placed
with ot tonmingl 1 7
cal
a Dervation :
35k © a sequence of production Aviles which v was t
get the inpuk staring T° srese — production.
> ie we of 2 +yped
@ le most Porivation (umd)
; ) Right frost Derivation ( RMD)
3 In UMD, the input ‘© acanred g replaced wih te
Production ule Rom lebt to aignt
3 In RMD, tre inp © manned a repared vith he
Production nw omy night to (ott -
: 0) €= €4+€
ee eg heh o> Artbigilous ramon
€ = alb
Ve = a-b4+a
Fee
ApaY und 9 ND from the obre producqT -ab,
a ©
(emd)
Gaz EXE
(und)
E— E-€
unp> =
=s a-F
OE a Cer Get
‘D, a-b+e
uM. gq —b+o
AGE
o@)8
agbe
ab® Gs-c)
abSb 28 abbov
Eg(s)1 Dose tre Staring oolol ®
the context fee grammar given by:
S— A168
Ve
A + of}le Me : SAB
Suey dae
® +> o6]se}e Bese
j
>) ae end
=> ALB <=> AB
os CAABR BOR A 08
soy ond
OOALB a eV ae
Rony ;
ZS oe 18 SON A 404
UR
=>) 9048) Lady Alol
um, Shh
= ‘00108 x fey oto}
; an z
Ss 004046 SS SCOAlo}
um 4d a Ane
SS ooloje a COE lo}
ud re *
= ooio) rs oro
=> N- qromnax may _ produce more than ore Kf mos
anivatican oy mde than ore night TWost daxivation Then
Beat Cealucl GS GbR Ne Gaerne
Posse Tree.
.
on) to called
* Toxivatton . hee: ©v
> Wwe gqartical legit of the dlerivatt
a denvation Mée &’ parse se-
oulouloy
—_
> The pase “nee oO be RCO oo
uy Make a “yoot Mode a ptait symried
(ity Intonidy P02 Ge vorvinblwo 4 NON. varlables «Oe mnt ire
diy Anda leaf nodes are tonminals
fq uy Constauck = parse tree fc the following
e— exe / exe fid
2 ip > id+ id xid
€ ——— root
a CA)
E 4 E- intend
oF aree a Preeseere Geass ce O\ Shetagbecause
the highest operat precedence © fox thew the
Soot node:
Clery os GSS ee Ret grammar v9
S— bSaS ambiquous 4 the lop
me aly ‘ababmp
ae S = aShs
Se
imp a ee
= > abSas bS Bz aebS |
wate = aboShs
=> abeasbsS ie cS
und => aha €bs
=) abaebS is
ay) = ababe
= > abab& eo
und = abab
= > abab
‘a we Be grammar jo ambiguous gramme’:
% Chomsky texarchy +
CEL PDA
FSMIFA
TYPES < Wed < Type) < Type 0
RG > Requioy Gramma
Fem =) Finike: Stato Mochire [FA > Finite’ Autoncta
CEG > Conkaxt Free Grammar
CAL =) context Free lang | PDA » push down adore
CES % Context Sersitive Gramma,
LBA 9 Uner Bounded Automata.« Unie « °
ad
& Intacctuction) *
25 Aish down adomata w» mde pouorful thon FA
> In FA tree ib a fienited memsy but in PDA &
ho me mendiy because & Kas tre Sa dota
Suckot b ued to Ade the inputs -
PDA = FSM + Slack FSIN-Finido State ffachicg
wilh
In PDR woruse context fiez granynar rorre lane regular
qrarnm a in PA
5A stack Bb A Woy
eth tro tOp. OF =the stack:
to waarge the erento one
» he 2 opaations son the ..Stack are! PusH a PoP.
PUSH = ew element io adldecl on dep of the tack
PoP -) the Peete te vice fod 8 lead
% Model of PDA:~ PPA has 4 comporerilo!
0) toput cell
Wy read] wotite head
Gd ite tontig) unit
AY push & pop
9 Fe wathemotical def of PDA:
= COSI R) teles re)
r
S > dinkte sot of sates
Z> finkke set of inpuk Symbols
TE) TS Yoke & Non-empy set-of stack Symbdls.
S > vansition junction which is det” an
8 @xtzve} xy gx a*
gr 2 arr
% >» initial state €9
Zo D Stat symigol of the stack €
F> fiool tote €Q
os\oupy
Fy Design a PDA fdr a tang t= 4 ]n2i}
5 Vp s8Ng = cont
©, 6/025 ' “Wy OJoa
Se & 2 S
+, 000% €Refe< ee Metrerti]e SHG = OocoNI Ne
&(90,E, 2) = S(Fe 20)
&(4, ©, ©) = & (%, 02%)
&(q0,0,0) = § (41 0070)
Slqq, 0,032 §[41 0002)
8p,20) = § (411 000024)
gla, = § 2, 000%)
§(42, 1,€) = 82,0020)
sq2,1,€) 2 §(%, 02.)
§(%, 1, €) = SC 4,2)
$ (42, &,€) = S(qs,€)
Ip stiog = conse
S(4o, €, 2) = §(%, 2)
s(Qp, 0,0) = § (4), O20)
&(q1, 0,0) =
&(%, 1, €) = §(%) 0%)
&(%,1,€) = § (92, %)
blp,e,€) = S99 ©
eR
°, o[o% Q (E
€,20)% t pee €, €] to 9)
fe) @) 1,9/020 ©
§ (4, 0020)™Inrit =~
Ro): Design a PA fH a lang {oi
>) ‘p String =) OO\l
S$, €, 25) = § (40520)
S(9o 0,0) = § (qr, 02)
S[4:,0,0) = §(q), coz) ;
Scie ae