0% found this document useful (0 votes)
829 views46 pages

Unit-1 - 2 - 3 Notes

The document provides an introduction to automata theory, specifically focusing on Non-Deterministic Finite Automata (NFA) and Deterministic Finite Automata (DFA). It discusses the definitions, components, and transition functions of these automata, along with examples of constructing finite automata for specific languages. Additionally, it touches on regular expressions and their relationship with finite automata in describing accepted languages.

Uploaded by

srinujpt
Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content, claim it here.
Available Formats
Download as PDF or read online on Scribd
0% found this document useful (0 votes)
829 views46 pages

Unit-1 - 2 - 3 Notes

The document provides an introduction to automata theory, specifically focusing on Non-Deterministic Finite Automata (NFA) and Deterministic Finite Automata (DFA). It discusses the definitions, components, and transition functions of these automata, along with examples of constructing finite automata for specific languages. Additionally, it touches on regular expressions and their relationship with finite automata in describing accepted languages.

Uploaded by

srinujpt
Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content, claim it here.
Available Formats
Download as PDF or read online on Scribd
You are on page 1/ 46
2 Unit-J (3) Insodtuction To Automata Thed\y. (a Non- Determinstic Finite Automata (NDA) (8) Deteministic Finite Automata C BFA) + Intrcctuction “Th Auwomata Teony? + Alphabet: t id a sya to reprerent a Language denoted wit Aigma " By". — Chinite set) &: B= Ao}, da,bh * + Going? ie the raquence of pyrrbols over Ye alphabet - Cintinite et ) &: S =4{00, ot, lo, i, hows. of S~ dab aa, ab, ba, bb-- x5 4 B+ Ka, bh Gop eceS el aaa? ee » danguage: It is depined OD she not of atnings accepted by finite cutomata - / Note: Reguiax Exprersions: &: 0% = de, 00,000: }. a® = fe, 0, 00,000, 0000 ---$ ; oe f a « (61, wine 5 ; ~yer se see ntiaae Coby = {0€, ab, tix, abab, Wensa, tai) + 9 ermydy set re ae 5 ‘ anon y indude at = da, Aa, aaa-- | Cot)* = for, 0!, O1olol-- = } e Corts’ = LE, 0,1, 00,01, 10, 1-777 s (AGS TWA cj ynin feb, ba, Bh aoar I a Si = 4a€, cab, cabab, aababab : -+ b by L= 4a files with aubastring abl (orl 9 L{ aerting vith any me. oF coreeiqgtl o's g a's and amding with a} stloalas i Finite Automatas x Shudwal Ragmertation of TIS Svs efefefeleL [ELT s | te sae! Automation Model 3 Fe fine awaraia a a ae veod herd ard prile contrat: Gnput Tope: Ho 0 bres tape having ‘, each input aymelnot i placed in each feo ‘ae ins Tape feade): H reads the cell © text to night a oe inpue nypebt oh a , ’ % Finite Control: It decides the rext one top from the input tape. # Jaq ed Aefinision of Auternata Mathematically , the 4inite re taper . @: Finite set of SatOD Bi: Finite net of symbols (alphabet &: Tramsntion function Goi Initial stale f: Feo) sede i xe stase Tramition Ragan: . are state Aaansition — diagiar © ured to tepreent FA whe -e ataieon ae reprerented by o 8 gramitiono are represent ad by =e &: 0) B= 40,1} L= 40,0, 1,10, ot} in