Algebra 2
Algebra 2
Algebra 2
An Incremental Development
THIRD EDITION
SAXON
Algebra 2
Solutions Manual
Third Edition
Acknowledgments
Saxon Publishers thanks those staff members who helped this book reach its final form.
All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted in
any form or by any means, electronic, mechanical, photocopying, recording, or otherwise, without the prior written
permission of the publisher.
ISBN: 1-56577-143-5
This manual contains solutions to every problem in the third edition of John Saxon’s Algebra 2
textbook. The solutions are designed to be representative of students’ work, but please keep in
mind that many problems will have more than one correct solution. We have attempted to stay
as close as possible to the methods and procedures outlined in the textbook. Early solutions of
problems of a particular type contain every step. Later solutions omit simpler steps. The final
answers are set in boldface for ease of grading.
Digitized by the Internet Archive
in 2022 with funding trom
Kahle/Austin Foundation
https://archive.org/details/algebra20000mcco
Problem Set A
3. x + 89 = 180 1h el ee
x = 180 — 89 ===4 8 216 = 30
pee hD|
—5.—\(—2) + 8 — 465) 1
26. 6. Vpyramid = 3 YPrism
6 4(-3)
_-5+2+8-20 -15 5
= $lABase x height]
_ 6 + 12 ras 6
Soto
Oe (=5)
28.
7(|-3
+ 4I) 7. ABase = jana) + 5x2)? |m?
= Sige peeree
= (12 + 22) m* ~ 18.28 m*
7(1) u
Veylinder = ABase X height
29. 4(-2)[-7 - 3)(5 - 2)2] = -8[-4)G)@)] = (12 + 22)m? x 8m
= -8[-24] = 192 = (96 + 162) m* ~ 146.24 m?
30. Ae (4) = 5G = 1) 4 342)
2
=4 +44 — 5(2) + 3(4)\-8) 8. Vsphere = 3 Cylinder
=4+4- 10 —- 96 = -98 pi) ;
= 3 ABase x height]
72 anh2
E ec ? +(3\6) 59x) |m2 atu
= — |7(10)*] em
= 60m? — 39m? = 21 m2 72
= 36 (100) cm? = 62.8 cm?
Ashaded = ACircle — ATriangle
= Go. an 5(168)| cm? 10. Perimeter = [Fxm2) +16 + 4|yd
12. 5A + 40 = 90
5A = 90 — 40 28. a5] = 2y6 = 43 = 16191)
5 — |(4)(-3)|
5A = 50
ete dae oP eae)
Ae ae 10 c: 5 — 19)
5 — 5 +2+6-0 8
13. 2B + 140 = 180 5 wi tel
2B = 180 - 140
2B = 40 29. ao = (G3 22) 2)
=4(2s = 3)(F2)
jens sy
2 eee
—4(1)(-2)
14. Angle + Complement = 90°
= uv = 0
Angle + 10° = 90° 8
Angle = 90° — 10° = 80°
30. £9(3 454 6) 212"2), ee 5
a5. Angle + Supplement = 180° = 25) — 4-2) 6
Angle + 60° = 180°
=10+8+6-5=19
Angle = 180° — 60° = 120°
ooF 32 (3)? 2 PRACTICE SET 1
= A Be de) 418
a. mZA = mZC because they are angles opposite
2-8
| 24) 4) = H4-284
44 = 4 equal sides.
mZC = 35r
23) es = 8 9 = 15
mZB = 180° — mZA — mZC
-4 — (-3)3 - 27 + |-4| mZB = 180° —"35° —.345°
=-4+27-4+4=23 mZB = 110°
Nn
27. (-2)[|-3 + 4 - 5] - 22 - -1)] an
NnIa
n| — Nn
= (-2)[|-4| — 8 + 1] = (-2)[4 - 8 + 1]
= (-2)(-3) = 6 Oussoo
|
t=
©):
1
PROBLEM SETI Awhite Triangles = |505065) +95 GS)
1. Since angles opposite equal sides are equal angles,
1
ae 4ax3)| cm 2
Reeds
2
y + 45 + 45 = 180 = 25cm
y = 180 - 90 = 90 Agshaded = ATotal — Awhite Triangles
= (24 + 25m) cm? — 25 cm?
2. Since angles opposite equal sides are equal angles, = (250 — 1) em2 ~ 77.5 cm”
aro:
1
y + 55 + 55 = 180 7. Perimeter = [Soncms) + 48)ft
402% SFi==3 2 4 3
5 = 3 (1282) ft? = 267.95 ft
SF = =
2
cate 9. p + 30 = 180
3.x SF =x p = 180 — 30 = 150
a($) = 2 dy.4 30h 000
5 2y = 90 - 30
= ry y= 30
= 6
60 ; “
= 36000 cm 4y = 120
= 30
Aghaded = ATop Shaded + ABottom Shaded
Suse ie) cme 60° Gn) cue 11. Angle + Complement = 90°
® Angle + 17° = 90°
Angle = 90° — 17° = 73°
7 [x a on = 16cm? = 17.49 cm?
1 '
125 Vee 3 ABase x height)
6. Atotal = [58%6) i Sm) i
1 = 5x0 + 16) m2 x 7m
+ —n(4)* + 5#3) |em? 3,2
Vl
: 1/9
= (24 + 252) cm? ra AS + 30 (7)m?> ~ 102.97 m?
3C = 120
d. A = ar? = 49cm C = 40
r2 = 49 cm?
RS 1 ein 6. Agguare = s* = 16cm?
C = 2ar = 22(7 cm) = 147cm GS AIC cm” = 4cm
1 1
r= 7 ) = —(4cm)
—(s) a ) = lcm
PROBLEM SET 2
Acirele = Hr? = 3.14(1 cm)* = 3.14 em?
1. 4x SF = 6
oe aS2 ‘ Veylinder = Agase X height
4 2502 cm? = [2(5)*] cm* x height
3x SF=x 2502 cm? = 25mcm? x height
ax 2 =X
2502 cm?
height 7 = 10 cm
2 257 cm
9
Vote
‘ 8. 1 |
Voone = 3 X Apase X height
2. Since angles opposite equal sides are equal angles,
c= 238. - 4]
Sey
502) + (2)(2)
y + 38 + 38 = 180 ip sme |m? x 4m
y = 180 — 38 — 38 = 104
= As a 2 \a)m? =~ 8.76 m?
3. Vcylinder = Apase X height 3
60 ) 1 2
= Ex
|—(7(4ON eGo
+ —(4)(7 )|m x 8 m é xx2 (xy ee xx7 x oy —2 ote
xx G28 x2 x 510 ay
60 3 3
= |—~(16z) + 14((8)m- = 178.99m <3 xoy 12
360
i 2 p?(m aya m2 p°m ope
4. Since vertical angles are equal angles, 10.
m he p i(m = pe): mp ie. an ou
4A = 80
—2 2
A = 20 a ees mp3
m'1p
2B + 80 = 180
2B = 100 i
(x*y) xy ais xo yxy = Thay xy!
B = 50 ; x
We 2
(y aE
As Se yA
x*y x?y 6
12. (a*b°)? ab? = a*b° ab? ? = ab ‘Igy. xy aye = Brey rye = xT?
eer
13, ea ne ae xm zene al” ae
m5y3
= 2
24. _— = _23 = -§8
* De
20 - ee Aa
( 0,2)-3 34 = _symgt ~RE
594-83 i ik
er DDS
ee 5x a’m a’m 5 3x
Pi aom a~m Xx x am
z
cs Sel NR
gaiprey
(ns)? xy x yz xy x? yz®
x3 7-2
ti
—(-2)[-2 - -2A4HI]I4 - 2]
5x SF =x 2(-2 + 8)(4 + 2) = 2(6)(6) = 72
5) &X S =x
2 a’ — y(a - y’)y
15 (2)? — -3)3[-2 - C3713)
x= —
2 4 + 27(-2 -— 9\(-3) = 4 + 27-1 DC3)
O72 =)81
= 9
10. _p? — p(a — p*) = -23% - [4 - B37]
= =9 + 34-9) = -9 +355) =gem
3y + 9z = 180
=
3y + 81 = 180
3y
= 99 11. a? — (a — yy? = (2)? - 33-2 - 3?)3?
y= 30 = 4 — 27(-2 — 9)9 = 4 — 27--11)9 = 2677
1 : 12. @ axa) = 17 = 12 1
Veone = 3 ABase x height)
= 1 —1@:— 2)-= t— 10) = 1—0:-93
1
482m° = gla x 9m]
13.
1442 m? = ar? x 9m
3 e
1442 m?
pea es Sam —=— Pee a
9nm
i :
Voone = 3 ABase x height)
Beas
= 5 per y+ (518) cm* 2 x 10 cm
15.
1} 60 3 3
= —|=| —(25
ent mu) + 20 i1(10 ) cm = 110. 28 cm
7 9 > 2
Perimeter = 2rg + 2rg + 276 + 2rs5 Pe 3x*y?m4+ —-2x2ym3
16. 2xy°m — —=— + ——=—
2(8cm) + 2(8cm) + 2(6cm) m>x mx ~
2
+ 2(5 cm) 2
= 2xy’m — 3xy°m + 2ym* = 2ym* — xy“m
9 om >
jg, . Ge
7
ey eee
pee en Ae
a
xty* pps? PRACTICE SET 4
(p°xmy?)? xp? pp ®°x? m2 yO xp? 2a~4b9(2ab%c a?
2 4-4
ah opt re :
= m?x4y4 45,102 a -
7 # st sa Wabic® 2a-*b* a
Py xx? (x re
2)-2 ( mpx*) a 4 3 xx 2x44 p-4x-8 om cx 2 i cb =4
(2°? (2) (x2mp2y3 x 9x9, 6m 3p = 4b? b25E
2 xm *p~4 = x mnt a>x? a°c
A en .
Pp
b (2 ~ st] = -(-4 + 2]
a pix *k5(p%4)” : p22 5 p42 2 9 4
hots COS St A68
yd px 7-325 24-2
= Pax Kk 2,-10,3 i
En a px 1
oe! Dock fe Bk Aes
me)?
won GD
et
yx 14 6
ae
piers
“4
-+_= Laer seee
x” AP 13s
1%, (x2y2p)-3
2 p? ere = 66 Opn? aaa
9
F2( (p ay). x 2x pty10
oa gy ey? = x by16,2
i ch aad PROBLEM SET 4
4 (x72y2)5(x%y2)-4 : x710510,0),8 1. Acicte = Or 2 .
(x~4yy?)?2(p~4) x8 y2y4p9 Radius = rom: Area = 2(rcm)? = ar? cm?
+10, 18
ia Se ee x tyl2 Radius = 2rcm: Area = 2(2rcm)? = 4ar? cm?
x By
2. Since lines are parallel, 2x = 78
os Fe et,4 13> x = 39
a-2 3? 9
6z + 2x = 180
25. -(-23 a == iit Bi (3)? 6z + 78 = 180
% te = 2 Ne - 5 2x SF =3
= —3[-2 - 2 + 3](-5) = -3[-1]C5) = -15 SF = ;
3 10
m(1)* cm* = =G cm)(H)
y= ee Ue
a a em = 2.09 cm Lome 130 10
11. — + “ — ie
6. 15(4 — 5b) = 16(4 — 6b) + 10 5 7 8
60 — 75b = 64 — 96b + 10
Lye 35
ee 2
96b — 75b = 64 + 10 — 60
8 Th
Anse 114!
ee 245 kBy Se
ogbari 16
eee ee 56 56
21 3
oy 229
56
jee oe ge Be
6 3 fs 229 =) — _ 1145
10 2, 5 56. 3. F168
3 3 6
10
caine =
—4 5
we
Hane eee
x93 x(y?)® x
3 6 6
10 tars1 _ yxy” 3xy?y?
Seid years”
a
3 6
jane. $3 3 1
X= --°-— = — = fs eax od
6 10 60 20 x72 ae
10
Algebra 2, Third Edition
Practice Set 5
ay? pe
ie C9) Sewer]
| ae eT
4-25
3ay sith:ayn
“a aol
—2(-1 + 2)(-2 + 1) = -2(1)C--1) = 2
_= WP ‘ = a
33)
pay Pp 25. ab(a” — b)a — b
me (3x7) -ayty3 u 81x 41,045 3 81x 45> = (-3)-D[-3 - (1-3) - C1)
= 39 + 1)-3) + 1 = 3(10)-3) + 1 = -89
(9y)* yy*x3 Oy *yy2x-9 Qyx~3
= gx-ly4
26. Sone
( eg ee |
=e) rll
1 ee
“ Oye) yx? 2 y x4 yx? " y x®
= bh wl oll ape Saee
(x*)9 yx? Ay grt a2 Ay=3x*
4
30.
= 12x°y4
2
7 x 140,000 = Nr 11. (2 sy C= 2) SG ee)
8 + 4x -3 +2 = -2x - 6
40,000 horde members = Np
Axc +7 = 2x — 6
2x + 4x =-6-7
6. Apor = —bH
2 6x = -13
27 in = 5(6in.)(H) x=
13
—-—
6
9in.
= A
2 8 4
8
x + S2e+552 = 180
x = 180 - 52 - 52 = 76
ee eee
8 I 56 28
4(N + N + 3) = 6(N + 2) + 24
a. If 0.017 were red dwarfs, then 1 — 0.017 = 0.983
were not. 8N + 12 = 6N + 36
(0.983)(29,000) = NRD 2N
= 24
K +A = 180
PROBLEM SET 6 K = 180 — 34 = 146
T = 30,000 teachers
3.x SF
3
If 0.653 were prophetic, then 0.347 were not
prophetic. sl ees
3 3 9
WD xX of = is
0.347(3000) = NP >Zz x SF =x
1041 statements = NP
15 11
— Xe
Z 9
-3N-—-7=-2N-4
—3=WN
ore
1? XS OFF = Since lines are parallel,
3B = 130
ai x BW = 175
2 pe 190
2 3
BW = 17/5 x = = 70 barge workers
2A +: 3B = 180
2A = 180 — 130
Odd integers: N, N + 2, N+ 4
ZA
T= OU
6(N + N + 4) = 8(N + 2) + 28 A =-25
12N + 24 = 8N + 44
10. A = 2(180 — A)
4N
= 20
A = 360 — 2A
N=5
3A
= 360
The desired integers are 5, 7, and 9. A = 120°
x= 20)
NN 2x) 4G) r x ox ey? 2 x8
LL = 22 se 3 i? 16x12 y?
5 3 4
0, -1 —1,.2
Lyseen:Seles 21 Sayles
Simei | 15 y Coe
73 = —2xy at Sxy — She = 3xy a. Ere
17
—xr = —
5 12 pee
RB 5 365 », 2x xy 2xxx — 3xy
pee! _ ION y ity aay
lee 17 =. 204
= 3x3y? + 2x3)? — 3x3)? = -3x3y2 _ xy?
Bese 2 oy — 82)
= 590" x) 2x 23. xy xery Sy BE 2)E4) =9-2)* Gay 4)
air + 6— 3 243 4°6 = 10 = Sree 2x = 8 + 16°+°4=28
fy $05 = 10-— 7x oe
=a) Clok-slencan
24. a“b — a(a — b)
i= 5 =)
yitvol
25 |
¥
= i ome
a GLAG)-(
en ‘ i F anes as
oakae:
2
72
4) Vs joa ls
Lie 1
5
2
2s
27. =31G3)" + Gabe 9 0 | 1k 6
= =|
LY | oD, Dp —Ixyp 2xyp
16. 2{= | 2) ] 3 “
Pp xy x Y, <7 apry pxty Dees eo Aan oo eD|
= -3p~? + 2x? =-9+9- 16-4 = -20
ay 6xxxy”(y™“)
= a Ae
Ax-y"yoe ao
4x-y Die) aoe See gue os
ua a2 4 28 Sb Se
oe 2 22 “1” wee 72
15
Algebra 2, Third Edition
Problem Set 7
100
100 30s y at 63
30 100 30
WN = 310
- ia
100% 2000% Before 96
"OF FF
After
we = 1400 - 2 ~ goo%
Before After 350
oO
390
x 100
Sx 390 = 7800 x 390
Se
of 350 c 1400
WP = 2000%
Se = Wil OS ely
Before After
Sy
= 333
oe ie 20
3. 100
— x of =]
= 18 See 100
a WN == 460
Ses A
j3} = SxGuh)
= wil
wn = 460 - 1% ~ 2300
B= 34 20
Al=—B Since one part of 2300 is 460 for 20%, the other part
A = 34 must be 1840 for 80%.
of 2300 1840
Before AS 460
After
x+y+z+
60 + 60 + 60 = 360
x+y+z=180
Satay mites ° =e S0>
6(N + N + 4) = 14(N + 2) - 8
ep150 See
25
ate
12N + 24 = 14N + 20
A EAN
2 ay 15. aa A araay ee
5 2 20
The desired integers are 2, 4, and 6.
| |
8. -2N + 5 —N
be N
17
Algebra 2, Third Edition
Practice Set 8
2x+4=-5x-9 | | | |
26. S | is) |
g Paes =g es
iT] We) | NO
Nl NlR Nl
Ne,
<j
i-e— 15 Saas
| I
13 We) ahs JR | Jr at = ll ie) + wo ae
x= =—
eee, Nl
aN|e
See BIR
7
ll bd
20. a eeGe a ae
PRACTICE SET 8
3x + 4y = 12
22.
px Pp
= —Ayp? 4+ 3p* — Dep"
= -6xp* + 3p’
Hee lol)
= ll 1 eee1 ee 1
=n Ea ay
23.
24.
sete CARAT -f
4-944) 2
32 16
1
PROBLEM SET 8 —
P x = —
340
ae a
100 Of = 15 100 x 56 = WN
WD X of =
0.36 x K = 828 = al - 56 = 190.4
100
K = sens = 2300 knights 100% 340%
0.36
10(N + N + 6) = 9N +2+N + 6) + 24
20N + 60 = 18N + 96
aN
= 36 po P[m
Before After
N= 18
The desired integers are 18, 20, 22, and 24. A = 2(90 — A) + 3
Ag——1o0s a An aS
3N — 7 = -2N - 72 SAg——L85
SN
= -65 A = 61°
N = -13
3x + 4y = 8
POLO, Sis 4y = -3x + 8
7 3
— x WN = 420 = —-—x +2
16 4 4
Odd integers: N, N + 2, N + 4
Se Soares 20 x WN = 86
100 100
10. (2x + 2) + (4x + 4) + (3x + 3) = 180
WN = 86 - ee 430
20 Ox + 9 = 180
One|
Since one part of 430 is 86 for 20%, the other part
must be 344 for 80%. aD
ll BD = AC =5m
x=>—:--
= —
OS. 87
5 Tf 35
25.
16. -—3(-2 + 2x)
= 49 — 2? - (-23 -3 -(2- 2x) - 4
ee
ey es eae ay ee eae |
6 — 6x = 2x - 6
Sxl 2
26.
x=
iz ==
3B
aie -4-($-3)=- (= - 3)
6 9 295) 6 Gg 18 18
ie 2 4) ol eae 1 (-=) 3 vi 4 2
SERS aad EO 16 = —— — | ——] = -— YH OSC
6 18 (8: 1S 18-5 —D
Ln td2S ee
Seo
ee enoSEES
45 SSS Sa
Vee Nes 6s Ion: 16 27. -3[(-2° - 4) - 2)3)]
_ bl 2 _ 302 _ 151 = [Ger =<2)5 = 2a]
ipa ie (56 =5 3-5 a0) ales a)
23211] — (9)
18. (2 “y =] = 33-9 =24
p\ y p°
tue =3 Dees
YDS 0) 4
a
2 2
yxy rey = Ay yay 3 = 9 gatey 5 33-3)
py pp
2-3 41 Led al
S000 ee9 + 9 +3+3 =
19. ae [-ax+ 3) - eee!
p p p
= 3x - 5p*xy
29. 2)00| 2? ee ae eae ee
£4
5, ADO DI Sieyay aye! 30.
327! x2 Gx?) 16x7y3 =-l-1-l+#ft= 4
40 Acs 2%)
100 of T/ $78,000
1 80
b. — = S17 1500 — x =eisg =) ——_x TT = $78,000
100 00 100 :
100 | 245 ry = 171,500 . 1 100
245 ~=100 245
LY = 70,000 widgets
Integers: VN, N + 1, N + 2
-5(N
+ N + 1) = 2(N + 1) - 43
PROBLEM SET 9 -10N — 5 = 2N - 41
1 100% 40% 60% 36 = 12N
SSS _
3S
The desired integers are 3, 4, and 5.