Adder to accept the language the sate tamition diagary > tepreneniad by: 2 440, sae 8 Br donth Fo + {Ao} f=} @ B=dorh * f L=4{000, 111, tot, (00, Col, 10,01, E10} Ge) Oo) @) o,1 2)" @ 40, 1 Fa, Fay B= do,1h 8: gp 2 Ageh F {4sh NFA to DFA: slob 3 DFA refers to detenministic finlke automata te, a finite cutomata Ww Adaid to he dotormimtic tf cdheeponding 4d an fapul symbol thee tb a aingle Yesuttant stote (only, one taansition)- Dit & a eet of 5 taples: M= 48, 2,8, 4%, FS wee Qe ik in a Mon-empy sinile pek of control + f E= i a non-empty tine oak of input oymbdo- B= ik © a tranaitton -qunetion thot takes 2 cuqurents, A 2kode & an inp Sgral, ib yekuano a ingle state Qo & b&b the aarting stale, ore <2 sho sialO in ® PS Tues of Riglte Automata: a) Determinstic finlke Automata - DPA @ Non-Determinstic inte Automata — NFA stakes in the inile > NFA tefers to mon- determinstic finite automata ie, a 4{nie automata i maid to be ron detorminntic if there are mde’ than one povible -ramition from ore sate on the same input symeoo!: lt w & pa of 5 tuples: M=4@,Z 8, qo, FY where Q= ik BW a Non -empy toile set of states in tHe sinite corbol, ik in a non-emply. tinile ack of input rymbols &= ik ® a tranottion Wurction Ahok takes & state from inpul signal § a nubs of G. Jez Ub wo ne atorting Mode, ore of tre axcde 108. Sa an rekunne gro. non-empty set Fe ib th the # non. g, ah yinlle states dy q alates from the Feit bo ob finite states dy accor prakes fom RH cat belongs 0, Q. to 8 > DEA cannot une empty String | NFA carn une emply €) Ramition. transition, > DFA can be understood ap |-5 NFA can be ore machine multiple Atle 2 sting at the pame mae "i St ib equ, dificult ' 4 4 a Ae tt in earter to comtw Conntaurck 3 AU DFA oe NFA -) Nok all NFA’ are -> &GxE 4g 3 8: @x(e0ej ae 5 DPA teauires moe space. ? on ate Examples of DEA? : a —————— G) To derign a tinike automata , F = 40,1} ‘ which ptarto wilh 4 & onde wilh me hon 107 100, NO, \N09, 1010, 1110, 1000+ F + 1. @ ear, qa} z= {0,14 = aF= 4 rae Design finite cuttomata == do, 1} accepto even no. of @ zeroon A RED KO, Of crm. ©0, W, C000, ILI, COt!, 1190, L001, O10, O101, 1010 9= {92,5 A, 434 T= doh %o = I =o oe ae a tinile automata wilh z= Xo, th pera only tre ee bk O Exe ze eh % > Yo Ys = ) Comtruuct a finite automata *& F-4o,I) f% 3 connecutie O94, 0001, 1000, \CC0!, 4 a ee ° ale ey AAs) pe bro | \ Pants @ = 44e.4» 43,43 % 1 \ rx dor ry %. 7 fe Y= 4o 1 FE %3 : Alor ju # deorminctic File Adoroaas €gu): Comtauct BFA oen on alphatbety =={o,ih larquoge = atevits with 200" 4 9219, dah es z= do,15 % = Vo €Q F> WER nel (2) Comtauct DPA over an cdphabet == {a,b Yorguage sow wih b a endo with: a- Q~ {a0 A, 991935 r= for} qe = Go 9 Fy EQ @ Combuct DFA RA an alphabet Z- {0,15 fy L={oo;10, 11, ols. u “OF O$_@GH® awe = 19, WW, MD Bo z= {o,1} 42° % WF = Ia { Pe (8) Comtrick DPA f& E=day, LAGa,an,aaa-.