F XS0s <=s
of LY 140,795
1 x 7 = 1400
8
le 145
aa =i5 is
100 x of = =e ——
100 xX LY = 140'795
100
EYe=s409/ 95a 145 = 97,100 bushels
m = 180 — 80 — 50 = 50
p + 50 + 60 = 180
p = 180 — 50 - 60 = 70
8 y + 140
= 180 — y= 40 12, 3y+6=-%x
5x + 10 = 5(10) + 10 = 50 + 10 = 60
z + 60 = 180
13. 0.02 — 0.003x + x = 5.005
z = 120
20 — 3x + 1000x = 5005
10. ACicle = mr = On m2 997x = 4985
9n m2 Rte
r= = 3m
1
1 2
—3=x + 10 = ar
Circumference = 2”r = 27(3 m) = 67m 14.
Le y= 2x + 3.= 0
16 38° 671
Yea 2 3
2 ee 26
: : mz 16, _ 380 _ 639
The y-intercept is —3; the slope is 7 5 90 90
16 259
a Out
ae ->(-2)= 1295
_ 259
90 16 1440 =288
TS, BCS yr 100491) | Se ae
—2[-x + 7(0)] = -3x + 6
2x = —3x + 6
ax = 6
oee
5
16. =2" (2x. — 3)-<ta=
2x — 3°
—2x, + 3.— 4 = 29h]
x= 1 = 28h
Ot=a4y
Q= x
oye [2 ‘ =| n xy p* x9y2y D
Uz:
po. Yea BE JS ep ee ee
=p'-p'=0
22
Algebra 2, Third Edition
Problem Set 10
18.
ak (24t x)_ 2akk4 ~—3ak-2k PRACTICE SET 10
a a+ 5* =
= 2h - 3a!
a’ + 25 = 81
19.
(2x*ya)
ya? — x~® yaya? xy a’ = 56
x*y(ay)? y 8x?ya*y*y — 8x7a a = \56
. $4 2
8x8y2
Dryer
(x2z73)3 8x2?
ege | anneal
8y>z
2 2 4 —2
21. cS a ey — = 3x - 2xy + 4x
y (x*)
= 7x — 2xy
Soe Say + ee
ne Biy
0 (IC)
P Pp
2 ‘
2 4 2
PROBLEM SET 10
If 20% were in a festive mood, then 80% were not
in a festive mood.
=a eT = 1400
3s + 24-2) - GB -2) - 2]
= ~3[(-3)(-2) - (1) - 2] = -3[6 + 1 - 2] F xX. of = 3s
= —3[5] = -15
| YM = 590
10
29. _29(-2 = 3°) — 2) - |-31
= -]1(-3) + 8 - 3 M = 590 x = = 5900
-34+8-3=8
Menafter = Mentotai — Menxitted
30. aoe pe 8 PSR HS -9E7 Menafter = 5900 — 590 = 5310 men
a Pe
23
Algebra 2, Third Edition
Problem Set 10
iP.
6. — x of = is
100 f
14
—xA
100 Total = 4200
100
Atotal = 4200 - VE a 30,000
24
Algebra 2, Third Edition
Problem Set 10
14. 2,-3
a yen te See
22. 3x + se ay eae
Kay
z x72 yz?
_ 9x7y
= 5x*y axe), ey Ixy
Z Zz Z
z
15. 25.
wo A8)-CF)
——F¥ fe
20 4
a els
ye
tg 26.
16. = + oy = U2y + 2)
—-52 + 30y = 2y + 4
28y = 56
y=2
= -3x - 2
Paercnic)
8x — 4x — 2x + 10
2x + 10 = —3x - 2
Sx = 12
12
x= -—
5
12xyy7 8xyx
18. als 3y7 _ 2x) mmx m-ym
me? mex mn
28.
= 12 - 8x’m
20.
33, 2Qn)s
= 3r’y!
Ox ty a ey 30.
Gl-tae: ree
(ae) re Pp
¢ ae 7 op ep - <p hs:
21. x 2 ox9x 3p 3 “5 5-2
5ai aE =
hae
25
Algebra 2, Third Edition
Problem Set 11
ak y mz* 3akz 3y ee x of = is
a —m + — - = = ee i 100
BP bz bz 3bz 3bz 3bz 70
3 mz 4 + = bs 3y 100 x P = 1400
—
3bz
P = 1400 x - = 2000
Zz 2mn ab*z ab*k = 2mn
Di ee. ae D ape t ae Psat = 2000 - 1400 = 600 people
_ ab?z - ab?k + 2mn
ab? Sr 700 x of = 1S
340
c. = 2(40)
y == 100
— x RP = 6800
i N=4
al = (4\(4) -2ya) - 22298) —peLana)
(
2 2 1
2)
100
x OP = $5599 Te ee
OP = $5599 x —
100 = $2545
mam)? = +(¢cm)(H)
>.
220 55
re 20 cm a 2
Increase = $5599 — $2545 = $3054 malnaasrreirmage
26
Algebra 2, Third Edition
Problem Set 11
11.
kx? + abcx -— m
—__——
ax
105 =x
#3
ie
-2
*(30°y - 25)i" 3a +2
a*y* 2a 2s
20.
y a y ya
a3 = 2a-4
Deed eee
23. Integers: N,N + 1, N + 2, N + 3
Oxsy\SrXyae yon 5. y + 3) = 3-N - 2) - 40
AN +N+1+N
xp? 3y7! 1 te Sa 3 3x, 2% 6N + 8 = -3N - 46
24. $a (3 me SE eee 3 ON= -54
if ip PPPYy yP YP YP
N = -6
The desired integers are —6, -5, —4, and —3.
44 x 5 = 5100
4
-)- Cee
26. 4
S = 5100 x — = 1200
17
F x of = is
0-0 IEC a8
2—-xN=1
27. Nee
11 11
5(-N)
+ 25 = 8N + 90
-13N
= 65
28. N=-5
= -72
If the train completed 30%, then 70% remained.
29. — xX of = is
The y-intercept is —1. The slope is negative with a (4x + 25) + (7x — 20) = 360 - 40
rise over the run of } for any triangle drawn. The Pieter — 2520
equation is y = -3x - 1.
Iilige=s3ih5
315
x= —
PROBLEM SET 12 11
a X of = is
60
Asector = 36007") = 36m cm?
Oy = 2400
100 2 _ §(362) cm?
HG,
V = 2400 x oe = 4000
60 r
V¥216 cm = 66 cm
Monochromatic = 4000 — 2400 = 1600 vases Diameter = 2r = 2(6V/6) cm = 12/6 cm
3x + 2x + x = 180
6x
= 180
a4 30
A = 90; B = 60; C = 30
2 3 2
1. m+>+—
ae ic
= mbcx MO ee
c Baad, bex bcx bex
n mbex? + bx? + c? I-—I—I—1—
Oanr
WP
bex?
17. (a) The y-intercept is +2. The slope is positive and
12, — - — - — = —— - —— - —— the rise over the run for any triangle drawn is 3.
1
=—x +2
ope
a*be (b) Every point is 2 units below the x-axis.
Y=
1 ee ee 2 te
Saat eae b 18. gi + hy = u
4 p. 8
144. C=aa+p? P)
=e —
1
=| —_
66
—
137 = 5% + k? 2 8 8
169 = 25 + k? 5
S36 Coa —_—
65
2 8
144 = k?
=k x ah 8oe 2 I1S0S E13:
Sry 40 4
15. 19. 0.001 + 0.02x — 0.1 = 0.002x
1 + 20x — 100
= 2x
Lexa 99
= il =" 5.5
2
_ _20
11
2. aa ; pe |
16. (a) 3y+x-9=0 0-2 2 x2
3y = x +9 y
0-2 ,2 0-2 ,2
1 = oe Ss EE | ae
= ——-x +3
“Gey 8 3 yx
Oy Ree oy OG b.
jG ee ae ee
ew Ces Seay?
ey any) 3 3
ORR 2 = 2
he ss —
eee ee = 64a2b> 2 2
OeT \s b
2.0 a 4 1
:ors 4 H+ 2 = 3
Cl erp ere = ee Boe eee
Ds, a aa x x 3 >
=i H* =%§
= 2ax
H=NV5
5a 3
26. abc - DP We Area = 5H = 5(4y(V5) = 2/5 m?
= abc — Sabc — 3abc = —Tabe
(1)(4) + 53)
4 + 6 = 10 units”
30
Algebra 2, Third Edition
Probiem Set 13
10. (a) x + y = 20
@’) yy = 44120
Since lines are parallel, (b) 5x + 10y = 200
P = 10x + 10
Substitute (a’) into (b) and get:
P = 10(10) + 10 (b) 5x + 10(-x + 20) = 200
P-=-110 —5x + 200 = 200
—5x = 0
7. 5% = (AB)* + 4 io)
25 = (AB)? + 16
(a’) y = +0) + 20 = 20
9 = (AB)?
3 = AB (0, 20)
AC — AB = BC 11. (a) e+ y = 20
i2.-3 = BC (a) y = —x + 20
9 = BC (b) 25x + 10y = 395
(DCY = 9 + 4 Substitute (a’) into (b) and get:
(DC)? = 81 + 16 (b) 25x + 10(-x + 20) = 395
DC : 15x + 200 = 395
15x
= 195
8 (ayx=a y+! see 1
21.
—3y
= -2x + 9
ma mp m
-3_,-2n-1
= —2a*p* + 4a~m™“p
xa*(x°a me o Aa a
23. Gx)? x4
ET VR)
mM” Pp
Pxx (Xx ) = — 3 = 9m*p
=
“x
i
(3p)? xpx
3x2 a ri 2x
25. xa — 5 —
= = *%a — 3xa + 2xa = 0
be 3a? m* é 5 pa
26. m! pa m
I | | | | | | nN | |
N|H
aeae, Nile
Nee, ee
(=. Nl
eae
(WES
x= eee)
3 = -ptaletal- alas
8 ae 2 Zz NI
coffe 4% 2N2
gyno! & qe =S---
bi 4 2h
+t m—e—elUcTt
SOS
3 9
8 8 8 8
i] 65 39
a’ — ax(x — ax) = 47 — 4(-3)[-3 - (4)-3)]
aks — —_—_—_—_— ————
o 9 28.
265,23 52 16-4 12-38
x=eqre-cee
9 7 63 16 + 12(9) = 124
—3(2N + 7) = 3(-N) + 9
=8+8-4-1
-6N
—- 21 = -3N
+9
-3N = 30
N = -10
30, 3° = 20-2) 2 )22 49.55] ou 4-6 = <1
Odd integers: N, N + 2,N +4
(a) 3x — ay = 21
(b) 2x —y = 12
(6 )cyr=207— 12
Substitute (b’) into (a) and get:
(a) 3x — 3(2x — 12) = 21
3x — 6x + 36 = 21
-3x = -15
Using (-2, 4), (4) = +—-2) + b bea)
4=2+b
(b’) y = 265) - 12 = 2
e=
The equation is y = -x + 2.
(5, -2)
(a) 4x -— y = 22
2
b y =—-—x+b
ae (a’) y = 4x — 22
(6)
6) =
2
ac
——(-3) + b
(b) 2x + 3y = 4
Substitute (a’) into (b) and get:
62.27)
(b) 2x + 3(4x — 22) = 4
4=b
2x + 12x - 66 = 4
ae 2 (ae = 70)
The equation is y = 34 + 4,
52 = 1S)
(a’) y = 4(5) - 22 = -2
PROBLEM SET 14
(5, -2)
Ie
1. — x of = is (a) x+y = 28
100 f
(a’) y = -x + 28
ib x R-= 6578
100 (b) Sx + 10y = 230
Rea= 65 15 vied = 2530 rats Substitute (a’) into (b) and get:
260
(b) 5x + 10(—x + 28) = 230
P 5x — 10x + 280 = 230
2 — x of = is
100 f —5x = -50
x = 10
Ba x 4900 = S$
100 (a’) y = -(10) + 28 = 18
_ 350 x 4900 = 17,150 sheep (10, 18)
100
33
Algebra 2, Third Edition
Problem Set 14
14. (a)
x = -4
(a)x + y = 22
(b) 3y + 2x = 6
(a’) x = -y + 22
3y = -2x
+6
(b) 100x + 25y = 2050 2
y = —-—x+2
3
Substitute (a’) into (b) and get:
(b) 100(-y + 22) + 25y = 2050
-100y + 2200 + 25y = 2050
-75y = -150
Vee
GQ) xe=-(C) +-22 ="20
(20, 2)
reap. One
Z 7 2
y cy cy cy cy
Fr cy’x + cyx? = 3x
Ss cy” 15. (a) The y-intercept is +4. The slope is positive and
the rise over the run for any triangle drawn is Z.
2
10. —+4 eae re = —-xr+4
x x as
(b) Every point on this line is 4 units below the x-axis.
Cc 4x Cc cx? y
11. 44+—-oy = —+-—- yield
x 25 x x
_ 4x +e - cx’y 16. Graph the line to find the slope.
x
12. oa
1sa
81 = H2 +4
17 = H2
V71=
B
Area = === = EE So cm”
13.
y=-lx
+ b
4 = -l(-3)
+b
l=b
Since m = -1 and b = 1, y = -x + 1.
3
17. y =) 7" 2D
3
6 = -—(-4)
as ) + b
3=5b
Since
m = ——ee
3
and b = 3 ae ee Forte
3
C + 150 = 180
28. atx — a(xa — a)
Gr=250
= (-1)(-3) - CD[-3CD - CD]
Since the measure of an arc of a circle is the same as —3+413+1)=3+4=1
the measure of the central angle, D = C = 30.
1
29. =59(2 = 3°) — 273 = 3 id eA
20. * ae ee (-2)?
=) 20 = -5
9 foe le
—-x = -——
20
a
20
30. a Lge pe IR) Sig ec:
Spee 5 eeSha
PRACTICE SET 15
21. 0.005x — 0.05 = 0.5
(a) 4x + 3y = 17
5x — 50 = 500
5x
= 550
(b) -3x + 4y = 6
x = 110 ola) tax A Oy 25]
4(b) -12x + l6oy = 24
22. aU g te ears (20-5) Py ak— vet
fe
=tiG-4 1204-4-9-— 8x + 20 y= 3
—10 = —10x + 22
4x + 3(3) = 17
—32 = —10x “We = tes
16 58
ie The solution is the ordered pair (2, 3).
es
20. Pp= 1400
25. mp'{m ile =4m |Seen Was
ip 4mp*m
ii 100
7. (a) 3x + y = 16
WP :
— xX of = is
100 (a’) y = -3x + 16
(b) 3x - 2y = 2 ay
2(a).6x.+R2y =.22
Cpe
(Dye a mac Ve 2 (3, -4)
9x =
a 3
2
= 3a” y? + 3xy? —- a~mx
(a) (3) + y = ili
3
Sat yee 1d
10.
y =3
11.
(b) —4x + 3y = 15 x
(0, 5)
Ron
\
i—|—I—
aoa
14. (a)
y = -3
(b) 3x - 4y = 8
—4y
= -3x + 8
3
y <2
re
17.
15. (a) Every point on this line is $ units above the N I || f No — + >
X-axis.
laN|e
Se Wile
eae N|e
pe
? 2(b) 8x + 14y = 80
S/, = 1
AN = 900 x gh = 420 - 71
15 5et—
2. WD x of = is (b) 4(3) + 7y = 40
0.016 x 420,000 = D Ty = 28
6720 microbes = D Ua
(3, 4)
3. If 14% were uninvited, 86% had been invited.
UPR CS yo) oe Si ces
——en MOS = IF
100 (a Ly = 3x44 2
wo
86
x GA = 903 One >)
.
100
+p Substitute (a’) into (b) and get:
GA = 903 x ria 1050 guests (b) 2x0 53h + 2 7
Ines Moye. = A 7
ri ae rt oer ie 17
100
al
40
aE a ieee
(a joe = 311i 2 Sl
(b) 4x - Jy = 16
5. (a) 4x - 3y = -l
a Substitute (a’) into (b) and get:
SAP ie ed (b) 4(3y #4) - Ty = 16
Ka) 4x.— Sy = =I 12) 4016 = 7y = 16
—2(b) -4x — 10y = -38 sy = 0
-13y y = -39 ae
yas
(a’) x = 30) +4 = 4
(b) 2x + 5(3) = 19
ox = 4 (4, 0)
39
Algebra 2, Third Edition
Problem Set 16
15.
104
4x2 + 10x + 344 x-3
10 es a: a
Ax? — 12x?
10x? + 4x
10x? — 30x
34x + 2
34x — 102
104
Check:
x74+ 4x +16 + — 4
11. pet, omer ee Ons
16. (a) x= Dye
x3 — 4x? a‘ 2
4x? + Ox
(b) x - 3y = 6
Ax? — 16x
16x — 8 3y
= -x+6
16x — 64
56 eee
Check:
x(x 4) A 4x(x — 4)
x-4 x-4
Loe Bt, 56
x-4 y= 4
x? — 4x2 + 4x2 — 16x + 16x — 8
x= 4
wy? $8
—4
a 4x? a 4x* +a
12. 2h ee = 5 17. (a) Every point on this line is 4 units below the x-axis.
Dig se Ds 2x
hae.
(b) The y-intercept is +3. The slope is negative and
13. Li i mee pp lbeg Ae 8s the rise over the run for any triangle drawn is —>.
Cx 4c*x Ac?x Ac? x 4c*x
1
_ 16c + 4c3x - 3 = —-—x
+ 3
eS
4c7x
14. Do eH”+ 12
4=H* +1
3 = H
eS el
Apeneeeee 2x V3 _ 3 in.”
18. Graph the line to find the slope. 20. Areas = ars? = mcm?
roi lcm
ry = 2rg = 2cm
B + 30 + 30 = 180
B = 120
C + 120 = 180
Seni oe C = 60
—7 7
2 Since the measure of an arc of a circle is the same as
y= “7% +b the measure of the central angle, D = C = 60.
-4=
eea) +-b 22.
1
3—x - —
1 = 3—
3
2 5 20
Preget
4
jet)
—
o3tterS
ee
2, 20 20
pete Aes, gett
iv ah ZT 5G
-=7 = VeTore
“2027
te Weo%
2-70
: 32
BINGE Bia peel DSS = 23. 0.05m — 0.05 = 0.5
32 Smo) =)50)
y=-—rx - —
7 7 TiS
m= 11
19. y = —x + dD
2, BAe yee S) = ws 2)
1 = —(-4) + b Ax +8 +18 =— +2
3 5x = —24
1=—— +b
5 ae 2
3 ee 12 = b
41
Algebra 2, Third Edition
Problem Set 17
= M oS)=) l |
PRACTICE SET 17
—5(a) -5Nn = 5No = -300
No = 2
Rw = 70 25-600
5
Ty = 5 — Tw
jee io™see 13
AS ue 3 x 400 = §
3
I Bs
S = 1440 skeptics
Integers: N, N+ 1,N +2
71(N + 1 +N + 2) = 10N + 109
14N + 21 = 10N + 109
4N = 88
N= 22
The desired integers are 22, 23, and 24.
42
Algebra 2, Third Edition
Problem Set 17
(a) Ny + Np = 150 Substitute (b) and (c) into (a) and get:
(b) SNy + 10Np = 450 (a’) 50Ty + 80Ty = 250
-5(a) -SNy — 5Np = -750 Substitute Ty, = 5 — Ty into (a’) and get:
l(b) SNy + 10Np = 450
(a”) 50(5 — Ty) + 80Ty = 250
5Np = -300
250 — 50Ty + 80Ty = 250
30Ty = 0
(a) Ny + (-60) = 150
Nw = 210 Ty = 0
Ty = 5 - Tw
(a) Np + Np = 50
Ty = 5
(b) Np + 10Np = 140
(b’) Np = -10Np + 140 10. (a) ReTe = RywTw
Substitute (b’) into (a) and get: (b) Re = 200
(a) (-10Np + 140) + Np = 50
(c) Rw = 250
-ONp = -90
Np "10 (d) 9 - Tp = Ty
(a) Np + (10) = 50 Substitute (b) and (c) into (a) and get:
Np = 40 (a’) 2007; = 250Ty
Qxr 4 3)0x"
+ 254 2) Substitute (d) into (a’) and get:
= 4x° + 4x2 + 4x + 6x7 + 6x + 6 (a”) 2007; = 250(9 — Tz)
= 4x3 + 10x? + 10x + 6
2007, = 2250 - 250T;
$x71—
axe Bh— i 450Tp = 2250
Keb LI3x° + Ox? + Ox —.2 Tp = 5
3x?