-} R =a aloalay : = NFA => ton Determinstic finite Aemeter 7 wy ta i ; pevhamiive text t g: 2+ fo,1f Pearls daacking L= aning end wlth one: 4 FS thin language ovey = construct NFA § WAVO, OOl, 0, (Ol eee 5 State aoe atte NEA: ag es an @ > =: lout Fa, =% €8 le Pe Rig @ conmmuck NEA {By the language aoting sans & ord wif} -b- NEA = (3) Conatauct NFA f& Are atring BP 9 length =-fo,1f w= 400,10, 01, 11} & on Gee ©) 69> 4%, VW} Re © ©) z=4o,1s Q =" EW €= 9a Gg NOTE > Bey NEA b a DFA ie, We CON comet NFA's #0 DFAS became NFA machines dasa not exint in real tit ite pepo tw, thee one eany to comic 9 it will be wed in back tacking, oxhountite pooch techniques. but eveuy DFA to nok oO NFA- { % Cryesion of NFA tQ DEA: “a & convert the Ruowing NFP Oe. 8 = K40, 25 w a) 3 Q—+@) "Zoo, by Yo = So Fem into BRAY Neco -vansttion table 48) BFA‘ danguage : String eis ed ending with ab - tre NFA DPA occept> the language dhe. endo, with ab: : + fg ci ) as tes OF @ g= {90,495 z= Loh 7) Sp. S07 Rca r Neo xansition table fh DPA: ot 1 (ofry*olofiyi0 (fy ° \ Qo, DEA: aS CS tangange : The NEA dy DRA acceptin the tanguage with in any mo. of Os & 4'S tw) @= {0,1,2,3} = =4a, by ae = {05 F=fons &. ‘i 70 \ Ana | Zh. 5 {ia} } dias dosh adray| 425 Corguage 4° aa*(bay 3 S= 4a, a0b,ab, a0.) -- i Stun 9 seviting eith oO oS|o0 [oul : « Epsilon © ~ neh: NEA witty ermpty ip (ataing) aymbol 0 1 * O5H56 Ce 5: input oyrnbolo m= 4g, 2,8, %,F } 3 Sox s ufey 3 29 Covet the Busshg epsilon, neh +o, NFA , oa: és Ceti j W Qs , of } a7 4 © | Z (ite tnaee qn —€ le 4 ~92- >) the #AItion function S' 4& NFA ia: ais aN es ‘ =e fa0.41.49) 41%} % \ fash don ae) 82%, VW 142 4% “| Lay} far} arom 90! Ww Fp 1042 ,WUB We fo.) [Lon ar} *Laaidrs iaeande) | {ar.q0) {ain} | Mars {4.92} * 42 WM ' \ 0,1 Qo, Ve V2 } 8 fear Gare iae- CoH 92, (09) 2 fo, 7 8: al = fo, \5 Qe: He O eq > 18,3 i oes ° “fi ¢ 0,1 d ‘Seas me! € - closure (A) — 4n,8,D} €-closwe (8) — 48,D4 E-closwe Ce) - 4c} €- close (2) oy x ae ((pe — has es & Be —. CO ee c—c—?¢ * EC eo ee The tnarsition Tundion =& NPA DS Ee is aud SA \{n.a,cdh {of ‘ ee a 8: ALH, B,C, df Z doth {oh {4,D} Qo: A Fs D, Ned, BD, cD Dd \ {dy {vj > NPA ": 25% sje) a\aaoy s4ps0o} {anacado} spe) gs h, ABCD, D, MBCDS, DB, x to} any ae a e Lol s4faccpey | frac} soe5 a A e: {necd, Dy AncDd, DB, ‘py de, db) x{oay {pc} ZT Aah} whore [w]e 2) Constauct DFA over ‘ W DY Grn f= 4a,by Us| med = Saing: fle 9 =O , |W 2 =o y language: fan, ab, ba, bb, aaca/bbbb ,abab |, \wlpp 320% faa, albb, bbb, bab, OS OHO trates (A i nlmod2=0 =) Ob { yy ? - Ob : Oe +; *S) covinick “BPA Ghat ooels 6 bs both we een. > GosS product method | ab UW a Oe fas we | | CO e cee pS? nal a » OOF 1 « see wen b a : [4 GJ.) YD 1a i he | oO | 7 on » Unita * y Finite Automata ond Regwar Grammar Requiox Explesions: These ue mathensatical expressions descnhing a language which » accepted by finite automata and the language & called an regula, language - lek & he 0n alphabet then tre RE over td — a vequiar expresaion that desenbes an empty Set 5 defined as folly: @ E -wabo a RE that descnbeo enul stning sels i) A- ib a RE Oler & than thet describes tre sat witha. @ 4 a © ae 2 langiges ae Gi (iy let 'A' and 's" te ae tre RE described as: shts © equivalent to GUL + NS bb equitalent to Lidle CG) le en® io equivalent to ut &:a) wite tre RE fd the tang accepbing all combinations of o's over tre ==Lak w= 4E, 4, 00,000, aaaa.... & Re = aX @ waite te RE fd the lang accepting