+ 3x?
~3x?
+ Ox yao = Te
35283%
Ty = 4
3x —2
Spe cus
=)
11. (a) RyTy = ReTe
Check: (b) Ry = 8
oe Oe 3x(x + 1) (c) Rp = 2
x+1 x+1
f Aree vy
(hy earre 7
x+1 x+1 Substitute (b) and (c) into (a) and get:
_ 3x3 43x? — 3x? - 3x + 3x -2 (a’) 8Ty = 2Tr
x+1
Substitute (d) into (a’) and get:
357-1
x+1 (a”) 8Ty = 2(5 — Ty)
13) eee
»
(b) Every point on this line is 4 units to the right of
y np the y-axis.
7 -2np*x " cnp? xy ig Ixy? x = 4
np’y np*y — mpy 18. Graph the line to find the slope.
a —2np*x - cnp?xy + Tx2y?
npy
4. Paw + 6
49 = H* + 36
13 = H
V13 =H
ene I x Jal = 12m x J13m
a p}
= 6/13 m2
15.
5 5
Slopeope = = 5
5
ui = =—x
a +d
5
a
2=-—(4) +b
12=b
2
19. y= oe +b
2
j= ea), + b
64 2.535= 29
16. The OP eae
Since nm= == audits ye bed oe
7 i 7 7
—2x + 2] = 50
2
—2x = 5
eee
2
(3)
z=
2x + 10y
PRACTICE SET 18
z Totals= 37+ 11
= 14
z=-5
+ 75 = 70 "Dye MG
14-350
21. Volume = zr*l = 2452 cm?
14M = 1050
Pe 2452cm?
M = 75 malefactors
(5cm)x
49
1 = —cm NS = 4000 — 800 = 3200
5
23200 NS
ay eee cee ee 4000 5000
5 4 20
4000NS = 16,000,000
11 *! 65
—rx = — + e's NS = 4000 kg
fe) 20 20
ee J. 3 yh 18
20 11 220 11
$= 100
= 11.49
WA, 32x 5) + Ge 25) = (912)
x= 43
1 7
54,000
0. 7) = = 4] = Sit20F 7]
54,000 x > = 200,000 natives
= -9 — 6 — 3(5) = -30
se Belepet
20.105 140.9439" 5x° = 1 (d) TR Tgcti3
x —2 x-2 Tz = 8
22222 Ae (a) Every point on this line is 3 units below the x-axis.
ee ee
xyz XYZ xyz Me tic)
F 7x2 y2z2 1
(b) The y-intercept is 0. The slope is negative and
xyz the rise over the run for any triangle drawn is —3.
ae: 3 y = -3x
13 eg RE es Ve
Dy xy xy xy
18. Graph the line to find the slope.
5 -3x7y? — cxy? + 7c
xy?
14. 6* = H* +5
36 = H* + 25
11 = H?
V11 cm = d
15.
y=—x+b)D
5 = -(-3)
+b
= 2
Since m = —1 and b = 2, y = -x + 2.
5
19; = —x+ D
seal
—2= —(4) +b
a age
3
20"
68
16. 3 3
26 A;
3
26 5 26
Since
i m = and b= Fi
-—, = 3 3
-x-—.
20. 3x
SF =9
SF =3
a°=' 46h
ea 43) = 12
as SF
bpe=*5(6)) "15
47
Algebra 2, Third Edition
Problem Set 19
PRACTICE SET 19
21.
2 a. (a) N + D = 80
6x + 4 = 5x + 10
(b) 0.05N + 0.10D 6.50
=O
-5(a) -5N — 5D = —400
P = 3() + 2 = 20
100(b) 5N + 10D = 650
2
22. Area =. 129(gppyeale itn ea ses 1? 5D = 250
360 D = 50 dimes
N + (50) = 80
23. ee - ae: = i 2
6 a, ie N = 30 nickels
ian
6 24”
a es24 (a) R49 D' ="35
25% _ 45=45
25 (b) 12R + 4D = 300
A te -4(a) -4R — 4D = -140
(b) 12R + 4D = 300
8R = 160
24. —2[(@ — 2) -— 4x - 3] = -—C4 — 2x) R = 20
—2[-3x - 5] = 4 + 2x
(20) + D = 35 :
6x + 10 = 4 + 2%
D = 15 daffodils
Ave 6)
5 3SF
=5
x= -—
2
Shane3
ayy 2xyz7! a y*
Pan%
oe p Ee aS 5S >
BOvyi ee Gy 227xe 3
zp 2x pyz> z2
25
x= —
ao (a) (xy Ne e de wey
3
26. 5
ax? (y~*)? ay~* = 4|—
a x>y? y ]
a>
_ 20
Cae
ax ~ Ch elo 7 xxy
27. ve x y?
NA = 1134 x uy (b) Ry = 70
81
NA = 1400
(c) Rs = 20
Beginning amount = 1400 liters (d) Ty = Ts
Amount used = 1400 — 1134 Substitute (b) and (c) into (a) and get:
Amount used = 266 liters (a’) 707, + 20T; = 180
y=-] ‘(d) Rp — 10 = Rg
(b) -3x + 2(-7) = -23
Substitute (b) and (c) into (a) and get:
—3x = -9
(a’) 5Rp = 6Rs
Gt
Substitute (d) into (a’) and get:
(3, -7)
(a”) 5Rr = 6(Rp - 10)
7. Gr = 2a — 281-24) SR =" 6Rp=-60
le 4x
ar go Fy) De Ae
Rp = 60
+ 4x
-— 8
= x> — 2x4 — 4x3 + 8x7 + 4x - 8 (d) Ry = (60) — 10 = 50
11. = wn
(a) RyTy = RrTr
(b) Ry = 8
(c) Rp =
(d) Tr 5 - Ty
Substitute (b) and (c) into (a) and get:
(a’) 8Ty = 2TrR
i)
S
sal
= a +
gol
<r
ws
Exlle
po)a aSSie Res
|\
23]
seo
ay
Re Se
o R basispas
Ww ~
H] on
—3y = -5x +9
er) s| Sie A]
ne
bo
| i) | |
re nN eS N
QIN
Ss]
oR ee
alN
<<) I I
a IlnN
Py Pi
Pesceg JERSau2248
42702
nN
8 e ya
IlN as
RANA
eo
ERR
+ ia Qe) Cl 18h
=
ht a
RRR
Po
a
>lS
Aes
baie
<7
OSE peer28
SESS o
x
eo KO en LIN See
eS
nN
sae
NOUS
ane
NN
a aeas ac
4SoO=
17. (a) Every point on this line is 2 units above the x-axis.
Slope = eee J Since angles opposite equal sides are equal angles,
+5 5 Ga="D,
9 C + D + (130) = 180
+ ihe ld Cs D/S50
Ga D =75
see ect
om eae 50 50
Ar ea SS 360
——_ a ar 2 = ——. 360 (3 3 cm) 2
—) === +79 ;
= = 3.93 cm
Beek: 25
Dat (18 YR apie eee
> 4 3 12
28
3 13
pve = ewokhe
4 12 12
ee y 5 :
a (2.6)13 eee
156 39
3 x
seal
5 =— —
ba uenie Py x
3
BD) 3 4
ge ped ee
9 x(y°y?) xy *
~ =y 7 2xtne Biya | -4x°y
9 ; y
eyVimex aes a Rea
Oe
s = iy = 2x2a = 3x7a rm 4 x2a ib 3x7a
9
y by y Ay
k=. 6% —-5_2 620) = 3 = 115
28. m — m’y(m -— y)
21. Since the measure of an arc of a circle is the same as 1 12/1 1 \
the measure ofthe central angle, A = 50. = “3 a (-3} (=\-3 = A
30. zs Ee ee 1 16 ONy = 90
"2@y2 * =a Nw = 10 worthless ones
(a) Ng = (10) + 3
PRACTICE SET 20 Ng = 13 expensive ones
a. 4/40 -— 3140
P :
iy 6 Oe ean es Pa en aa, A Ae Kak mts
= 4/2/2J2V5 - 3V2V2V5V7 ya
= 8/10 - 635 700 * © = 200
Top a 38
10
Peas ox : = 40 performers
Ny = 40 — 28 = 12 virtuosos
52
Algebra 2, Third Edition
Problem Set 20
a 3K
Sry es pe 13. —-a-
cel Ja 2xe3 ee”2 Same et 2 ie x? 2a‘
-2x3 + 2x? 2a° 2a>x? 3x3
Ee) i
—2x?+ 2x
—3x,+2
—3x +3
«I
14. 42 = H2 + 32
Check: 16 = H2 +9
-2x*(x-
1) 2x(x- 1) 3(x -1) 7 = H
x-1 x-1 x -1 J7 =H
yp a ee SE oe ox ie 2x pram DRM. SAXNTR _ 57 gp
x-1 x -1
—3x+3-1 -2x3-x+2
x-1 A x-1l
15.
m2 5 m m2 5x mx
12. ime oea Ma
b cag’ ¢ ax ax ax ax
oe
6 6
>
1 (-2)2)(-
ch, eis
1 my (all
ollieUlett
Z
C—O
1 1 ( 1
6 4, 32,0161 5 16 4 32 16
1 1 128 1 129
Since m = = and) Sey es Ae Sie 519% 251201, 6512
6 12
28. -29{ (7 shui) he
cee 2-2 = (-5)]}
20. A + 140 = 180
a at=a ey = ola} = -1{-19} = 19
> Il 40
B + 40 + 90 = 180
29. -2°|-3 - 7| + |(-5| — 2(-5) + 2
=-10+1+10+2 = 3
B = 50
11. 23 - 2V2(6V6 —3V2) 17. (a) Every point on this line is 2 units below the
x-axis.
243 +2/2(6V273 =3V/2)
4./2/3(6V2V3 — 3V2) vec
DAD} 21a(3,— don A De (b) The y-intercept is 0. The slope is negative and
= 144 - 24,3 the rise over the run for any triangle drawn
is —2.
12. Title Mie copies cael +
y = -2x
P Pp
m2 — 3ax — a*mx
ax?
(0.0003 x 10%)(6000)
14.
(0.006 x 10!5)(2000 x 10°)
— (exdeene x 107) 18-10’
~ (6 x 10!2)(2 x 108) 12 x 10
1.5 x 10-8
15.
WS SSre slp
(b) 4x — 3y = 12
4 Tart,
Y = —x%
ae —4
q
20 =p
——
0
20. x +4=6
x=2
+ y= 10
y=10-(2)=8
21. A + 130
= 180 aie i-oeho
29. ie |-44 3] = tt aed)
A = 50 = -1[0] = 0
B + 50 + 90 ll 180
B= 40 1 1
30. oe) ae a eee
Since vertical angles are equal angles,
C=B= 40.
D + 40 + 90 180 PRACTICE SET 22
D = 50
De
Since vertical angles are equal angles,
y= D= 50. —Dp
22 —- -—=:
Re = 14
Rp = 21
ReTgz = RpTp
Tp = Tr - 3
(14)Tz = (21)(Tg - 3)
147, = 217, - 63
7Tr = 63
23. 0.03(« — 4) = 0.02(x + 6) Tr = 9 hours
3(x — 4) = 2(x + 6) D = RgTr = (14)9) = 126 miles
34 — 12 = 2x 12
X-= 24 A eal?)
Ie ab
245164 — 143) = 6] OxE="95
= -2[(y - 43 - Qy - 5)] 35
x= —
—(15 - 1] = -2[3y - 12 — 2y + 5] 6
[14] = -2[y - 7] :
ee)
Ady 229-414 9 6
—28 = -2y 6y
= 45
14 =y
JIS
aero
be SIP (2 - 0-2 9} 2 2
le om
PROBLEM SET 22
26.
rit
=
ae —4
ORISAte
Uy
x | De |
a —2
a7 = Sieh = 53h ¥ 3-1 = 3xa — 5xa + 7Txa Do
XG
= 5xa
De = Dc so Regle = RcTc
Rr = 15; Rc = 30; Tc = Te - 3
| Da |
x — 1)x? + Ox? — 4x + 2
ya OF
Dy
x? — 4x
Dy = Dw so RaT, = RyTw nevi iy
Ry = 9; T, = 4 Ty
=2 —3x +2
—=3x7+ 3
9(4) = Ry(2)
=
18 kph = Ry
Check:
Gee ee ONG 7D A(x =I, eer D3 =) _ 1
D 5
x-1 Cal x-1 x-1l
(b) Not D = 9600. —— =D = 9601=N
Substitute D = 960 — N into (a) and get: Par +e? = x= 30931
(a’) 5N = 7(960 — N) x—-1
(a) 5x + y = 24
5x2 By
(b) 7x — 2y = 20
14. pp-—=
Py py Py Py
Substitute y = 24 — 5x into (b) and get: ey 5x7 p + py — 3x
(b idx = 2@4 = 5x)4= 20
Py
7x — 48 + 10x
= 20
L7¥= 68
15.
(0.0035 x 10-4)(200 x 10°)
36 = A! (700 x 10°)(0.00005)
(a) 5(4) + y = 24 (35 % 10) 10° | =7xct0!
yond (7 x 10’)(5 x10) 35 x 102
(4, 4) = 2 x 10?
(a)
x = -5
(b) 2x --y=4
-y=-2x
+4
y=2x-4
am
maeRoLGEE,
h d& wb
acne |
3 ay:
= —y +3 5
oes at
es saga
5 ‘.
18. Graph the line to find the slope.
ONE,
2
A + 140 = 180
A = 40
B + 40 + 90 = 180
B = 50
k + 50 + 90 180
k 40
M + 90 + 40 180
M 50
59
Algebra 2, Third Edition
Problem Set 23
2) 1 1 PRACTICE SET 23
me dey
oe sie 4
34 41 9
—x -—x = —
10 10 4
——
7 JX —
9
10 4
9 10 90
BF, One eh oe
4 7 28
0.02(p — 2) = 0.03(2p — 6)
2(p — 2) = 3(2p — 6)
2p - 4 = 6p - 18 (-1, -1)
14 = 4p Check: (-1) = 2(-1) + 1
3.55= Pp
=(e= =) +1
a ee aes|
24. G3 0C 1°) 6°] = -4/@ = 3)2]
-(9 — 1] = -4[2x - 6]
—-8 = -8x + 24
PROBLEM SET 23
See Ss 3
| Du |
k=
D;
pare | py ee er eeeh
25.
ae ‘.| ips =Pye Dy = Dy; so RyTy = RT;
= 1 3x4y7p2 Ry = 600; R; = 800; Ty = T; + 4
600(T; + 4) = 8007,
26. Keates eg Any 6007; + 2400 = 8007,
(2x7)? x“
- 4x1%-1,-1 2400 = 2007,
12 minutes = 7,
_ 3x’y Pe a 2 5xy- snag
27.
XX y xe xy 2.
= —6y
won ALB
Ds
60
Algebra 2, Third Edition
Problem Set 23
Seng
Zee
ea
(b) Ny — Ns = 50 x.
2Ny = 350 5x7 oe 5x*p =4p*m
;
Ny = 175 viands
13. —-4+4+ ——
= 4 --—
+ =
pm pm pom pom pom
(b) (175) - Ns = 50 _ 5x*p - 4p*m+c
Ns = 125 sandwiches p>m
(b) (50) - Ng = 40
No = 10 quarters
= x of = is
hile A000 =e
100
NC = 320 tons
61
Algebra 2, Third Edition
Problem Set 23
16. (a)
y - 2x 1 18.
y=2x+1
(Oe 2
DP = 4 + 2
D2
16+4
D?
= 20
Sop IS
PT=) o LS“o & oa & > Oo
=
Re}
a
Yee. ios} ro)
on
oo} — AN a3 =! N by
|i
|
A tt
Q
of G2
|
mloo
MIN aS TT | xe + >
se I = a
|
m|
SS r
tt i
|
we.om +
Ke
| nw
a 8
a
12
8
17. Graph the line to find the slope.
e©nrrane~
nntHno
Al
aS 13* = (BC)? + 5?
169 = (BC)? + 25
144 = (BC)
+] 12m = BC
Slope
a —IN
0=b
1 1
Since m =7 and
b = Oty:
y = =X.
2
62
Algebra 2, Third Edition
Problem Set 24
-38 = -x+ 4
ee.
gj 5)
42 Ne
= ©)
9
O22 0.2 XK = =
_ 6m Dg
x
Dr = Ds so Rplp = RTs
Tr = 6; Ty = 8; Rp = 60
1 1
28. ©) Ae (x = y) = 3 — (-+ = 2]
60(6) = Rg(8)
45 mph = Rs;
D,
20 eo 1 ns eR a es |
a Do
= -1[3 - 8 - 1] = -I-6] = 6 D,; = Dy so RT; = Roy
R, = 4; Ro = SieTy = Tp, + 1
ey 0 _90
y= 5+ 8 = 8 A(T, + 1) = ST)
30... —sien =
eRe a AS 4T, + 4 = ST)
4=T>
D, = Dy = 4(5) = 20 miles
64
Algebra 2, Third Edition
Problem Set 24
16. (a) 3x + 2p =r ie Since angles opposite equal sides are equal angles,
2y = =3xr +. 12 C=D= 35.
3
= —-—x
+6 70 70
360 r = ——(m)(4
Area = ——ar* 3600 cm) cm)” = 9. cm
9.77 2
7 2
(b) 5x - 4y = 8
—4y
= -5x + 8
19. G21 )29=H + 2?
21 =H? +4
5
= —x -2 17 =
i ~
V17 = H
te. 4 in. _— in, _ 217 in.
2(a) 6x + 4y = 24
(b) 5x -4y = 8
fis = 32
_ 21
(a) 3)
32 +2 = 12
i i y = 2x44b
QV =
132
— -
96
— 5a=) 2(-2) + b
cauieis | dean
on
po Ly 18 Since m 2 and«eb-=-9.-y
=x + 9,
'Bais elhawy dias |
Gra)
Monit 21. =—-x+b
aes
2
Ly; (a) The y-intercept is +2. The slope is positive and —3
= 9)
—(5) +b
the rise over the run for any triangle drawn is 2.
Bite eee
=—-xr+2 9
ae 6
(b) Every point on this line is 4 units below the
igure
2
X-axis.
PRACTICE SET 25
23.
8m2xy> + 6yx*m> - 2x ym?
= 2mxy(4y4 + 3mx - 1)
4m> + m2
m2
= 4m? +1
4SF
=7
hi 8 -— 4x Gee!
24. —+ 4
2 7
21x +°-16='8x%
= 42 a
ie ge EO ae
13x86 st is
35
Kee 5 + x ==4
x = -250
ll x
IES
aNSes
265 -2|x — (ea | Sf E31 =
=, 42
—2[x + 3 — 3] + [-3x + 6] = a er
2x - 3x +6=
La
-4x = ey
SS
aM = 24
Moe
7
21. ar
Pp
(ee
x
es |-4 533y
P
—2 PLD
=) Bee} a
Ney di
Bg
=1+ 5x%y
AN ==]
23
4x°y?x
ee
=
(-29)3
32x7y?
Se eee0
3-2
—O2y y yy" Roce4
Tp = 40; Tr = 30; Rp = Rp + 6
Substitute (b) into (a) and get: 13. 2V3 - 3V6 - 512
(a’) 2D, = 5(980 = D;) 2V3 - 323 - 5V2V2V3
7D, = 4900 30V2 V2 V2 V¥3V3V3 = 1806
D, = 700 minor disasters 14. 618 + 54/8 ='34/50.
ie (a) No + Nu =e)
6V2V3V3 + 5V2V2V2 - 3255
18y2 + 10/2 — 15/27 1342
(b) 25Ng + S5ONyq = 7500
-50(a) -50Ng — 50Nq = —10,000 15. V5 (GV15 — 245) = 2456345 — 25)
I(b) 25Ng + 50Nyq =~ 7,500 = 6V¥3V5V5 - 4V5V5 = 30V3 - 20
-25No = 2,500
a ab a _abt+a
= Se
No = 100 quarters 16. b b b b
(a) (100) + Ny = 200
ax? ax? cm’ p 2mp
Ny = 100 half-dollars ith oc
mp m ee m* pae m* p ee
m*BS
p
6. If 70% was sodium chloride, 30% was other _ ax? ~ cm*p + 2mp
chemicals. m? p
x74 Sx + 25 + 1%,
7. x — Spe + Oxe + (Ox—"S 2
ie a
5x7 + Ox
Sica W2Sx
25x - 2
25x
— 125
123
—2y = -3x + 10 Sk aa
3
ad pfs ot ray
7
ep
a
280 280
22. : Arc leng th = 360
— - 2arr = 56 (
— -: 2aA(12cm )
= 58.61cm
se = 7/
4x -—8 2x —4
2
4. 5
+ amen
Ds
Substitute (b) into (a) and get: ea ie :
(3-3)2 ma
20. Since parallel lines have the same slope, 26 : ,) - >=
4 >
mill. 9s 10x + 6 — 3 = 10
et 273 fOr?
1 ae
5 = —(3) +b Ty
6
9 8x2 + 12% 4x°(2x* +3)
{=p 27, ———_—— = = 2x?
2 4x3 4x3 oe
2,,-2 2 220
Sint = shald bs Sys ae ee. 28. ames [gay
6 2 6 2 zm \oye(Queeh 2
Ix*y*2
21. (a) 6x - 2y = 100 = SC xty? = ay - arty?
(b) 3x + 2y = 80 gs
Ox = 180 29, —3°((2 S40) ee Oe
x= 20 = -l[-11 - 5] = -1[-16] = 16
2
(b) 3(20) + 2y == 80 30. km(m2k — k) = 3(-4) (-z] (=)eek
Dye) 3\ 4 4) \3 3
Bea (1 6) 1 (5 ) 5
y = 10 FO Ape Rien! Gale cae eee
12\48 48 2 Ree k6 192
ee an Koop Suis
A= /41 100
ae a x Np = 4300
pea 100
5C = 32 Nr = 4300 x Pee 5000
32
C= — Nz = 5000 — 4300 = 700
BS [41 es 5. 1820 _ NCa
ae es 1960 2240
5B + Sai = 8VAI epee 20240
5B = 3V41 a=
: rams
PROBLEM SET 26 ot a
Ty =be 7290
T; = 20; To = 8; Ro = Rs + 60 Mi nae
sf ER g : -x3 + Ox?
20Rs5 = (Rs + 60)8 _x3 C4 x2
69
Algebra 2, Third Edition
Problem Set 26
= 2xy‘p*(2xp - y? + 4x°y)
11. x7 +x-6
= (x + 3) - 2)
12. x” = 6x + 8S = dq — 2)
Substitute y = 2x — 3 into (a) and get:
13. —2ab + abx + abx* = ab(x + 2)(x - 1) (a’) 2(2% — 3) = x = 6
4x -6-x=6
Cnt— xy
6x“y t re 1) an
xy(6x —
14. 3x
= 12
xy xy
x= 4
18. an x2
et Cc
Pn
wer
cx? cx? CX
a a*cm = cx! = x4
cx?
19.
(3000 x 107!*)(0.00008)
(0.0002 x 10°)(200,000)
PAG g Sex 10>) -24 x 10788
(2 x 10!)(2 x 10°) 4 x 10° 22.
= 6 x 10°”
20. (a) 2y -x = 6
2y 20x FO
1
Sse
ee)
y + 80 + 70 = 180
atl
~ 19
y= 30
x2(yz0) ) 8x2 y-? :
m + 30 = 180
29. 2-3 = sete Ge
m = 150 f-25 4) po yy
z+ 10 + 150 = 180
220 30. =
=t3)F*
:
9-3
(a — ba)
(a) 4x + y = 70
(b) 2x + 6y - 1 = 115
(b’) 2x + 6y = 116
ie)
=9-8(1)=9-8=1
D ee2
f 11 11 11
_ m+ 3m? + Sm? + 20m? + 2m + 8
cs m?(m + 4)
25.
bx
Atriangle - aS ae = 34m
H 2 _ 6m? + 23m? + 2m + 8
m?(m + 4)
» = 24(2) m*
9m
b. ‘Kei
> ages Pec
b = 12m = BC z+52+4 22+ 4)
AGircle = 2r? = m(12 m)? ~ 452.16 m?
eR Ties gy
(z + 4)(z + 1) z(z + 4)
Dax 6 — 3x
26. — + == 7 i" ae te) (at 1)
3 4
~ ez t4(ztl xz t+ 4(zt+ dD
Sri 18: 29 xe G4:
=i"00 z2 + 2z — |
PROBLEM SET 27 If 70% was silver iodide, 30% was not silver iodide.
Ng ;
— x of = is
100 !
reall x 2000 = NS
100
Dy = Dr so RyTy = ReTr
NS = 600 grams
Ry
= 4; Rr
= 20; Ty + Tyr = 18
4Ty = 20(18 — Ty) x? 42x +44 3,
4Ty = 360 — 20Ty x — 2)x3 + Ox? + Ox - 6
x3 — 2x?
24Ty = 360
2x”
+ Ox
Ty = 15 De AN
Dy = Dy = 15(4) = 60 miles 4x-— 6
4x-— 8
B. ah D;, D;
Check:
Dr 2
SACS ~
2), 2x(x =
2) , 4G =
A) 4 2
Dy = Dr SO RyTy = RrTr
x—-—2 x-2 x-—2 x-—2
19. 2V3GV2 - 3V3) = 6V2v3 - 6V3V3 24. Since parallel lines have the same slope,
= 6/6 - 18
20. 26 3 AG)
Gb 3)
x x + p X(Npp) . X(X +p)
20 2p Ok LL Ok Zp
x(x +p) x(x
+ p) bo II | + >
x +3 3
21. aoe A heen
x+6 x2
26. 3 OM
5
(a) 3x + 2y = 12 Als
co]
(b) 8x — 2y = 10
6+ x A
l1x = 22 27.
5 3)
x =-2
18 + 3x + 5
(a) 3(2)
+ 2y = 12
ane
= My)
2y= 6
ere
(2, 3)
S
Algebra 2, Third Edition
Problem Set 28
Multiples of 3: 3N, 3N + 3, 3N + 6, 3N +9
oe ene By
28.
3 6 5(3N+ 3N + 9) = 13(3N+ 6) - 6
6x -44+24=1 30N + 45 = 39N+ 72
6x = —19 -9N
= 27
19 N =-3
=
6
The desired integers are —9, —6, —3, and 0.
29) =
29. Laas
b
aD an
a“y
ay Fj
(a) Nave Neve 1
LL, , RED (b) Ng + Ng = 15
=7-64+2=-55 Nz = 4 boys
P
Dr = Dp SO RrIpr = RpTp
a
100 of = is
Rr = 60; Rp = 3; Tr + Tp = 21
84
60(21 - Tp) = 3Tp 100
— X EM = 7350
Check: 2s a
21. »
Be
x*(x 2-— 5) e 5x(x -—
a 5) A 25(x -
= 5) ee 118 ob Dea byEhtis
eateel.5
x-5 x-5 x-5 x=5 a 2x i. 3(x + 1)
_— w= Sx? + S27 — 25+ 95x 2125 4118 (x+1)(x+1) («+ + 1)(% +1)
: x-5 2x+3x+3 SXigk3
£ 7 (x+D(x+1
(x +1)?
eee
22. (a) 5x + 2y =6
(3)
AT;
(0.00011 x 10°)(140,000)
_ (77 x 10-*)(4 x 10’) _ 308 x 1074
Po fina % 10 eis4 & 20° 23. (a) Every point on this line is 4 units below the x-axis.
=2x 10° A el
(b) The y-intercept is +2. The slope is negative and
x m= yp
the rise over the run for any triangle drawn is —3.
m+ D y - x
18. Wigks Titel aay 1
= —-—x +2
itp y ee <3
A = 30
B + 30 + 90 = 180
B = 60
C = B =-60
D + 60 + 90 = 180
D = 30
3x
= 90 29.
x = 30
2x = 2(30) = 60
30.
60
26. —t+
10x + 3x —9 = 15
x=
24
—
13
[ea
De
ae Dy asl
66
Tc = 8; Tv = 7
27 at a ee Biaeoe
3 5 10 Dc ats Dy 66
ee ee RcTc + RyTy = 66
=) 30 30
Rc(8) + (2Rc)(7) = 66
Ro + 14Ro = 66
22Re = 66
Rc 3 mph
100 x of = Is
19.
a. 412° svi 48
5/12 12 60 10 by SAEED
4
20.
5 i475 103 14N3 eet
B95. 225 225 45 4
3 9
4x 6 Siince m = -=aoa
and b = —-,mn
21. +
x+4 x+2
a 4x(x + 2) 6(x + 4) te il ! * !
@0
we
|
CeGet AG 2) —* ch Ae 2) a|o
vee
9
13
3V13 > = B+ 3V13
Ey
4
3
|
||
wp
oar
cles 2
9 3
a7, 2% 5,442
2 uh 3
63x — 30 = 14x + 28
Rly + RpTp = 68;
49x = 58
Rp
= 6; Tr
= 6; Tp
= 4
58
x= — 6(6) + 4Rpz = 68
49
4Rpz = 32
Rz = 8 mph
28. oi = ae. ae =
5 10 15
(a) 5Np = 2Np
1 3 33
(b) Np + Np =
ll 35
a —_ —
10 15 15
Substitute Np = 35 — Np into (a) and get:
ee oe 20 (a’) 5Np = 2(35 — Np)
1
SNp = 70 - 2Np
ye Oe = =
29. eas ars z a yee mays? 7Np = 70
(x9 ie 2 y y? a
Np = 10 daisies
(a) Np + No = 15
(b) 1ONp + 25Ng = 225
27 = 25
-10(a) -10Np — 10Ng = -150
108 108 108
(b) 10Np + 25Ng = 225
ISNg = 75
PRACTICE SET 30 No = 5 quarters
ee
Pied pie pane
eee y= —-x+4
15. ~
0.00025 x 10
rt ie ane) eigen ha) mae be
ra 25 x 107? OBS 10°?
= 7x 10”
3(a) 9x + 6y = 24
fe y —2(b) —4x - 6y = -12
Pe y pkey Deak ae = 12
x+y y xt+y LZ
ee ee badge
a at+b @ y= -3(2) Sete, 0
eee Pe ie 5 fo oe oes
x Pp a+b p
Pp
ea)
5°5
18. ——.-
0 N6® =
B26 =a “a8
V6 23. Graph the line to find the slope.
(9 lage 22 92:
5V18 18 90 90 15
20. 4a a+2
a+4 J 2a
3 4a(2a) ¥ (a + 2)(a + 4)
2a(a + 4) 2a(a + 4)
_ 8a +a? +6a+8 9a*+6a+8
- 2a(a + 4) ala + 4)
80
Algebra 2, Third Edition
Problem Set 31
30.
Since gabatee eat, See ty LO
= (22) + 2m |x 10m 16
i) 22 = 26; Tne,
PROBLEM SET 31
(Corresponding angles are equal.)
Multiples of 5:
a — 09 30N = 20N + 80
63 10N = 80
x= -—
5 N=8
81
Algebra 2, Third Edition
Problem Set 31
# x+y
x+y me oe
10.
m EVenateey, m
Xo y m
R,T; = RrTpr; Ry = 9;
Rp
= 30; 71; + Tp = 12
11. Byes
617 = 3002T)) Py Ge 10
36T, = 360
12. STNG aN
T; = 10 Zi Mas 6
Distance = R,;T; = 6(10) = 60 miles
13. 54175-= 34 3002+ 2427
(a) Np + Nr = 70 Il 5a)
3a Sal = Bx)Qa ON 34 NS ee yoy
ll 253 — 30V3 + 6V3 = V3
(b) 4Np + 6N7 = 360
Substitute N; = 70 — Np into (b) and get: 14. 3./2(5V2 — 4V6) = 3V2(5V2 — 4V2 3)
(b’) 4Np + 6(70 — Np) = 360 = 30 - 24/3
—2Np = —60 x+4x* — x(1 + 4x)
15. i Poetbe
Np = 30 pansy plants x Xx
(a) Nr = 70 — (30)
x 34+x
Nr; = 40 tomato plants 16. + SS
XQ xt Ae 4
P x(x + 2) 3+ x
100 x of ="1S
(x + 2)(x%+ 2) (x + 2)(x
+ 2)
x7 +3x +3
LEN 1200 (x + 2)?
100
100
N = 1200 x a = 12,000 kilograms 55 2x x? 2xee,
Ly: 4 oor SS + ———
BO ae x?
+ 2x ee
2) eee
1440 4320 ~ Xe 3) vee aeceed
1440P = 40(4320)
18. -x? + 5x? — 6x = -—x(x — 3)(x — 2)
P = 120 grams
19. 2ax> — 18ax? + 40ax = 2ax(x - 5)(x — 4)
Since the slopes of perpendicular lines are negative
reciprocals of each other, 20. —3pax + pax? + 2pa = pa(x — 2)(x —- 1)
y= -3x +b
21. -10mc + 3mxc + mx2c = me(x + 5)(x — 2)
—3 = -3(2)
+b
3.=.b SMe Dilek yu.ty
22.
Since m = -3 and b = 3, y = -3x + 3.
6 2
2x +73 = 3x°='6
(0.0006 x 10~*7)(2000 x 1074) x= 3
(0.004 x 107!3) x=-3
EG Oe 10=)}
: 4 x 10-1
x Se 23.
3x +2
Su) dil St
DOT ATi
Sokal
30x +020 — 12 = 5x4 10
a b
DOt Gee et QI9xX=2
a+b b at+b
b at+b
Pe 2%
25
Gian4
aS TES
4
Eee
125 = 100 + 4c
1 ey
st Ls
/
ASABE
28, ax’ 13) 4x 2 So) aes er = 5)
Substitute y = 2x — 3 into (a) and get: 2+6-4x% —-4 =—2e +5
(a°) 2x + 32x — 3p= 18 —2x= 1
ae a HI) 1
ea
Veet 2
8
27 94. -8MS
wy=712)-3 29. B -= 180 - 30 a= 150
8 8 4
27 15 F + 150 = 180
8° 4 F = 30
en 1 et P + 30 + 90 = 180
De eT hac eRwOr? +x = 2 P = 60
xt + x?
Bee A = 120
+ Ox
x?
x? + ox C + 60 + 90 = 180
=x-= 2
C = 30
=k
— 1
“4 D = C = 30
26. (a) 6x + 4y = 11 E + 30 + 90 = 180
(b) 2x - 3y = -5 E = 60
l(a) 6x + 4y = 11
—3(b) =6r ¥ Fy = 15 A = 120; B = 150; C = 30; D = 30;
ox = 1 :
1 opie
ea Si 42 = 2 Fn? |= 6m
TU
(3.2)
1 | = (2d)°p) = (12 m)°2 = 144m
Agsquare 4
83
Algebra 2, Third Edition
Problem Set 32
(b) Np - 40 = 30
Np = 70 dimes
2/14 3V14 _ 4V14 _ 21vi4
7 a 4 14
= xX of = is
ie 300
100
p=4-1 20 _ NM
24 1440
pa A= 2
24NM = 20(1440)
ip =,3
NM = 1200 grams
PROBLEM SET 32 WD x of =
O87
Se— weLOI
R; = 8; Ty + Tj = 10 [2 #2 = SAS pk 2 8
3 2 Bes 2 v2 3
4Ty + 8(10 - Ty) = 56
ATy = —24 _ 2V6 , 3V6 _ 5v6
6 6 6
Tw = 6
10.
ce 2% 2)
x+3 x74 5x46
Xo 2) 2x —2
(x + 3)Go42) Bae 2)
1 8 1 8 ade
JO Ka, 3A
Siince m =-——a anandb=-,yzo = re t+ -.
--x 3 ae
5 2,
Que
— 5x 15s=F40
(0.0035 x 10!>)(0.002 x 10!7)
13. Se= Vil
7000
x 10°3
Mies 10 107). 7x 10" beet
+ 2843
id 7 x 107° 7 x 10°°
=x 107° xX Se poe
25.
2 A Oe
x+4y y
Ds
y Bes yea Ay
14.
x yi ches =ye= 30)
y yey x = -30
xy + 4x? y? _t xy t+ 4xy) ..
15. 1+ 4xy
xy xy
a
Wed 4/5(2V10 - 3V5) = 4V5(2V2V5 - 3V5)
= 40,2 - 60
y=—x+2
a
a
N
&
&
igi
z
td
|_|
si
ies
|
8
asus PRACTICE SET 33
() ete PONE Lora m Sa mz + 3 P
(Doyo =) my as
+ ms
m(a +m
(b’) y = 3x -7 a yanksOs+ sid
Cea Cre 2)
Substitute y = 3x — 7 into (a) and get: yor s
(AVR 4°20%-— 7) = 5 as+ms+my yrs
Ix <= 19 I) ae as
ES
a yt+s
aes a
Pighae ea
_ (as + ms + my)y + s)
y=
By ot(2)-S-5
19
hes =a
49 8 am(a
+ m)
9. z = 360 - 150 - 70
4. (a) Nr 8Nz + 10
z = 140
(b) Nr = 11Npz - 5
ger se
Bs
Substitute (b) into (a) and get:
140
(a’) 11Ng — 5 = 8Nz + 10 = — = 70
oe
3Npz = 15
10. Since the slopes of perpendicular lines are negative
Nz = 5 blues reciprocals of each other,
noo
24,
3
= 1.5 x 10°”? y,
4x x* + 4x x
¥ van x ‘ l—xy _ x? + dxy
16.
= a! x 1 - xy
x x 1 — xy
rN
17. 3/18 + 2V50 - /98 BOCNCLO
feEN ot
= 342133 + 2V2V5V5 — V2V7V7 Een
EREEES
= 9./2 + 10V2 - 7/2 = 12/2
4x + 4xy ~ 4x(1 + y) = Wry
18. Substitute y = —x + 1 into (a) and get:
4x 4x
(a) 28 — Gx F P=
a b cx + 4 Shee a!
19.
a+y eo x+y 4
n ax e b(t :+7 y) x? (cx + 4) x=-—
3
(xty) (x+y) (x+y)
axe b(& af yy) + x (ex + 4)
‘ x(x + y)
4 6x —2
20.
ct 4 eo x7 +2x-8
€. te~ 2) 6x -2 a Divide 2x* — x by x — 2:
Pate ee = 2) eae 2) 2x?
+ 4x7 + 8x + 15 +
fy 85 8 IO aa —2x - 6 2)
2x4 Onder Owe Oe 4 0
~ (8 + 4)=2) ~ &@+4@
- 2) 2x4— 4x3
4x3
+ Ox?
21. 5x? + 4x3 — xt = x2 — 5)(x + 1) 4x3
— 8x?
Se — x
22. 10k? — 7k*x + k?x? = kx — 5)(x - 2) 8x2— 16x
15x + 0O
23. apx* — 20ap — apx = ap(x — 5)\(x + 4) 15x — 30
30
AAD 2482
24.
3 ge Check:
88
Algebra 2, Third Edition
Problem Set 34
au Kon ae
100
Rz = 30; Rr = 40; Tz = Tr+ 2
RrTr + 20 = RzTz s = 42 x 1 ~ 60 tons
70
(40)T; + 20 = (30)(Ty + 2)
40Ty + 20 = 307; + 60 a a
100 300
107; = 40
100S = 50(300)
Tr =4
S = 150 grams
Time = 7a.m. + 4hours = 11 a.m.
Integers:
N, N+ 1, N+ 2
S(N + N + 2) = 8(N + 1) + 14
PROBLEM SET 34
10N + 10 = 8N + 22
De 2Nag= 12
=r) N= 6
Dg
The desired integers are 6, 7, and 8.
RpTpz + 60 = ReTg; Re = 40;
——» _ | gee
Rp
= 50; Tg = Tg + 3
50Tz + 60 = 40(Tp + 3)
OE ee Ee ee
+ ae b- a ab b- a?