strings any —™: of a's followed by ony ro. of Bs followed by any 0, of CS Over the z=4a,b,ch Ww= £E, abc, oabbce , aabc, --- J Re = fay? Coy we unite a ER the lang accepting set of al stvrgo which containo “he dd chuvacter hom the ight ond Of Fhe Shur % aku @! rey E=AI DY L =4aanbab, apa... + Re = fatby’ ala rbyatb) ep eye tree Rr the lang, accepting Saws wilh g erdy | Mie Gi, ARG fe) W = dab, aab, abb pe - A (atby* 6 tro nare of = the state arts with RE fh sna letter « 4he a follows wilh ©) waite capital tether ee = [A-z3[o-2]" sdoogunge Assodated wth Mailer peso: DTre language which regular languoge- te the RE, ne(ea)* tren what» tre lang of thin RE: w- £€, ba, baba, babala - a: of substury of (Ba) + % spgetbedl ley ties GS Ce &. 0 > Lla) = any no. RE = arta we {aa,aba, abba... \ gaing starting wih o Fllowed hy any ro. F bls ard ending with a. ® 2 = c(Re) = Po - any ro, of IS ending with o © ~ sinicg Starting wih o Q enditg with any @) oo* of o's * © (tot) » (10 (0.c0,000---)) oS w= AE, 100, loo0, 10000, - L = Alning Startting with 1 fotlowod by oY ro of os. of — Finite Awotncda check whether these 2 fats we equidlert or Mot + = Gu (34) (Hn) (2,2') (23) | 6) 6,8) fivie Sep: tre above «2 Feal automata’s are equivalent in the ready arred transition ‘able, wo we geting the paU2s of states: os. (zF, 1F) 7 WWF, NF) Slep-2: Suppose if wo gek t2 paias ao combination of (Fine) cB) (NF, F) cB) CHE) BILEL) @ GF, me) ete we cot equivalent 2 “$$ Omm &§ ooh ecm ard si F(-99)|( 2,43) [o.95) “to the pain (qa 43) 9 (43) Car.93y | tas ay) A camanodion of QAP) tren trese 2 a @is4y) 2,94) Vana) Bis ©. ridcniuet 308194) (864) (@>,8¢) | (8s) (@,Q) (82,3) | (Gs, ¢) (82 ,@3) (@>, @)\_ C@@x) (Q2,Q5) (81, Qu) sofas oe oe A Tre abowe 2FAS we equuivctlent let BST ae regular expressiay> then @) (Rts) +7 = R+ (S47) © Ra R=aK @ Rep = +R =R HW) R= OR = > (empty set) O Res =S4R @Re = eR= QR @ R(ST) = @)T @) &ls4) = es + RT ( B+T)R = SRR () o* = Le ay at e* are (ey (2) RR = RR =R* i + (13) R+s)* = (Ge st) = (Rss) + CM} (&)* = (RR 3) -Us) . ee. oF RES! en ye Equivatans a converting of ® comating of FA to RE RE to FA ¢ oonyertiog RE fo = NEA, & hae) = S then FA r= € C accepting ompty string ) ompky ne nok accepting stning fees wed a sving wie Ae, Reo) then eA OD (AP) (Cr s 628. Wen 5 =Ap-8 QHD ailol? 4 convert MwA tho flousing %e into PA a alo conchud 4 x (ab VU aba) a *) (ab + aba) a i) a w= da, Aba, aaa ---- 4 CanbaetOn NGA : e-dosine of (46) 2440, W. 43, %.4a} i) > 44 Aas (2) 9 {92,93,4.,44,49 4 () ‘wy aa) =f @) » Jan) (4) = 40, 9 649 93-44, COR e Gti gy (48) 2446» 92143449, 40} Gy) » {tJ | Se (a) aey Ciregce ee anes AM oe Pataca? —ip oo Vo QW Sem weer ae ee. 4% —8— 4s —4s er a = Qe ais & a & 2 6 & G —C —Gy — Yr Te Dacian sa a —4s me US ee Owe ae. Ao ES Tse % — ®— W—WW Vien ee ee? & anes ep & & W UH Ue — Ys wy ayo -$ LT So ee ho eg Cie» & I—%-o—-b eee ee ; Wea 4 < Quy Ar} > ome wee %—DdD —. 