10Tz = 60 a ov ab baa
Tz = Obr
1 b lox SF os
Since Benita left at 11 a.m. and traveled for 6 hours,
she got within 60 kilometers of Elliot by 5 p.m. x Eee ee ee
Xx Xx Hg x?
x,
Dp
Bieicreere= Ven, = 3 ABase x Height)
1 :
De
RrTr +14 = RcTc; Rp => kay i
= 3 (2004) + (4)(4) + (12)(4)
Rc = Lie Tr = Tc
x= 10 x(x + y) x(x + y) (x + y)
ax? + bx? + cx(x + y)
11. Since the slopes of perpendicular lines are negative
x3(x + y)
reciprocals of each other,
1 2x -—1
eared
=—x+b 20.
x —-3 x2 —6x +9
«(BE Se ay 2x -1
Ce oe
D ~ (x — 3)(x - 3). (x = 3)(x
- 3)
0=b SAT
12 Del
1 1 (x - 39
Since m = — and b=0, y = =x.
2 2 x? ~ 9x + 13
(x = 3)
12.
2 C 2/2J9 3V9 V2
9)IE amie We ue a ph ara Mie
9 Quy V9 V9 « V2 V2 21. 4x? in? 4 Dae Ox + 2)ie = TD)
_ 2v18 — 3V18 — 4V18 — 274/18 22. ax?p — 8pa — 2axp = ap(x - 4) + 2)
Ly th 9 2 18 18
J B23g18)
4 2392 23. yx? — 4xy + 4y = ya - 2)@ —- 2)
18 6
fe es
fee 5% 4y* +x y*
(b) y= -o{|p.=)
7
i14i erell101 -125° 79 *= get
es 1 a
Fe Aa Wij ce owlWe 25
27. (4-2)?
+ 2x7F 3)
= xt + 2x3 + 3x2 4 x9 + 2x? + 3x PROBLEM SET 35
= x44 3x3 + Sx? + 3x
Du
| 1200 ace
(a) See
Dy = 2
D,
(b) x - 3y =4
RyTy + 1200 = R,T,; Ry = 3Ry;
(b’) x = 3y + 4
Ty = T;, = 30
Substitute x = 3y + 4 into (a) and get: 30Ry + 1200 = 3Ry(30)
(a’) 3(3y + 4) - 2y = 2 —60Ry = —1200
Ty = -10 Ry = 20 yards per minute
ra) R;, = 3(20) = 60 yards per minute
eae t
(b’) (-2) rita Boe
7 7 7
(3-4)
7 oe
RrTr + RwTw = 56; Rr = 4;
Ry
= 6; Try + Tw = 12
AT, + 6(12 - Tz) = 56
29. (17)? = H? + 3?
17—9 = H* -2T; = -16
8 = H2
2/2 =H Tw = 12 - (8) = 4
They trudged for 8 hours and walked briskly for
Area = bey seals = 6/2 cm?
4 hours.
eyes 22 2) ex = xy Dp
—Dg
30. Slee
= —-l[-1 — 4 + 8 — 2](-3) +-3) — 3-4)
= Ns). 3 Sl? = os 12
RpTp = RpTp; Tp = 12;
Ty = 4; Rp = Rp + 6
PRACTICE SET 35 12Rp = 4(Rp + 6)
(14 — 2) x 180° = 12 x 180° = 2160° 8Rp = 24
Rp = 3
The sum of the measures of the exterior angles of
any polygon is always 360°. Dp = Dg = 3(12) = 36 miles
91
Algebra 2, Third Edition
Problem Set 35
ofan
100 13. al 42/2Be = “+e
3/- OT Ae 2S=
5 7 5 V5 7, V1
40
— x A = 40
100 _ 3V35 , 2V35 _ 21V35 | 1035
ae 5 7 35 35
_ 31V35
wr 35
2020 Vv
400
20V = 20(400)
14. 1 V5 9f829 = as
WZis _ Fe
EE
V = 400 grams _ 2v10 _ 9V10 _ 4V10 — 4510
7 405 mM 10 10
Lateral S.A. = Perimeter x Height
_ 41/10
a (Fem) + (52x29) + 20|m 10
x 10m
GF» rea,
= (4m + 20)(10) m? ~ 325.6 m? b a b ay a ae
15.
xy xy Bb xy
1671/2 a 1] = 1 b b xy
1642 m4
Seay x+O6(x+y) x+y
ia sels at ot te A Cee
ee 16.
4
25 52 SY
a 4
at
x+y
4
x-3 2x
27.
a eee
4x - 12 - 14x = 140
-10x= 152
x= -—
Sicpe eye ea ’
: 29. 2x - 2x0 = 37
YS te? 7.
—x =—+—
Sie13: Wig
9 4 4
Ce
3 gene Liman be Wea
des ceva te 9
= ee
any 4
aly
3 30.
4 1 4 1
eee aa) =. eG
21. : 4 2x -—2
x (xy) x(x
4 y)
- 4 Qa =x «a2y* - 2x +4
x2 (x +ry) x? (x + y) x(x ¥, y)
3% Dax,
22. ——_ - —————_
x—-2 9% + xe- 6
* SA(X Foy” 2x
= 2d (> 2)05+ 3)
*OXe427)
= —2\(7
+3)
Algebra 2, Third Edition 93
Problem Set 36
PRACTICE SET 36
x2 — 6x +9 ie AO
x2 + 5x — 24 yr 72
RT; + 80 = RpTp; T; = Tp = 4; Ry =)
- ~3)G—F)
(x - NG+By _x-9
(e+ Ble 3) (xe 7X -:2) x —-2 30(4) + 80 = 4Rpz
200 = 4Rzg
x2 + 2x - 8 We tae:
50 mph = Rp
x? — 4x* — 21x x? = Ix
~ @+Da—-—2) xe—7) _ x +4 Multiples of 7: 7N, 7N + 7, 7N + 14,
ee— TNE 3) Ga. x+3 IN + 21
4(7N + 2) = 3(7N + 14) + 15
28N + 8 = 21N + 57
IN
= 49
aa X of =i
N=7
The desired integers are 49, 56, 63, and 70.
BeOS 0 W
100
W = 1360 words 2x + 4) + 2(
=) + 2 +1)
+ 2x 31 in.
6 3 Check:
21.
(44 2)— x7 +3x+2 x(x +2) 2" (e +11) Wices)
6(x +d)5 4) 3x? een gan lor cok ft
x2 (x + 2)(x + 1) x2 (x + 2)(x + 1) I(x + 1) lig a Pee
-3x7 + 6x + 6 er eae ree eee ee
x7 (x + 2)(x + 1) 28.
Pp cua fmx + b
22.
ax ts ax 3 24
as
pax? * ax(cx + a) mx + b
axe ax a’ x"
pax* + ax(cx + a)+mx
+b
a’x4
epee ee
23.
7 4 2
129 Ses re er ee. = "28
—9x = -6
2
x=
3
r ance y ? 344% 4 53 2. j
Nitrogen: : 1 x 14 = 14
ch ee y woe
ee ire oe Hydrogen: 3 x 1 = 3
Total: 144+3=17
= 3 - 3x%y?
308 302 ee) 23S ea Oy 2 ihe =
See ieens =: 261604 ee S16 17
17N = 14(850)
N = 700 grams
PRACTICE SET 37
a. Carbon: Ve Vig 3. Nitrogen: cal es
cam O Hydrogen: 4ex l= 4
Chlorine: 35x02
19°x 22=058 Chlorine: 103552 35
Fluorine:
12 + 70 + 38 = 120 Total: 14 +4 + 35 = 53
Total:
ae Rr = 2(25)
= 50
2y-4=8 = :
eG B = 25(4) = 100 miles
x-=-70
6 (ot 3) 2) 4 OS LE vet a
x(x + 4)(x
+3) (x4
+ 4)(x - 2 “Sy +4
PROBLEM SET 37 m :
1. Hydrogen: 2 x 1 =2 7. ax(x —"4)Gst 3) OPA )* ae
Oxygen: 1 x 16 = 16 (X% 4) OOS) ax(x — 4)
Total: 2 +16 =18
g 948 . __} 1 1
Gr Oxygen ~ 94/3 (gl/3)4 16
18 5400
18(Oxygen)
(Oxygen) (
= 16(5400 ) 9. (27743 = ee eee 7 ne
Oxygen = 4800 grams (-27)43 ((-27)/3)4 ~ 81
= = 1 m= 2
— A
ie
93/2 = (-3)(-932) = (-3)(-9!2)3
9
12. =x +d
mZPON = 180 — 85 = 95° 4
Xe Sel 9
oa
2= ie + b
—(-4)
y+4=9 ll=b
y=5 9
Since A and b= 1l,y= ax +
13; x = 2(90) — 80 = 100
yd = Oe eI Ss 19. 2x + 280 = 360
2 2 2 50
gee100 ee2
SY2 — 80 x = 40
y + (40 + 30) = 180
ae | e y = 110
14.
eee a BO ae
ae ae: x? Xi, 20. (a) 3x — 3y = -6
x2 Be2 x 4 =D
a he a oa ee
15. eees ety
ere Gx iby 5 ax
— my
x Xs Che
= ins
16.
3J2 V7 5V7 V2 _ 3V14 5/4
iE Gf a ON
242 7 2
6V14 _ 35V14 _ 29/14
a4 Me. 14
17:
211d WS. vo WES = 85/33. 54/33
S640 . J Vt< 03 11
_ 22433 _ 15¥33 _ 733
33 33 Khe
Substitute y = —3x + 6 into (a) and get:
18. Graph the line to find the slope.
(a’) 3x — 3(-3x + 6) = -
12x = 12
a3 = Il
(a) y=()D+2=3
(1,3)
ry, By
21.
x+5 x? + 4x -—5
x(x -— 1) ae
TRG 1) et Se
x” — 4x
(x + 5)(x = 1)
4 ellie: 4 6(x
+ 2) 36x = 16x? — x?
22. — x — 16x* - 36x = 0
x(x + 2) Ey x(x + 2) x(x
+ 2)
_ 6x
+ 16
x — 16x2-436).= 0
~ x(x + 2) x(x = 18)@+4+'2) = 0
x = 0,18, -2
x+2 x -—3
23.
ee PROBLEM SET 38
21x + 14 — 5x + 15 = 70
16x
= 41 3Np = —4(-Np) - 15
Np = 15 protrusions
41
“elgg Zee ie
9 1440
24. anes 9Fe = 2(1440)
Fe = 320 kilograms
16x — 6x + 12x = 60
22x
= 60 Hydrogen: 2X = 2
30 Sulfur: b %32> 632
Sane Oxygen: 4x 16 = 64
Total: 2 + 32 + 64 = 98
25. 3./2(5V12 - 22)
32. 3S
= 3V2(5V2V2¥3 - 2V2) = 3076 - 12 98 196
26. 4./20(3V2 - 25) 98S = 32(196)
= 4,2/2-/5(3V2 — 2V5) = 24/10 - 80 S = 64 grams
(x + 4 = (x + 4x + 4x + 4)
= (x7 + 8x + 16)(x + 4) mp” F mp? — 20 4
x? + 8x? + 16x + 4x? + 32x 4 64 19. 4 4 l6p? — p?
} p*y - 2
16 p= 4
Pipl apsA agar
x + 12x? + 48x + 64 4 4 Pp p
2
Ketek a - mp” — 20
x? = ¥ Shipr=-O 15 p*
(x - 4a + 3) = 0
x = 4,-3 7 x 10778)(3. x 1077
20.
WSS AND
—48x = ~2x? _x
32/3 = (3'?) =A
14.
(-8)!4 =.
1s.
16. (11? = # + [
gee ares4
35 _ yp
4
V35
_oy
Zz
ve =
= perec
in. X 5 renee
1
cal= 5 4 . y <lileees’5°Ae 1
phe)
320 —5 = -——(-2)
(-2) + b
ii. Length DEF = 360 - 2(7)(20 m) ~ 111.64m
23 _ »
2 a x -a iG 5
Pare oy aE ha Gn pte 4
18. 23 1 23
2 Baw pe igri l > Gace O Since m = —— and Db = a er
x x Guak
= a
PRACTICE SET 39
pe pee ee
3 4
20x — 8 — 3x = 84
144s”
- 36 = 0
ley
= 92 (12s — 6)(12s
+ 6) = 0
_ 92 12s —On—a0)
rA7
12 se=a6
en ce See |
1
6 x4 1 Oe + Oxo Ot s= =
Wy,
xt + x?
-x3
+ Ox? 12s +6=0
_x3 x2
12s
= —6
x? + Ox
x? + XxX
—x-— l
bed
Zz
—x-1
0
e s Dik
27.
HEAD
121m
— 64 = 0
(1lm — 8)(11m
+ 8) = 0
llm
—8 =0
Limc= 8
8
m= —
Tt
llm +8 =0
llm
= —8
ap = ee8
La
1 By 2x +1
28. + + nT m= -—,—
WS x+2 x7 + 5x +6 11 11
* x+2 - 3x(x
+ 3)
(et Bix #2) eG Se) X + B = 360 — 306
2x +1
X+B=54
(x + 3)\(x
+ 2)
M2 + 3x Ox +07 + 1
pam pene
- (x + 3)(x
+ 2) D,
_ 3x7 + 12x + 3 Huse XG=—27)
WG HG 2)
X + B + 2A = 180
By eee ue Pe be (27) + (27) + 2A = 180
(ep py) Op) Pp op poy y opp
= p2yl3 2A
= 126
A = 63
1
30: Bee ar B37 = 37) Z = 90 because the diagonals of a rhombus are
perpendicular.
=8-— 4+ 36 = 40
Ss= 420 x 16 = a9 ’
3 7. Area = — = 52 ft
8. x? —9 =0
=e pe OSG (xi - 3)(x
100 - + 3) .=0
29 Oe
100 4 (Kt)
ead ay
28 9. 36x2 — 36 = 0
Ukases = 34,200 — 9576 = 24,624 36(x? 5) ai)
36 - 1)x + 1) =0
Sa Carpons sl e127 12
x = 1, =1
Oxyeen: 2 x 16 = 32
Total: 12 + 32 = 44 10. 24x = -11x” — x?
te x3 + 11x? + 24x = 0
44. 528 x(x + 8\(x + 3) = 0
44C = 12(528) 03-8
C = 144 grams 3
ll. @-1P =@-DE-DE- 1)
P = ete = 1h
ao a =x - 2x7 +x —-x74+2x-1
=
3 — 3x* 2 + 3x - 1
eer = Bee gape OT
100
100 v x(x + SX + 1) (x + 7)(x — 2) ose
Mae ORs re ee = (x 5x= 3) xe Dal) x= 3
5, Dp
Pa 14. —
-3?~~ = -l|-27
2/3 = (27
1/3)2 =n
17.
(359072) <0) 24s 1077)
2.4 x 10!4 2.4 x 10!4 i
Low
= 1x 190° i
4y = 60 6 OOF 36
Sig ES)
26. 0.002x — 0.02 = 6.6
22. mZWXY = mZYZW = 68° 2x — 20 = 6600
Oy 3 13 aa
See 10 x = 3310
w= 5 3 2
ore epee Ma ernie3 iy
2,
3y +4 = 11 Soothe RL) ee |
3y = 7 i FT ea) y(3x + 2)
, y(x+1P yx + 1h yx +1
as = Sy +3y+2xt ot2x +Sry Hy
y(x + 1)?
23. 3V12(4V3 -— 3V3) = 3V2V2V3(413 - 3/3) _ 2x* + 2x + Sy + 6xy
= 72 — 54 = 18 ye eel
102
Algebra 2, Third Edition
Problem Set 40
Pe mx = iz et 6. te =u
s m x a
m + px = mxz ac + mx = acx
m> = mxz — px mx = acx — ac
m = x(mz - P) mx = a(cx — Cc)
m? ow. Li
Vs = +c= =
a
PROBLEM SET 40 m
ax + acm = my
1 poe x of = is a(x + cm) = my
100 ae my
ao x 1,200,000 = ME x + cm
100 .
ME = $1,968,000 8. Le nL ee
Pp My
Ve é 6y — apxy = mp + kpy
2. — x of = is
100 6y — apxy — kpy = mp
y(6 — apx — kp) = mp
380. 4800 = MS ‘4
100 — mp
MS = 18,240 words : 6 — apx — kp
eg
Cc
ee
k
Bs ee ee
18. P Ra A apeee
ak — bck = cm
ide (eel gs teeoe
k(a — bc) = cm P Pp a’py— 1
ha om xy? - 4p
a — be ~ @tpy —1
23. Volumec,):
Cylinder =7r-xh= 32 cm?
x(x — 5)(x - 2) Cat-6)(e = 3)5 _
14. 3
G+
6) 2). e#= Hie
s) - 2 32m7cem
r= ————_
87cm
15.
(-4°)?
rap = (1)(47/7) Ba au) 28
r= V4cm? = 2cm
4x7 a she (b) The y-intercept is -2. The slope is positive and
y? a the rise over the run for any triangle drawn is +1.
17.
py)
2
<_ Se y=x =2
y a
4x2 a + ve ya’ 3 —- 2x x
25. + —=
i ax ya? 2 4 3 :
7 ya a 9 —- 6x + 4x = 60
ya 2y? a =i2 =2h
=a 51
4x2a3 + y?
51
x= =—_—
2y* a -2 7}
eee x1
+ 4) =
2A RR 11136
100
100
5 {re2 22
2
ay Meee TR 1136 x —
284
= 400 tons
1 ft _ 840 ~ 70K
OM SA tat eee Dr Dw
£54 eae OR SED [P+
76 |
Dr = 16(4) = 64 miles
thie lei
6. 87 ft? x x — = §7(12)(12) in.”
1 ft 1 ft
105
Algebra 2, Third Edition
Problem Set 41
2x2
+ 4x + 8 + —32
16. (m2)
Ove OV Hee el
2x3 — 4x?
Ax? + Ox
4x? — 8x
8x = al
8x — 16
10. 15
2
17. 42 = H* + (3
D
Cae
16.= H? + Es
4
Ate x“km
4mp
—- xy
Area =
ax
5 +
n(2)° = 11.84 units”
12. 8 x SF = 20
ShiaDD 18.
x(x + 5)(x +3) (x + 4)(%— 2)
(x1 —2)(4—2) xe + 4)Geees3)
et)
fags wie
2 Seygeee>
Eas
ce
x 1
19.
32 = 322/5 aay ;
5
ily
Se SS
) Pp
a ates a x
Ce ern = a leet
Te
aes 20.
aes axe x
x x ax — 4
13. 2x + 40 = 180
De
= NAW - Cerra
+ ax? - 4
x = IAL
Since ADFF is equilateral, y = 60. (2.1 x 105
21. (5X 10°) 105 102
k. + 70 + 50 = 180 1.5 x 107! ie 10s
k = 60 =7x 10°
25.
— =e x * ~ 109
= (4x x10%) _ 36 = x
1073
a: (3.10702 10972): » 6 10728
—3-x-x = 6 x 107
=—25
= 17
(0.013926 x 107!*)(27,153 x 107!)
6354 x 1077!
(gx 102)"(3, x 0a)
6 x 10°78
3 x 10"! gu
aah tl ees cel
x
PROBLEM SET 42
= 204d eae
17
396 fish = P
2 2X 2
27.
e(x-2) (2-4) 2. ates = 4800
& AA Xetkee) 100
Ss = 43000x< _, = 6000 students
x? (2x +2)
: x? (x — 2)(x + 2)
i ee
Pe 4 Abe ae — Dx" 3.
3600 43,200
x? (x — 2)(x + 2)
3600P = 600(43,200)
-2x3 - 2x7 + 2x +4
P = 7200 grams
4. Potassium: 1 x 39 = 39 a Gd e pe
Chlorine: 1 x 35 = 35 : y d
Oxygen: 3 x 16 = 48 adx + dmy = pcy
Total: 39 + 35 + 48 = 122 adx = pcy — dmy
Ones
122-488
ea
ge
122K = 39(488) 4x? - 8x + 16 -
K = 156 grams 12. x +2)43 4 0x2 + Ox- 1
4x? + 8x2
5. N; = 4Ny + 2 2ox-
2
+ Or
CYNE 2 8x? — 16x
(b) N, = 8Ns
—6 1éx — 1
Substitute (b) into (a) and get: r+
4Ns = 8
. ESE
(2472)(570,185 xx 107!2) ie Oe S\Oxete
pe5s) =
(243,195)(0.0003128 x 107°) \ oa ai
5 5
| OLeU 3 Ot Ney 7 Sa k= 2hes
(2 x 10°)(3 x 10719)
x(x =— 2)% =1) ‘Get sy +3)
=i\5 37 16... ———— |)
8. UIE ee zene) (x + 4) = 1) xe + 3) — 2)
x
be Geek}
-17 41 =
To 10-°
7 913% Ge) peek es
Me fe i an = “(gis * 27
lyd lyd lyd
x in. J 12 in. 12 in. ee m— 4x x
1 ft 1 ft 1 ft 18, +~—__—(= <= 6x -1
= 40(3)(3)(3)(12)(12)(12) in.3 6= Ox oul ae
x Ey 6x -— 1
m — 4x
100 =Se.0e3
m D =
- x 5 6x - 1
2 — =
Ne ie Ze 19. 2V3 Vil _ SVil V3 _ 2V33 533
m~ = cp + cmx A Aa, 3. “4B a eT re)
reheonea
2
_ 6V33 _ 5533 _ _ 4933
p+mx 33 33 33
- 4,2)
20. 3\6(2V6 - 4/2) = 3¥2/3(2V2¥3 :
=2ei= 4 x
= 36 - 24/3 28, 5 ee
45 =a 4 16 16
3 a4 5
ea 4 ig eens
51 =b
273 TE
3 4 eT
3
23. (a) 3x + 2y = 80
29. ——j— =
PRACTICE SET 43 5. | a Cc |
a. 4cos 75.8° = 0.98
RcT¢ + 20 = Ri TL;
b. 6 sin 37.42° = 3.65
To = T, = 5; Ry = 2Rc
; 3.61 1
c. sinC = 752 = 0.48 ryan + 20 = SR,
3
20 = —R L
d. cosD = ~ = 0.76 2
; 8 = Ry,
D, = 8(5) = 40 miles
e hy arpa ok = 0.77 y
1.30 i ,
6. sineA = _Oppestt =: cosine A = faecpeent
f. Inverse tangent of 0.405 ~ 22.05° hypotenuse ypotenuse
emgentAce opposite
g. Inverse sine of 0.794 =~ 52.56° adjacent
Na = 184 grams pt xz
XZ m
4. eC The ppb oe
100
NC = 2310 grams eR Mia ip
cxzZ = mp + ckp
Cw
m + ck i
18.
1 Ax* +1 x
CXZ
19. ee a ee
=m ihe ay” — 4x x
cp
+ kz x x ay* — 4x
2
ix ¢ = #+(Z)
2
164 4 20.
give AS
4
113
a= —
*
4-SF=6
21. 34/9 (SV12/— 2) =93V2 (BV24243 = V2)
on.2 = 30/6 - 6
2
113
gilS.2,,
4
£5 = -=(-2)
+b
111
Algebra 2, Third Edition
Practice Set 44
2
y Say37 5
(by-x
+ y= 2
y=x+2
I-11!
why
anh
DS Ghats
D? = 36 + 1
D = 37
30.
NO
ll | | |
Re
Nl
~~ Se) lr|e N|[e Ile
N Sa aan
(= SS,
Substitute y = —x + 2 into (a) and get:
(a’) 2x 3 oS
Spe=
PRACTICE SET 44
tan bes aa
ye="6.4 tan ol
y = 2.46
27.
H? = y? + 6.4?
H? = (2.46)? + 6.42
3x* (x - 1) 2x. =a) = 147.0116
x(x + I(x —-1)_ x7 (4 + DG - 1) H ~ 6.86
x? (3x + 2)
x* (+ Dix) p-=i2? 418"
3x? — 3x7 — 2x +2 + 3x? + 2x2 p = 208
x? (x + I(x - 1)
p = 4V13
6x° - x7 - 2x + 2
x? (x + 1)(x - 1) Lane ae
8
28. +(e
—— - x = 56.31
p BY P
tany = 17
8
y = 33.69
PROBLEM SET 44
cos 31° = hua
—2(N + 5) = 6(-N) + 18 14
NG=a
sin 31° = is
4
Odd integers: N, N + 2,N +4,N +6
v= 14513) a7 20
S(N + N + 4) = 8(N +2 +N + 6) + 22
10N + 20 = 16N + 86 cosA = ft
—6N= 66 4
N = -ll A = 55.15
The desired integers are —11, —9, —7, and —5. B + 55.15 + 90 = 180
B = 34.85
270 i
700 ~ 2800 sin55.15%= —
1
700T = 270(2800) % = 7 sin 555° 05.74
T = 1080 tons
ets 5280 ft 5280 ft
Carbon: IP S62 12 = 4(5280)(5280) ft?
1 mi 1 mi
Chlorine: pies See 70
Flourine: DSS (= 38 10.
m d
Total: 12°70: 438 = 120
2c
120 550
dk
120C = 122350) =a
pt+cd
C = 55 grams
| Dr Dp ! 11. uae
ia ep c
200
RrTr RpTp = 200; Rr = 25:
Dp = 25(2) = 50 miles
B + 28 + 90 = 180
am
B = 62
x — dm
cos 28° = 20
H 13, If mZBAD = K°, then mZABC = (180 - K)°.
(a) 4x + 2y = 8
BPD = i) 1°
cos 28 : (b) 4x + y = 6
(ay 49-4
2y = 8
tan 28° = ——
9.5 -l(b) -4x - y = -6
y = 9.5 tan 28° ~ 5.05
7. B+ 31 + 90 = 180 (a) 4x + 2(2) ll oo
B= So Xx ll —_
14. 24x
21. [2-5sit. W2 MA Sat
3 _ 10x? + 24x iT V2 V2
_ WM17 _ SNS _ 634 _ 85/34
ll =
x(x — 6)(x - 4)
i 34 34
0, 4, 6
Xx
_ 79/34
0 ties
15. pape ast i]
x? + 4x3
—4x3 + Ox? (b) The y-intercept is —4. The slope is positive and
-4x3 = 16x" the rise over the run for any triangle drawn is x,
16x2 + Ox
1
16x? + 64x y = —x-4
2*
eye = I
—64x% — 256
255 v7 2 _ as tix,
24.
3 uv
x(x + 7)(x + 2) (x + 5)(x + 5) WOke = 4S ye te ID BIE
17.
(x — 3)(x + 2) x(x + 7)(x + 5) Aes
Be Se S) 5¢ =A)
25. he eee
5 5 10
18.
Lees,
5 10 10
1 rine ig ae LaeARO 9
19. Height = 4 ft x in
= ain.
10-"16 S* 32
er x height) 26. (a). 2% yr =5
Veone = 3 Base
Vermek —o
i
= 3 m(4)? + 5(12)08) (b) 4x + 3y = 9
o\2
= = H(2) Jas)in.
20. ponnnwence =
7)‘
( Z
c 6G Pal) eats
71. es x3 a
x-+ x — 4 (:i =] Sra
IPE Te Shain F SP?
x74 x4 x2-4 4 2 Be
7
5g (51,463 x 107"*)( 748,600 x 1077!)
SHA —21
a Ae + 14D
7,861,523 7
(5x 107!9)(7 x 10716) 3)
= t——__ -.___«“=£4x 10 Check -—1 ; | ae
1 ia\ ces
esl
8 x 108 - 5 + 8:(5 +48 +2) i
; : (/8)? = 8
29. a - a? = (2) -2(-3) =4-5-4 8 =
2 2D 4uek 48
2
Cheek rs (-+ - vé+=] =
a0) 2" — 2? — (2) = |-2 46% atey? 7 7 7
a
Bes oe ie ag ee eS (-v8)*
=8
Ome
ea
34 if
= 272 grams
Ty = 12; Ry = Rp + 30 15. 8 x SF = 12
12Rp + 80 = 8(Rp + 30) ry eee
4Rz = 160 2
Rp = 40 mph rxo=5
1. Gey= 11 2 ees
x+7=+H/11
x=—7+/11 Saar e
SG 12)s 29)eee
x+12=+/2 32 3
x= —12 4.5/9 eee 2
2 39-26
9 a3 =13
(++) —-—=d
5
a 13 _G
+= +/13 tke
x= -—43 + 13 16, mx
eo
4 Pp
ae
. mxp + 4y = 4cp
10. sin,33°
= — 4yy == 4cp 5— mxp
10
dy
x = 10sin 33° = 5.45 4 =p
Cc —- mx
116
Algebra 2, Third Edition
Problem Set 45
as =.- 7 on
25x - 10 — 7x + 21 = 140
20 x(x + 7(x-1) (x + 5x - 3) 18x = 129
"(x + 7) - 3) x(x + 20%-1) ee
_x+5 <2 6
sas ae
28. (a) 2x + 3y = 3
z 1 1
ea (2797/3 ((27)'/3)3 y
a St237 oj
oe SD (b) x — Sy = 20
243 1
y= =x -4
22. Perimeter = (24 + 477) cm
Circumferencesemicircle = 24 + 4a - 12 - 6
Am
= 47cm
: 27r
Circumferencesemicircle = oS 47 cm
r= 4cm
2
Al€asemicircle = ee = 25.12 cm?
f= 7979.91 x
3 eo aegie Xx 6px - p” (a) xa fy= 3
SOSA Opis er -— -2(b) -2x + 10y = -40
a x 6px — p se)
4 4x7p -1 37
6px - p” y 3
») 3 2% 3. Nitrogen: 1x 14 = 14
ee. ep Oh Hydrogen: 4x 1 =
i
_ Ax +2) 3(x - 2) Ix Chlorine: 1 x)35) =y35
An) ee, Bye Total: 35 = 53
14444
ae BE > See 140
2-4 53. NH,Cl
-3x + 10 35NH,Cl = 53(140)
yt = 4 NH,Cl = 212 grams
iver 2342
a, eston = (22Ly - (ey 1 1
Dae) mie tech 6
. Geleed EB
a) Ne 2
N 7 age,
Prmee
ee ee (b) Np = 3Ng + 11
16 16 16
Substitute (b) into (a) and get:
(a’) 2(3Ng + 11) = 7N
PRACTICE SET 46 - Nr = 22 elves
K
a. a [45/3 — vee (b) Nr = 3(22) + 11 = 77 fairies
eeedo oS
AS Sasa
er rn a 6 5/3 +2/2-
2 3 600
5"
aewes Llead 8 _ 5V3 V2 , 2V2 V3 _ io
= EE MOD ola BS
| S16,sagennaaoeng
26 a0
_ 6VIS _ 25VIS | 45V15 _ 26V15 lle
15 15 1
: a _ 15V6 | 4V6 _ 60V6 _ _41V6
ce. ¥7V7 = [7)!2]!2 = 712714 = 73/4 6 6 6, 6
2
12. («-2) =7 19. 6 SSP oe ee
3) 2 12
TN es od
> 12
2 7
2i — = AYV7Ff
Ns btasr
3
1
2 qj
5.—=
13.
(: a
—--—|] =
? 12 tai
35
CS
4
ae 9.007
1 20. —40x
= 13x? + x3
ee ete
or ew
V5Fs
x? + 13x? + 40x = 0
x(x + 8x + 5) =0
14. B+ 24 + 90 = 180
x = 0,-8,-5
(x + 9)(x + 5) xX = 2) x +4)
21.
x(x + 9)(x + 1) (x — 7)(x + 5)
x-2
cos 24°
1 1
22. glisy4 16
Seacos AL 4
if
500-210
sin 55.15° = ba ,) = 75
—
(476,800)(9,016,423 x 10*)
16.
408 x 10!° — x2 x
foal Oe: 10°)(9 x 10!°) 24.
38 p- a 2x?
= 1x 104 + 2x7 ad
4 x 10!
x p- + 2x?
k
17. ES
fh Ee ee
m
vial
30.
Pep
=xt3 ix+4 PRACTICE SET 47
2 3 First method:
1644/4 2 143./4 = [4(412)]13 = 438416
—3x + 9 — 4x -— 8 = 30
= 46/641/6 _ 47/6
29
x= -—— Second method:
a
644 ahigoyaets [29(22) 12] 13
= 76/35-2/2
1/3 =_ 2 5251/3
2% GO
=e ome_ 2 47/3
28.
4 3 $9.3 = $132.3 = [32(3)1/2] 1/6
aeol 85 mi 60 s 60 mitt mi
10 —
8
:' >=
| matt
- ——
1 hr
= §5(60)(60) —
on ar
120
Algebra 2, Third Edition
Problem Set 47
= 55/6
The desired integers are —9, -7, —5, and -3.
48 =—s192
SER ee ye
82 H, SO,
seas) 2 0
48H,SO3 = 82(192) 2V6 _ SV6 , 8V6 _ 5V6
2 5 We
H,SO; = 328 grams
14.
RrTr + Rwlw = 48
Rr = 8; Rw = 4 i iiaaa tread eRe
35 Sh) 35 35
Tr + Tw =7
Tr = 7 - (2) =5
16.
Dy = 4(2) = 8 kilometers
Dr = 8&(5) = 40 kilometers
52.1ns 1 ft 1 mi 60 s 60 min
——__—_ X sx x — X ——— 17.
s 12 in. 5280 ft 1 min 1 hr
_ 52(60)(60) mi
~ (12)(5280) hr
x*p xp — m* =
m a m x — pm
24. oie Hd m
x
ll +& m m x — pm
_ x2p =m?
S|
+ni
alm "ox = pm
I |
= (aT a Oe CE + 3)
a
x1|
Pays
Cx TGP Oe ae — S)Ge “F 3)
(36,421 x 10°)(493,025)
19. _x-2
40,2 16 x 10’
x -5
_ (4x 10°)(5 x 10°)
= 5x 10°
4 x 10!!
1 1 1
26. 97-43 = Sa SS ee ee
20. Zip
x |3
a
acy + cpx Pfs (a) x — 4y = 8
acy = mx — cpx 1
See
=-—-x-2
(b) 2x — 3y = 9
04Viel cca( Se y =
Ds,
—x37 -—3
22. B? = 42 + 32
oa
eh
| ah
BBEo
N|o
Ww
ri[|m
Nw] y
Soe
216
Fe.
972
1 1 1 216Fe = 56(972)
24 8 Bbw Fe = 252 grams
b vx+5+12=
-ll1 Dr
jx
5 = —12
x+5= 144
aDe
xi= 139 RpTp = ReTx; Tr = 20;
Check: + 5 + 1 = -ll
4/(139) T,;= 10; Re = Rr + 30
4144 +1 = -l11
20Rp = 10(Re + 30)
12+ 1 # 11
10Rp = 300
No real number solution exists.
Rr = 30 mph
C axe sx 10 ee der
Rr = (30) + 30 = 60 mph
jx? +3x-10 =x-2
x2.+ 3x — 10 = x? - 4x 4x <3 = 3.5
Ix -14=0 Vx-3=7
ix
= 14
x-3=49
Kotz
ee 152
Check: ./(2)? + 3(2) - 10 + 2
V4+6-10+2 Check:
52 -3 -3 =4
) f= 3's
1b vx+54+3=-4 Jw
N
Nn
pa = | HT] aS
vx+5=-7 SN ee
x+5
= 49 * | | tl S
x = 44
Check: 44 +5 +3 =-4
7+3=-4
-5 = -5
60 mi 5280 ft 1 hr 1 min
——_ x ——_ x x 18.
hr 1 mi 60 min 60 s
_ 60(5280) ft A = 48.19
~ (60)(60) s
19.
10. lo3/2 a te) = 1/29 1/6 = 22/3 200,000 x 107!9
_ 4x
4x 10°
Dee OOi se
|my 3 my
11. = (my) !2(m4y)!3 2 x 10
= my m3 y/3 a m7!3y5/6
20. LACIE
Ta PR:
12. (Pel SAGE BL [23(2/3)]12 = 23/2916 x Pp y
bpy -— cxy + kpxy mXp
= 25/3
bpy + kpxy -— mxp = cxy
Be
13. 3/2 - |B+ ava by + kxy — mx
|7 }11
3x7’ - 3x + 3 = 8
14, 2,/—- — .J— + 2V308 22. x + 1)3x? + Ox? + Ox - 2
11 7
3x3 + 3x2
ONT es AL 7, ~3x7 + Ox
“Hag
wae =3x- ay
3x - 2
14V77 1177,+———
308V77 = 311/77 3x + 3
vl 19 77 77 -5
a
wl eee
_ =
(a
a eo)
|e “
Be: _
as BH
XN = a
*
oS
Rla Rial
® + Ha +*
" | ‘
be + lla *N Ria
Daas reid |
a* N
ata R ae
Nl ~*~
5 Nhe a
ae i
(he na
nN _
ES +t=
Q
IS
i: 3 ®
3
® ot
|
|e
Bis eae
Elm”
a an\o « ” =o m=
i |
sr st
i] |
\ St om i] 1 |
00
ao
|
PP wits
n iS)2 ll r
y ~ Bl re
fy
go
—_<x
2 iN
ost
x oO
8
coin ss
a i | we
atten Sh © <™
_ alan
+t
——~
a
rs| a
TT | 7
M4
colin =
i |
a +
ae a wrcal
|
on
~~&
¢ &
erie
ke wt
I 00
u
—_ eat
vtisthin
it D
%
AQ is m=
>" 7 +
lun
N® veen wicGeoes
a H l MT
X=)se ae a ce
nou
alx
TT
Q ro} ++ =
D? = 145
D= V145
125
Algebra 2, Third Edition
Problem Set 49
eee 5. Da
y=
5
2 =i
ea Da ae
RpTp + 200 = RgTg
_ TR = Tg = 10; Rg = 240
Ia 6. y =-6x +b
Use the point (3, 0) for x and y.
114 + P = 180 4b
0 ==66)
P = 66 1S#=8b
= -6x + 18
sin 660 = ee:
100
7. B= 180 — 160 = 20
N = 100 sin 66° = 91.35
=~ Br="20
in 20° = N
PROBLEM SET 49 ee ap
L. SONe 13) AEN) ao N = 40sin 20° ~ 13.68
ON = -27
8. Vx = 4 — 3 = 5
hae x-4= 64
2. — xX CB = 1092
100 Check: (68 — 4 -3 =
CB = 100 5 =
1092 x —— = 420 celebrants
260
9. lx? — De Steer
3. Beryllium: 1 x 9 =9 x? = Dyhpeseetae
te ey
Fluoride: 2 x 19 = 38 4x = 4
Total: 9 + 38 = 47 he
38 95 Check 412-94 5. = 2
41 BeF, 2=2
Sia read to, 200in. 1 ft min 200 ft
BeF, = 117.5 grams Dante | cee ee iw (12)(60) s
Sate
22. (x+ 12 = + Dat DO + 1)
14. 3Ixy [xy = (xy)!Beay/? = gef3
= x76 5/6
= (x* + 2x + 1) + 1)
=a 28? 4 ho ett
=x° + 3x7 + 3x +1
15. {2 + 2/2 - 356
21Vi4
, 4vi4 __ 84V14
8414 _ _ 5914 £3
14 14 14 “ie 2"2,
24.
16. 5 [2+3/2 + 162
9 2
5/2 V9 , 3V9 V2
“eo ae”
10Vi8 | 27V18 , 54
5418
18 18 18
91yi8
_ 91V2
6 Miles!
Sis)
OW
bohm
o>)
7.
b= oa
cad | | I Er wi D* = 81 +1
D* = 82
D =n82
18. 25. Use the graph in the solution for problem 24 to find
the slope as follows:
i=)ee 4 —|
Slope
= — = —- 2
x = 2,-6 +9 9
(517,832 x 107!4)(80,123)
19,
200,000 x 1074?
Bits: 10-°)(8 x 10*) = 2x 10° i) Il | |—
—& wa ae >
2x 107°”
20. | + S i | ©
360°
26. Number of sides = —— = 30
12
127
Algebra 2, Third Edition
Problem Set 50
PROBLEM SET 50
1.
(b) Nr = 10Nw
eet eee ee
x2 —9 x7 -9
RsTs + RpTpz = 104; Ry = 8;
Rp S12: Ts cg 10
29. = =2
8T;, + 12(10 — Ts) = 104
Ge=el2) -4Ts = -16
eS 1 Ty =4
Tz = 10 - (4) = 6
30.