4 — ay G% —D —$ ty me —% ee ee oO e e € is PT) tee ae Ghetto G-w- o+- : Bee ie. att eesti te eta a eae Cx, ' ef chieg® = 4- WT faorA, -q— — > a4 9a, Iy os aa : 3 eo Chop fb 9 woes ote — Eb alte 4s a an — Ou ty 7 + epic? es x re et € an—9 —P— > ayy == $ a 444 49 cu} fs any 4, ivf J ee a. — 3@ {au 19aqunry > fay, 4a.qu} 5 dass $ § ri 4394 46% fas ac} om 2 lar aeqaqureqa tay fie 9s ananaes os : %3 400 sq on Fa Aa Io} das Ge qu j ‘ me Neca” faz Ge anany | Lash Hinas wsancetot} \ as} ay Jauqrasew 9699) {a PI A446 qa f 495 444 J i $ | am. Is Fo + 45% te P4994 V649 44} v diy - ol (o-1)* ‘c 3) Sa i cuca €-nFA +t DFA: a 0) Co, 0 2? © Bee f(y), ~ oe aye A (a) = {aaa} (a2) = Age} é ° x - a Yo ao) di) Sl) 540 = hy —> & ¢ go) a) %» — 92 —42 Y —3 © et oe son => se!) —a) — 4) % —9, —@a)c RP —W Ean iron. e ! Slo) -—Q2 — 4.-@) slo -42 — & -@ + tomerting” FA to_8E' a eae Fa converting PA to RE ve we Adens Thederm, ¥ xx, He Dandents “ThedeM) : tet PA Q be, 2 RE over the input alphabet & » The RE ty giten 9 R= Q4RP | which hoo a wnique solution R= QP*- j a Conversion KAM | G) tee g, ve on intial state. @ ree WE AQidaqu-.. gn we no. & states. The tina], Stade rau be ROR «Qs Where YAN. @ tek ty be qj sansitlon fom qi two qy Hale. W) Coloulate 43 = % =%M+tE FY R=4%; G=& P=0 Rage 9 Yo = Eo% ®» q- 14 + 19, to* +14, R= 4, @ = Io ) ps) R= gp =) ag = “ lotr? 2 ae ® > w= Of +O +H1Q0 * oot 4 ost 142 OM 4 0g + 142 = oF + (ott) 4 Rego, gzoti* 'P=o+) R "1 fee tT Ot) = of ort). tee) fh the andorra he RE o Cont sos pumpin leoma RA Rguer lonauate? sit lo Wed to pole that a nguage nob regulon: - > Buk cannot be ured to do thot a language io Megilar SIE IA a requiow language they A has a pumpirg length spl puch) that . any ating ‘Ss! coher isi zp may be diided ito 9 parts s=ay2 oud that the fuow'ng conditions must bo tue: a) aye ¢ A fe avery 120 ®% wl>o @ Wy)

Sz dod = ol = & © equbr wxt=2 >) S= alam 0 yore “KRW rok a nequlay Aanguoge, lomma— prole 0 ae pumpryy tes {wil ye (0, yt t ip rot a requlay, lang 0 | ii: fio = oo Y= did) \ mee Yq al ale ( J tat p27 = codecs (o000000 | 4 nw mab 2 if i ceayla + (8) D1 of} wt 10 9 B= SF MJol OF = Foolol = S107 € sequlan, “The gien language in not a regular language ¥ Qpet hee Grammar (CAG) | > Tre context fee gamma, G v Acted od 4 tuples: S| S151, 28) l where V5 variable 6) ron fe Cpa git ) a care letters T=) terminals Gepesented with tower care itis ) P=) productions $3 sta symbo) (1% aymbd fo LHS) 3 Wee ae too types. of denivations: - ) WY most denituation (Und) ® Right most donivation (RMD) RmD ‘ Sat The preduction i of the iM 3 The production is of the fy thei ’ A—f\a then ik Wb lied od Aaa 4 n ik is Called 4 night Urea, fm lek Unecn, fern 62 can derive the Shing by Yepacing left side symbol ?-e, the vorable can be placed with ot tonmingl 1 7 cal a Dervation : 35k © a sequence of production Aviles which v was t get the inpuk staring T° srese — production. > ie we of 2 +yped @ le most Porivation (umd) ; ) Right frost Derivation ( RMD) 3 In UMD, the input ‘© acanred g replaced wih te Production ule Rom lebt to aignt 3 In RMD, tre inp © manned a repared vith he Production nw omy night to (ott - : 0) €= €4+€ ee eg heh o> Artbigilous ramon € = alb Ve = a-b4+a Fee ApaY und 9 ND from the obre produc qT -ab, a © (emd) Gaz EXE (und) E— E-€ unp> = =s a-F OE a Cer Get ‘D, a-b+e uM. gq —b+o AGE o@)8 agbe ab® Gs-c) abSb 28 abb ov Eg(s)1 Dose tre Staring