Ds = 8(4) = 32 miles
Dg = 12(6) = 72 miles
23a
58
Ne
348
PRACTICE SET 50
58Na = 23(348)
x? = 9x -7
Na = 138 grams
1(N + N + 4) = 10(N + 2) —- 48
aS SS
SS
14N + 28 = 10N— 28
NO
Lo)
% | I 4N = -56
ae |\o
N Nee =
N = -14
sD x OS = 432
100 _
100
OS =
Il 432 x ahs = 180 inches per
day
128
Algebra 2, Third Edition
Problem Set 50
12. = -¥x+5+1
6=vx+5
36 = x7+15
(x + 4)? = 20 Bi se.y
x+4= +2,/5
Check: -5 = -y31+5+1
x= -4+2/5
-5
= -5
7. 1x ye = 5 =f)
400 yd Bh Alt 1 mi 60 s 60 min
13. ——— x — x uA
S lyd 5280ft 1min 1 hr
_ 400(3)(60)(60) mi
(x + 6)* = 41 (5280) hr
x+6= +/41
14. oe [2(2!8)]5 = 2'Sqiis _ 24s
x= -6+/41
7 {37
x--—
= +—
4 2
Tay _ 15v33 , 2233 _ 99V33 __ 6233
=
2 2 33 33 33 33
a. Ve ar +
(746,800 x 10'*)(703,916 x 104)
18.
Use the point (—3, 0) for x and y. 500,000
0 = 3(-3)
+b C0 C7 10")
= 98 x 10%
Qumeh 5 x 10°
Yoo +9
v 1 x 1074
1. x2 — 4x + 20 55 ew)
x? — 4x + 20 = x7 4+40 44 20. ce eS
a p om
Sx
= 16 4pm — 3x2m = cpx
a
4pm — cpx = 3x?m
Check: 4 — 8 + 20
p=
4
4 28.
2E 2 See FLO 23
+ os
22. Op 3 )ae ee hae eS
4x? — 6x2
6x2 + 3x
6x? — 9x
12x + 5
197) = 18
23
6 ey 2x+4-4=x+412
x +5 x = 12
; 10. el el
3. Sodium: 2 x123"=146
Sulfur: 1 x 32 = 32 (e+e4 )er
Oxygen: 4x 16 = 64 i 1
Total: 46 + 32 + 64 = 142 (Peret}=t+ 7
46 |
115 (
x + —
af aad: = —
4
a
142 Na,SO, Z
46Na,SO, = 115(142) gdh Bhs
Na»SO,4 = 355 grams 2 :
grey aD|
4. (a) 10Np + 25Ng = 650 NaS 2
(b) NpD + No Q = 35 11. e4° Se eax
Substitute No = 35 — Np into (a) and get: ;
5. Dg
tr 2 = so
: 2 2
se x=——t—
Bot 55
TR = iy +2 2 2
RpTp = R,Ty; Rp = 40; Ry = 50;
X= i a4
40(T, t- 2 = 50T;
pti 12 9 =A D
8 = F;
Use the point (2, 2) for x and y.
D, = Dg = 50(8) = 400 miles ete ea
—2 = 343 10 =b
6. 5 + 61.43.
. y = -4x + 10
7. Si — iii + 2i- 4 - V-5
= 5(ii) — 8tii + 26= 4 —N5i 7
13> =" =
tos30°
: faa
Do Si ee 05yee ke:eo mer
fo
aie Rigg 4 Gi ge ASI
DS 03 SOR
=) 29, (10,84) 5)i
131
Algebra 2, Third Edition
Problem Set 51
14. Jx—-3+5=2
24. x= - =) 25)
Vx —-3 =-3
Yea y = 180 - 120 - 25 = 35
55 1 i =x = 25
Check:
J12 - 3 + 5 =2 z=y= 35
8 = 2
25. Write the equation of the given line in slope-
The statement is not true, so no real number intercept form.
solution exists.
3 5
= =x +>
20 in. 1 ft 1 mi 1 hr 2 2
15. SG eee OM x
hr 12in. 5280 ft 60 min Since the slopes of perpendicular lines are negative
20 mi reciprocals of each other,
~ (12)(280)(60) min
16. V3V3 = [3("2)]¥5 = 31/5310 . 33/10
2 /13
19. So — a on Ht oy te
13 2
_5 3¥2 ey
V13 | 66
3v13 V2 26.
Nig vie ao A2
_ 6126 , 39V26 | 156V26 _ 201/26
206 26 66 + 26
20. 977-53 = 1 i 1 ae 1
oH (-27)°3 (273) 243
21.
0.00007142 x 10>
~ 10°)(7
(5x x108)
mene
x TX
22.
mx = kp + cmp 27.
132
Algebra 2, Third Edition
Problem Set 52
5-1 th) D; De
PROBLEM SET 52 a
Gikestemcoaas
1. [Iodine Py + Iodine Dy = Iodine Total
R, Tr, oth RcT¢ = 28; Ry, =I
0.1(Py) + 0.4(Dy) = 0.25(100)
Rc = 8; 1a ar Tc =a8
(a) 0.1Py oF 0.4Dy wo)
OT; HERR eT) ats
10. Ox 4.5.
= x” ___ 2000 mit
~ (12)(5280)(60) min
ate)
nae
a eee ee 17.
2242 = 2[2(2"4)]12 = 2 - 212 . 218
(x - 1% = 6 = 2713/8
20. 3 a He lie
\ 13 \2
©” 3 BNE AsO! Fe
alte ae « (WQecl2
_ 6V26 _ 6526 | 52V26 _ _7V26
"696 26 Maren - 026
12. y=2x+bD
| l = 27.05
bx = bmp + bcp — ap
sin 15°
, = bmp _+ bep - ap
14. \x2 42x 410 =x+2 b
x7 +2x+10
=x? + 4y 44 x- + 3x — 28
23. = lk EFM A)
Dh=10 21x + 10x? + x3 x(x + 7)(x +°3)
ay 6)
_ «x -4
Check: 9 +6410 =5 (tS)
i)
24. _16>/4 = (iG) = 32
15.
xy ¥ x*y = p? p?
2 5)
64 =x - 3 25. P as Dp” mp 1
67)=x
=m - =] wp P :St p2
ae Pp mp — 1
Check: 3 = -5 + /67 -3 x’y = p>
3=-5
+ 8 mp -— 1
134
Algebra 2, Third Edition
Problem Set 53
26.
60 PRACTICE SET 53
a a
a. Carbon (C): 1x 128412
1000 m , 100 cm
3 2x +4 0.073 km? x
27. + 1 km lm
x-3 x2-9 100 cm 1 in. 1 in. 1 ft
x —$<$<—— > X —_
—3(x +3) 2x+4 lm 2.54 cm 2.54 cm 12 in.
ett 1 mi 1 mi
x* -9 x- —9 x x
12eins 5280 ft 5280 ft
oe tae a ae 5 _ __ 0.073(1000)(1000)(100)(100) 2
x*-9 x29 (2.54)(2.54)(12)(12)(5280)(5280)
12x27 - x
20 mL 20%,80mL 60%
12x?
— 48x
47x + 0O Iodine Py + Iodine Dy = Iodine Total
AT 15s 0.4(Py) + 0.8(Dy) = 0.72(250)
188
(a) 0.4Py) + 0.8Dy = 180
(b) Py + Dy = 250
<2Tate Ape Eee ae
30. Substitute Dy = 250 — Py into (a) and get:
2 3
(a’) 0.4Py + 0.8(250 — Py) = 180
oF 22 4+ 10 = 4
—0.4Py = -20
ji Sie Py = 50
C= =
Zz (b) (50) + Dy = 250
5 Dy = 200
50 mL 40%, 200 mL 80%
Substitute (b) into (a) and get: 13. 23 — i4 + 37 = 2i(ii) — (iii) + 37)
(a’) (SNg + 8) + Nz = 80 =] — | — 3 eeaAieels
6N3 = 72
14. x2 —5= 5x
Nz = 12 results
i) | Nn& Wl Nn
(b) Ng = 5(12) + 8 = 68 results & +
aN ey
ee Oe ae
4 4
( a 45
ia |S PF
> 4
RyTu + 200 = RpTp; Ryu = 50; Ty = Tp = 4
5 3/5
x-=—= t—
50(4) + 200 4Rp 2 p
400 bliSin, 12x15:
100 mph tt >a
Tie
v8 pay Sa:
100 cm , tain: e 1 ft 1 yd
Ts 32amy x<
lm 2.54 cm 12 in. 3 ft
_ 32(100) 16. A = 180 - 120 ll onoO
~ (2.54)(12)(3) > 10
cos 60°
5280 ft. * 5280 ft. y 12 in
m
8. 16,480,000 mi? x
1 mi 1 mi 1 ft m= —— = 0
12 in. 2.54 cm 2.54 cm
x x
ott 1 in. 1 in.
17. vx —11 -1= 16
= 16,480,000(5280)(5280)(12)(12)(2.54)(2.54) cm?
vx
=11= f7
9. W062 kane 1000 m x 1000 m - 100 cm x — 11 = 289
1 km 1 km lm x = 300
100 cm 1 in. 1 in. 1 ft
x x x Check:
/300 - 11 - 1 16
1m 2.54 cm 2.54 cm ein
1 ft 1 mi 1 mi 17- 1 16
x 4 x
VD ci, 5280 ft 5280 ft
18. en
_ __9.063(1000)(1000)(100)(100) 2
x7 +2x+5
5 x° 4 6x 4 0
(2.54)(2.54)(12)(12)(5280)(5280)
-4x
=4
10. —/24 oer e974. 2 + 2G x=-l
= Df BD) SE Ohies 9 Check]. as) 3eet
2-3=-1
11, 277 + 5i +44 /-9 = 2) + 5i+ 4 4 3i
=2+ 8 19. 2 yee [2(2'/3)]/5 = 2iSqi/s _ 2ans
O =tx = 50
oy eel 1 be 1
22. -4- = “G4DS = 732 R = 2(50) = 100
; > ee = YH 1
23. 3/2 - 2/2 — 21% 29. «+ 1)x? + Ox? 2x +2
Pi ee,
3
24 (2,135,820)(4,913,562)
801,394,026 40) Gora ats 5
6 6
_ 2x10 Sx 10°) _ 4 x 104 —3y = -2x - 9
8 x 108
DZ
y= es + 3
25 ee
te ee (b) Sx + 3y = 3
cpx — cmy + kpy = 0 3y = -5x + 3
cpx + kpy = cmy ys -tx+1
“ gemay,
cx + ky y
p as
266 tc = 0 Te
x el
ptcx= a a
ap
p= =
dt _~ cx aes
aoe
137
Algebra 2, Third Edition
Problem Set 54
28 cos 50° = A
18.00 = A 4.8) eeNir ee 4Np =y 5Nc
18.00R — 21.45U ie ey
(b) 4Np = 3NG + 40
pes al -1(a) -4Np + 5Ng = 0
Sw (b) 4Np - 3NG = 40
RV = ST = 3 aN = 40
ae ST Ng = 20 geese
v (b) 4Np = 3(20) + 40
Np = 25 ducks
PROBLEM SET 54 5. De
1. Iodine Py + Iodine Dy = Iodine Total meee,
0.2Py + 0.7Dy = 0.575(400) ae
(a) 0.2Py + 0.7Dy = 230 RcT¢ = RyT yr; Rc = 2Rr
Tc = Tr = 3s Rr = 79()
(b) Py af Dn = 400
100(Tr = 3) = 50Tr
17.
V4 Me eek oe cin
4 4
A = 8cos32° = 6.78
(ie iy.= 61
B = 8 sin 32° = 4,24
2 4
-6.78R — 4.24U
T £ sT=RvV— r= %¥
2 2
S s 7, v6
x=—+—
2 2
1000 m 1000 m 100 cm
100 km? x —— x x
1 km 1 km 1m 3
100 cm 18. =—x+b
x ——
= 100(1000)(1000)(100)(100) cm? “ #:
lm
Use the point (6, 0) for x and y.
12 in. 12 in. 2.54 cm
10. 100 ft? x —— x x 0 =) +b
Lit 1 ft 1 in.
2.54 cm
x = 100(12)(12)(2.54)(2.54) cm? 9=b
lin
9 9 12
- 11
So#4 die—-=7+=—vi
(O34 ZI
X ser
3
= Dray
4
37
22. | ] 9 = i
2 D
mk
x=
— +t —
2 2
23. a :
—-x+—e=Fy ae
b. Xi Mie 2
p m
am — mpx + cp = mpy = x(m + Z) + ———— x(m + Z) = xs(m + Z)
De (m + Z)
cp = mpy + mpx — am aym + ayz + cx = xsm + XSZ
27, -81!4 = -3
PROBLEM SET 55
28. 2/3 on
[7 + 2/84
3 om te 1.: Integers: : N, N + 1,N+2
+
ee NS NN + 1) = -6(N + 2)
eea3 f7
ee Is
my a Ne2 +N Be: 6N — 12
V7 V7 V3 V3 N? + 7N + 12 =0
_ 6V21 _ 3521 | 84/21 _ 5521 (N + 4)(N + 3) = 0
~ sal 21 21 21 N = -4,-3
‘ . The desired integers are —4, -3, -2 and —3, —2, -1.
Sk ee p
‘e sia p- _ p- x?y — xp” 2. Evenintegers: N, N + 2, N + 4
ete n'ont Sap afte.in® MN + 4) = 9(N + 2) - 24
p? p> xy = xp? N? + 4N = ON - 6
A 2 .
ce ep? = xy, ep NS SON 6 = 0
xy - xp? xy - p2 (N — 3)(N — 2) = 0
N.=,3, 2
30 4x?yp ( p7!m?y A 2x7yp = y? E gy2y2 Since the problem asks only for even integers, the
; my! l6x-? y m2 oe we desired integers are 2, 4, and 6.
12-Lgc
152° 1368 A = 10 cos 20°
152C = 12(1368) A = 9.40
C = 108 grams B= 10 sin 20°
B = 3.42
5. Multiples of 3: 3N, 3N + 3, 3N + 6
-9.40R — 3.42U
6(3N) = 4(3N + 6) + 48
18N = 12N + 72 11. 4 yd? x 3 ft) 3ft | 3ft in
6. = aes = =k _ 4(3)(3)(3)(12)(12)(12)(2.54)(2.54)(2.54) ak
(100)(100)(100)
ma + mb + xy = kmx
ma + mb = kmx —- xy v. 1000 ft " 12 in. ¢ aoe cm 1m
ma + mb S dit 1 in. 100 cm
peas =x 1 km 60 s
m-y x x :
1000 m 1 min
r mp, d+e_ 5 _ 1000(12)(2.54)(600 km
k c pee (100)(1000) = min
mpx + cd + ce = cdx 13. 4 — 2-9 — 2i4 = 4i(ii)\ii) — 61 — 2Gi(ii)
ce)= .cdx, —mpx — cd = 2) — 2
BAL
_ cdx — mpx — cd
aa. se 14. 404 Or eB = At a) ie 2k
= Bhs DSS SY) Dh] p74 FE
mx d
8. x + Piaget 15) 97 + Jip e D-oedl = Dit) FQGGhen DD =r
Fe i ee maiiny cbpy =—2i+2+2-2=4-4
9. 325° 17. x? = 5x +5
A
<r. 7 (.?— 5x + =5
40 . Be
; 4 4
2
A = 40 cos 35° (x- =} pena
A = 32.77 D) 4
5 Pek!
B = 40sin 35° sia lice |
B = 22.94 ee 5 + NS
32.77R — 22.94U 9 i hay
141
Algebra 2, Third Edition
Practice Set 56
18. x* —-6 = 6x SF = 8
27. 4x
(x27 -6x + )=6 SF = 2
x? - 6x +9=64+9 Cea
G=sy= ee
ata A? = 4? + 3?
ary as
= Ge
A? = 25
19: Wee 4= 2
+) A=5
he aah 5a 8
5 Male=
x=6 10=5+B
Check: 6-2 +4=2 5=B8
Dp (sh 3D)
55 m
20. =x
Vx2 —-2x+14-12 om
x? — 2x + 14 = x? + 24x + 144 Pp
~26x = 130
x=-5 29. Verism = ABase x height
1 1
Check: 4/25.4.10 414. — 12°=-5 = |8x6) + Fe) eS sms
= hae Tenens ;
es sno)? | x 8
ft
21. MoV 2. = [a4 af = [atv yiie
_ 492
4
AT | 2vil aL 12/22
Vat tle ae v2 80-60 20
_ 822, 22v22 _ 26422 _ 117/22 Oh Ads Oe
oh: OD re 11
10:20" 56
9g, (4:183,256)(704,185 x 10-*) eR ERT Tag ee ee
; 802,164 x 1022
(4 x 10°)(7 x 10737) 66 280 - 80 200
jaf ee An 0 Gag ) SES SP ee ae
8 x 10° cae y2 g} 10
PROBLEM SET 56
3= x D = 1440
1. Even integers: N, N + 2, N +4
N(N + 2) = -10(N + 4) + 8 D = 1440 x = = 400 were desired
N? + 2N = -10N - 32
N*$12N +°32'= (0 x + 10 = 46
(N + 8)(N + 4) = 0 X-=-36
N = -8,-4 y + 20 = 30
The desired integers are —8, —6, —4 and —4, -2, 0. y= 10
N S= i 240 10. as
Tw = 10
m* — ax — cx = amp + cmp
Dy = 4(10) = 40 miles m? — ax — amp = cmp + cx
(b) Py + Dy = 1000
Substitute Dy = 1000 — Py into (a) and get:
(a’) 0.2Py + 0.8(1000 - Py) = 560
—0.6Py = —240 = 10 cos 30°
Py = 400 = 8.66
=
Ne l x= a il x
a eS
eg ii ame i
Ay. %
4
2 4
= 20 cos 60°
10 a ee
2 2
ll 20 sin 60°
ge
S&S
>
aw = AS 2 2
10R + 17.32U 22. —& - 8 = -x
(x7 -8% + )=8
1ES. kn
hr
x? - & + 16 = 8 + 16
1 hr (x -'4)?
= 24
x
60 min x-4= +6
_ 60(1000)(100) in. x=
4+ 2/6
~ (2.54)(60)(60) _s
23. Vx+1+1=1
x ele
14. 400 yd? x
t= =]
Lam,
x Check: /-1+1+1=1
1 ft
Oe rerrN
2.54 cm
x
x .
exe y*p x
144 Algebra 2, Third Edition
Problem Set 57
é AY BY,
poe
(200)(8) _ P,(10)
(1000) ~— (800)
800 (200)(8) _
10 ~~ (1000)
128 = P,
P, = 128 newtons per square meter
b. P\V, = PyV2
ee (11)(44) = P(4.4)
+8 8 (11)(44) _ P
—
ia tee
Since the slopes of perpendicular lines are negative 4.4
reciprocals of each other, 110 = P»
m, = -8 P, = 110 atmospheres
y = -8x + b
7S = —8i-5).+ b PROBLEM SET 57
—
S=b
=
1. PY, > PiV,
y = -8& - 45 T, T,
100(4) _ P, (12)
if, eee ae 800 600
4 : P, = 25 N/m
2x -6-2+x = 48
a, = 56 Bie Pi Vy ova
56 7(42) = Pp(49)
oo P, = 6 atmospheres
3. Stee
Pe Yee
er
29 a= 3 3) a Bh
2 ar rae:
te - 10-3 +a3a = 417 M00 eas
1200 30: ;
P» = 100 N/m
Bi sn ceax?
Sate (a) 0.2Py + 0.4Dy = 352
S gty- oye — 1 theea
b) Py + Dy = 1000
x(x? -1) +1
(Bx + 2)(x Ne re ae
— Te MSL Gar SLOte ee Substitute Dy N = 1000 — PyN into (a) and g get:
a*y(x* - 1) a?y(x? — 1)
4ay (a’) 0.2Py + 0.4(1000 - Py) 952
145
Algebra 2, Third Edition
Problem Set 57
en ae 2.54 cm 2.54 cm
1 ft 1 ft 1 ft
x x
ee horieee es 12 in. 12 in. 1Qeine
3 1000 3
, (2.54)(2.54)(2.54)(12)(12)(12)
a
er, Cc
a4 oo
ap — cx + cy = mpx — mpy
13. AP Py nS
mpy + cy = mpx + cx — ap = 3i(ii) — 2(ii) + (iii) — 5
mpx + cx — ap = 3742 ¢ Parasz
mp +c
14. 20 /EQr = 37 a
xX
— @4
='-6)
— BG) 4 i= 2
dx — ad — cdp = kp =-6+3+2i-2=1-4
dx — cdp — kp = ad
dx -— cdp — kp 1S: 5x — 6 = -x?