oolol ® the context fee grammar given by: S— A168 Ve A + of}le Me : SAB Suey dae ® +> o6]se}e Bese j >) ae end => ALB <=> AB os CAABR BOR A 08 soy ond OOALB a eV ae Rony ; ZS oe 18 SON A 404 UR =>) 9048) Lady Alol um, Shh = ‘00108 x fey oto} ; an z Ss 004046 SS SCOAlo} um 4d a Ane SS ooloje a COE lo} ud re * = ooio) rs oro => N- qromnax may _ produce more than ore Kf mos anivatican oy mde than ore night TWost daxivation Then Beat Cealucl GS GbR Ne Gaerne Posse Tree. . on) to called * Toxivatton . hee: ©v > Wwe gqartical legit of the dlerivatt a denvation Mée &’ parse se- oulouloy —_ > The pase “nee oO be RCO oo uy Make a “yoot Mode a ptait symried (ity Intonidy P02 Ge vorvinblwo 4 NON. varlables « Oe mnt ire diy Anda leaf nodes are tonminals fq uy Constauck = parse tree fc the following e— exe / exe fid 2 ip > id+ id xid € ——— root a CA) E 4 E- intend oF aree a Preeseere Geass ce O\ Shetagbecause the highest operat precedence © fox thew the Soot node: Clery os GSS ee Ret grammar v9 S— bSaS ambiquous 4 the lop me aly ‘abab mp ae S = aShs Se imp a ee = > abSas bS Bz aebS | wate = aboShs => abeasbsS ie cS und => aha €bs =) abaebS is ay) = ababe = > abab& eo und = abab = > abab ‘a we Be grammar jo ambiguous gramme’: % Chomsky texarchy + CEL PDA FSMIFA TYPES < Wed < Type) < Type 0 RG > Requioy Gramma Fem =) Finike: Stato Mochire [FA > Finite’ Autoncta CEG > Conkaxt Free Grammar CAL =) context Free lang | PDA » push down adore CES % Context Sersitive Gramma, LBA 9 Uner Bounded Automata. « Unie « ° ad & Intacctuction) * 25 Aish down adomata w» mde pouorful thon FA > In FA tree ib a fienited memsy but in PDA & ho me mendiy because & Kas tre Sa dota Suckot b ued to Ade the inputs - PDA = FSM + Slack FSIN-Finido State ffachicg wilh In PDR woruse context fiez granynar rorre lane regular qrarnm a in PA 5A stack Bb A Woy eth tro tOp. OF =the stack: to waarge the erento one » he 2 opaations son the ..Stack are! PusH a PoP. PUSH = ew element io adldecl on dep of the tack PoP -) the Peete te vice fod 8 lead % Model of PDA: ~ PPA has 4 comporerilo! 0) toput cell Wy read] wotite head Gd ite tontig) unit AY push & pop 9 Fe wathemotical def of PDA: = COSI R) teles re) r S > dinkte sot of sates Z> finkke set of inpuk Symbols TE) TS Yoke & Non-empy set-of stack Symbdls. S > vansition junction which is det” an 8 @xtzve} xy gx a* gr 2 arr % >» initial state €9 Zo D Stat symigol of the stack € F> fiool tote €Q os\oupy Fy Design a PDA fdr a tang t= 4 ]n2i} 5 Vp s8Ng = cont ©, 6/025 ' “Wy OJoa Se & 2 S +, 000% €Refe < ee Metrerti]e SHG = OocoNI Ne &(90,E, 2) = S(Fe 20) &(4, ©, ©) = & (%, 02%) &(q0,0,0) = § (41 0070) Slqq, 0,032 §[41 0002) 8p,20) = § (411 000024) gla, = § 2, 000%) §(42, 1,€) = 82,0020) sq2,1,€) 2 §(%, 02.) §(%, 1, €) = SC 4,2) $ (42, &,€) = S(qs,€) Ip stiog = conse S(4o, €, 2) = §(%, 2) s(Qp, 0,0) = § (4), O20) &(q1, 0,0) = &(%, 1, €) = §(%) 0%) &(%,1,€) = § (92, %) blp,e,€) = S99 © eR °, o[o% Q (E €,20)% t pee €, €] to 9) fe) @) 1,9/020 © § (4, 0020) ™Inrit =~ Ro): Design a PA fH a lang {oi >) ‘p String =) OO\l S$, €, 25) = § (40520) S(9o 0,0) = § (qr, 02) S[4:,0,0) = §(q), coz) ; Scie ae

You might also like