2 sy eo eee
4 4
( 7 49
x-=—/] = —
A = 4cos 40°
2
A = 3.06
Ph Sok Fd
B= 4 sin 40° y 2
B ui PIR)
erese
3. 06R + 2.57U 2) D
10. x = 6,-1
330°
Sear
A
a
16.
A = 40 cos 30°
A v 34.64 (x - 3 =4
B 40 sin 30° is
Th Vln
B =e) pers
Ue
34.64R — 20U x = 5,1
146
Algebra 2, Third Edition
Problem Set 57
Se
4
26. 16°94=
1 2
1674
1 Pe 1
S16!Pe 332
ne Oa
y=—x+ —
5 5
Jpg) Kacey ee
18. Vx— 22°F2 = 27 pz x pz xz - 4p
x=4 4 = -7x
23. ey
Nt Vx2 y = [x*(x2y)!P]?
= x2xN/3yl6 — y7/yV6
PRACTICE SET 58
3. Chlorine: 2) x 100% = 27.13%
a. 3x2 + 5x -6 = 0 129
|
S +
Nn
wf
f wv ll oS
4. Bromine Py + Bromine Dy = Bromine Total
ars 0.1(Py) + 0.4(Dy) = 0.16(50)
(: ts 37 = 2
(a) 0.1Py + 0.4Dy = 8
(2 + 31+ 3) Dee (b) Py + Dy = 50
Be 2-36 36
Dy
(:+ 2) = ei. Substitute Dy = 50 — Py into (a) and get:
6 36
. 2 (a’) 0.1Py + 0.4(50 - Py) = 8
ne re 36
-0.3Py = -12
oe 5 + 197 Pn =F4()
6 6
(b) (40) + Dy = 50
b 3x° D —-x-12=0
as
Dy = 10
oe hn
boat ue O 40 mL 10%, 10 mL 40%
(e-}e )e3
(2 -dr+
3 ie
cle sed
8 5.
— D
Dp
?
Bs) BG a 6
i,
(x- 2) -2 RyTy
+ 15 = RpTp; Tr =.Te = 3;
Rr = 20
ee arg ee
26 a6 3Ryp + 15 = 20(3)
Perce 13 3Rr = 45
= Rr = 15
Dr = 15(3) = 45 miles
PROBLEM SET 58
: PY _ PV, 6. 3Xe 2 Ee 4x oO=
fb1 ie2
x + ao = L=#0
4(6) _ 3(8) 3
- 2 (3?a 3 oat =2 |
T, = 600K
2. Carbon: 6x 12=72 a Fs ee
Hydrogen: 8x 1=8
Nitrogen: 1x 14=14 Pas
Chlorine: x35 = 35 (xe 3) =O:
Total: 72 +8 + 14 + 35 = 129 2 V3
x+— = +—
ph, 360 3 3
129 C,H,NCI a VB
72C¢HgNCl = 129(360) 2 Bont
C.6HgNCl = 645 grams
i) |
= ca) | Nn ll (=)
11. go td
| | * | | I! x—p k
* oS
ak — ckx + ckp = xy — py
ckp + py = xy + ckx — ak
_ xy + ckx - ak
ck+y
Z|-
+
12.
|
Bilin
Om
oo}
é
[— coo|—
———
ie pS
pay
00
\o
|
~i) ll
IIl I+ A = 4cos 40°
|
00
\o
A = 3.06
| poh
cole
Blu B = 4sin 40°
13) = OLS]
-3.06R - 2.57U
x ERE
3 3
6 13. 315°
Cia
ae
A 10 cos 45°
A v 7.07
B i] 10 sin 45°
B u AO
= iH | 7.07R -— 7.07U
HG x 12 in. $ [Zits2Z-in,
15.
1 ft 1 ft 1 ft
10. | 9 ll
al< 2.54cm _ 2.54cm _ 2.54cm
os x x
1 in. 1 in. 1 in.
kx — ak — ckp py
= 40(12)(12)(12)(2.54)(2.54)(2.54) em?
kx — ak = py + ckp
4195/3 = 432 213 = (32)"431/5
kx - ak _ 16.
= 31/231/5 = 37/10
y+ck
ee
20. 5[2 = 2|2 + 3220
22. (40,621,857)(6,031,824)
19,610 x 10-74 Solve the equations by elimination:
7 6
is (4 x 10 )(6 x 10°) ~ 1x 1034
(a) 3x + 4y= -4
2 x 10°20
—3(b) -3x + 15y = -30
3 (x + 8)(x + 2) ; (x + 5)(x + 3) 19y = -34
(QeF 8) 3) (rie 5G 5) —h.34
Se ae Pe ‘ae i.
x -5
(b) x = s(-] fio Ct
24. Vcylinder = Apase x height 19 19
Apase X 3em = (72 — 62) cm?
(72 — 62) cm?
ABase = 3
cm
1 4x? = By 4 16 — x+2
7
(6)(4) - la = (24 — 22) cm 27. x
3
2)4 > Ore Or — 5
Ax?
+ 8x2
a)
—nmr~ = 27cm 2 8x2 + Ox
D
8x2 ~ 16x
r? = 4cm* lo = 5
r= 2cm 16x+ 32
—37
xa’ e 4
3
ae
25. o P 28.
8
-— 5 D 3
mp?
9 — 3x — &x = 42
xa’ p> — 4m mp?
-llx
= 33
ms mp? DIY cee Smp?
Xx = =3
xa — 5mp? mp?
mp? 50 5mp°
- x7a*p> - 4m
xa —- 5mp°
150
Algebra 2, Third Edition
Problem Set 59
—]x
= =15
b cx
30.
a(iy+l1) mea*(y +1)
ab cx ab
+ cx
en ercty ch trea
Gy ty
ee MT 8pce as
‘arly el). ra GeeDD
tanion= 2
3
@ = 59.04°
PRACTICE SET 59
Since @ is a third-quadrant angle,
@ = 59.04° + 180° = 239.04°
N = mF + b
H = 32 +5% = /34
Use the graph to find the slope.
(34 /239.04°
Slope = = = 83.33
N = 83.33F + b
21(a) = (a’) 7x + 6y = -9 The desired integers are —7, -6, -5, —4 and -6, -5,
—4, -3.
100(b) = (b’) x — 60y = 303
(a’) 7x + 6y= -9 Carbon: 2x12 = 24
~7(b’) -7x + 420y = -2121 Hydrogen: 6x 1=6
426y = —2130 Oxygen: 1 x 16 = 16
y=-5
Total: 24 + 6+ 16 = 46
(b’) x — 60y = 303
36 agen
x — 60(-5) = 303 46 460
x + 300 = 303 46Oxygen = 16(460)
x=3 Oxygen = 160 grams
151
Algebra 2, Third Edition
Problem Set 59
5 ae 2
—+— = -—
1
(Oa 4
(b) 0.04x -— 0.2y = 1.13
RrTr =e RyTw = 41; Rr = 8; Rw = 3;
Tr te Tw ial)
(a’) 4x + 9y = -3
Ri Vie, Bov
tan@ = ze
(14)(10) = (20)V> 4
18 = —1.43(100) + b
SSS, 7
30
161 =b
11. 2x? = s + Nn 2
14, 2 (2) + H?
&
nN | & + ll o4
———s Nile
a ae
4
Hy!
Paataa [4
Say,
=
a|—
+
2 16 — 25
a oT
esa)
4
to- = = |
NIM
&wplN
—
4 — on 5
—=f
2
] —
x ——— = H+
4 |S)
a Nee ree
—_
2
x= I+
|— o|3) vil xe=)
Area = ——2 cm? = 5Vi1 cm?
2 4
12. ax° 5 =
(2-204 = 15. ae t= 0
m
4p — 4s — cm + 4mx = 0
ees5 psn
9
+
Ole
4p — 4s = cm — 4mx
ApPp - lr ater
Fe) Re =
3
=
oe
©|5
WwilM
Wln
c - 4x
1
a 16. a pet)
3 Dae) x
mx — cp — cs + 4px + 4sx = 0
x=
4px -— cp = cs — mx — 4sx
cs — mx — 4sx
—— St ae
4x -c
40 in. 2.54 cm lm 60 s
13. Bn A= 17.
S
6
1 in.
x
100 cm
x
1 min
60 min
(2-04 B x —————EEE
3 1 hr
i 40(2.54)(60)(60) m
+ sueet.) Re (100) hr
3 36
(*-5)
ie
6
= 18.
18,000 cm? x
ai!
2.54 cm
1 ft 1 ft
1 in.
2.54 cm
& tn, ; 1 in.
2.54 cm
1 en SC x
52 =
12 in. 12 in. 12 in.
6
. 18,000 3
C= (2.54)(2.54)(2.54)(12)(12)(12)
19, it + 5 413/=9
— 2,/=4
x=
= (iii)
+ 5 + 9t -— 4
=14+54+9-4=6+5
20. 3° - 27 - 4 -i = 3)
- 2G) - 4- i
jeA ee
e e DT
(2-41
+39 +1=x4+4 a Cone
30.
2_ ax + 39 = x7 + 6x + 9 te yy ek “Byp?
—10x = -30 ype
56 = 8! nap ype pe
poxy —2 a xty4
@heck: 4/9 = 12/4739. 4 1 i] 3 #44
= ca py” = pi!
6+ 1 3+4
22. Vx —-34+2=
x— 3
PRACTICE SET 60
ce ay Be) a. B = kR
Check: (39 —-3 +2 =- (12) = k(3)
6+2=-4 4=k
The statement is not true, so no real number 4R
solution exists.
4(6) = 24 bluebirds
ee qi/291/8 = 25/8
PROBLEM SET 60
27. = a4 > + 3/234
1. B= kG
Pais
*a a
See oFeo (8) = k(2)
4=k
2V26 _ 52V26 , 234/26 _ 9226
26 26 26 13 B = 4(7) = 28 boys
28. REG
N,
oye 10 115
oom
ei So) \ 40
4000 = k
29. Aa x7 +2 x?
87a y(a + y)
Y axy(ar y) _& + 2)(a + y)
a5
- yaa + ae ya(a + y) 2. C = kP
ax*y
40 = k(20,000)
y’a(a + y)
0.002 = k
axy(a + y) + (x? + 2)(a + y) + axy
y*a(a + y) C = 0.002(8000) = 16 clowns
Fe 8.
2
(a) is* + ue = 34
TY T, 2
400 OCP (b) 0.02x + 0.3y = 6.2
500 1000
P(500) = 400(1000) (a’) 4x + 15y = 340
B 135°
a Bach ES
A
> ee!
x“ -—--—-x+—e=
1 + —
1
A =14 cos 45°
4 64 4 64
A=1283
(
x--/|
Lip=—49
B= 45in45° 8 64
Boe 83
Fees!
8 8
—2.83R + 2.83U
Pe ee
8 8
ot, =
4
10. 3x2
= 2x + 1
(2 - dr 4 J=4
ss) 3
2 | 1 1
x°-=x+—-= -+-
9 Seed
(r-3) 25
Kae
3
=
9
6 = 63.43° Papas
3 )
Since @ is a second-quadrant angle,
O= [80° — 63.43" =MI6 ST
ped
AIT gd
3 SRh3
H= j27+4 = 25
era ee
2/5/116.57° 3
(b) 4x + 10y + 10 = 70
20. 4913/3 = 134 33 = (34)'4(314)
l(a) 6x + 10y = 80 -3. 313 — 343
—1(b) -—4x - 10y = -60
2X = 20
x = 10
21. 3 1-3/4 = oul
g 13/4
= oe
(31/*)
& = i
a7
(a) 6(10)
+ 10y = 80
lm? p 3 lm? p4 ca (mp)"2(m>p*) 2
22.
paar
= mpm p43 = me pe
13. ere
xy d
23.
ad = cdx + cdy + mx + my
ad — cdy — my = cdx + mx
BO ePORY NY ee
cd +m 5
10/2 , 27N2 60/2 23/2
6 6 6 6
Peat eb and FaePes
m Zz
16.0372 07 3.2 3 oo x Il a
= 3(ii)(ii) — 2) + 2 — 15% wl
60 cm 1 in. 1 ft 1 mi
iy x x x
s 2.54cm 12in. 5280ft 26. & i) 180 — 90
— 40 50
60 s . 60 min
1 min 1 hr k = 180 - 90 — 50 = 40
_ __ 60(60)(60) mi a I 180 - 90 - 40 = 50
~ (2,54)(12)(5280) hr
156
Algebra 2, Third Edition
Problem Set 61
5 21 3. eal = gy
8 (hah
21 11 P be ape ced
poe 300
(b) y= -( =) 18-= 7 1000 600
300(1000)
(B4)
8° 4 P= 600 -
P, = 500 N/m
3 = 2
ae, x + 50x = 15x 3. Water one — water out = water final
e150 + 50x = 0 W, - Wo = Wr
x(x — 10)~% - 5) = 0 (100) — (E) = (100 —- E)
x = 0,5,10 0.9(100) - (E) = 0.8(100 — E)
90 —- E = 80 —- 0.8E
29 2 b —0.2E = -10
- y=r=xt
5. E = 50 gallons
Use the point (—40, 2) forxand y. 4. Butterfat one + butterfat added = butterfat final
B, + Bz, =B
De S40) th wap teer
5 (900) + (Py) = (900 ao Py)
10. y= Th tee
ee ee. Pe 7
(: 2” 2
Len 1 nepint. ee Bae ay
eae ilies mS st
ri) -2
2 ii |
—|—|—| 1 57
Te 4A 4
o}aL
Le) = == +—
|
Lise
o>)
1, 57
Ba
4. \4
tan@ = 2
6
11. Pore
pS ae
0 = 18.43°
Use the graph to find the slope.
Since @ is a fourth-quadrant angle,
m= ale. 42.6
@ = 360 — 18.43 = 341.57° Zo5
_ ___40(60)(60) in?
(2.54)(2.54)(2.54) hr
3/3
iP bp eal 3CD [23(2!8)]18 = 2 . 219
20.
= 210/9
_g-5/3 +? 1 a 1 1
21.
ey 8t
22. Sy 4 LP ey v=) (xy) ¥2(y2x) 4 = x !2yl2yl/2 1/4
23. 0 2 oo Y eter
3 CY
3 eu
pp
ni V3 43
ts
Substitute y = —x — | into (a) and get:
(a jix we 2x — Ly = =6
8
bia
a
(41,685,231)(0.0012846 x 107!*)
8
0.001998 x 10710 b) |-~|]+y =-l
w) (-5) ,
(4 x 10") 10} =2x 10°
2 x 107}3 ye 2"
3
25. AZ = 5% + 12?
A* = 169
A= 13
qu) 3°3
5x
SF =4 28. ~15x
= —x° + 2x?
x? — 2x” — 15x = 0
we
5 K=O)
Fes) "= 0
3x Seen x = 0,5,-3
5
52 _¢
5
29. Write the equation of the given line in slope- PROBLEM SET 62
intercept form.
k
2X te Sy = pe =
Ves
k
Bas 2
Since the slopes of perpendicular lines are negative 16=k
reciprocals of each other,
sages Ny = ~ = 2 victories
we
3
y =-—-x+b
5*
PV tN
T, T,
4= —(-2)
+d (600)(2) _ (400)(4)
(300) T,
T=D T, = 400K
3
y =—-x2 +7 S; + SA = Sr
Ds Dr
He )-4
Ts = 4
5 5 Ds = 8(4) = 32 miles
(2-3 _ 3 1
x* — =x + —]= -— +— Carbon: bx Ire 12
5 100 5. 100
Hydrogen: 4x1=4
( t\" 59
Xe | ee
10 100 Oxygen: 1 xX. 16%= 16
Nitrogen: 2 a4 = 28
eee a ed
10 100 Total: 12+ 4+ 16 + 28 = 60
15
Fe entree |
10 +10 Nitrogen: = x 100% = 46.78%
6. 9 -x + 2x7 + 30= 0
(3? or: {3 =
p) )
2 —
1
-xXx
1
—> «= ——
3 +
1
—
A = 20 cos20° 2 . 2 16
A = 18.79 (:e *] aoe
4 16
B = 20sin 20° 1 3
x-—-— = +I
B = 6.84 4 4
18.79R — 6.84U oe 123,
4 4
u 10. 5x + 6x2 = -3
ane5 = 47.
12 12
tan@ = =Zz
5 rear12% peel;
ar?
6 = 68.20° 11. Bi = mHg + b
1 2 24 = 16(6) + b
8. (a) A gael es
5. C= Weer
6x Pp
14. ———— - ¢ C2
= 625
2y + 4a r
6xr — 2cry — 4acr 2py
+ 4ap Cle
WE
600 cm?
—————. Xx
1 in.
x
1 in.
x
1 in. (a) x = B+ 58 ~ 63
26.
min 2.54 cm 2.54 cm 2.54 cm Mu
1 ft 1 ft iGtt 1 min
x x M x ee 160 — 52 _ 540
aro, 12 in. Dane 60 s
S 600 ft? 2
- (2.54)(2.54)(2.54)(12)(12)(12)(60) s
27. (a) 2x - 3y = -9
3 ft 3 ft Bvt 3y
= 2x - 9
18. 20 yd? x — x — x
1 yd 1 yd 1 yd @
=—x+3
x
12 in.
12 in.
———=
12 in. aes:
(sit 1 ft 1 ft (b) 2x + 3y = -3
2.54 cm . 2.54 cm . 2.54 cm
x ay ==2x
=3
1 in. 1 in. 1 in.
2
= 20(3)(3)(3)(12)(12)(42)(2.54)(2.54)(2.54) cm? a) ysl
a
Ao PAIN = [24(2¥2)] 2 = 22(2"/4)
19. 41642 =
= 29/4
4
20. May ee ee (22)'/4gU/5 _ 2l/2q1/
= 27/10
_4s/2 Es at 42)? ee) NA
ehee
El
21.
|xy! 3 wy = (xy)? @9)? = play 1278/31/83
22.
= x13/6, 23/6
ae
SERESNSSEE
23.
5 2 a : 2
Substitute y = aie — 1 into (a) and get:
_ V2 V5 SNS.V2 6 ip
V5 V5 V2 42 Gy 2 = a(-2 ~ 1 = -9
_ 6V10 25V10 —-60V10_ 79-10
10 10 10 10 4x
= -12
eS
(0.000618427 x 10!*)(7,891,642)
24.
3,728,196,842 b y =
(b)
2)
(23)
3 3) = 1 i —
_ (6 x 10!°)(8 x 10°)
aan? = ix 10°
x (-3, 1)
29. | eseth
se ll » + >
20
to
1]
] — il l . mn >
~ +
Ie $60) = 3 troubles
20
Le ges)
1 T,
fel aps
800,
30.
T) = 480K
Wi + Ws, = Wr
(50) + (Py) = (50 + Py)
0.96(50) + (Py) = 0.99(50 + Py)
48 + Py = 49.5 + 0.99Px
0.01Py = 1:5
Py = 150 gallons
Do
25 sin 20° 4000
u 25(0.34) = 8.5 DR
20T = 4000
T = 200 seconds
Carbon: 3X 1[2-e36
S = 50 sin 35°
Hydrogen: 7k 1LS=7
So= S007 )e= 28.5
Chlorine: 1 X35 = 35
W = 50cos 35°
Total: 36 + 7 + 35 = 78
W = 50(0.82) = 41
23.5R + 85U 30 72 48
—41 R —- 28.5U 78 C,H,Cl
-17.5R + 20U 36C3H,Cl = 48(78)
Tracker was 17.5 miles west and 20 miles south of
C3H7Cl = 104 grams
the cabin.
6.
N
a" ol
EB.
220° e2u
ia
We \Yv
a
S
H = (7.3 + (26.34% = 27.33
tan@ = Ao
W = 50cos 40° = 38.30 Ws
@ = 74 51°
= 50 sin 40° = 32.14
27.33 /74.51°
25.98R + 15.00U
—38.30R — 32.14U
—12.32R — 17.14U 1 5
(a) —xFen — ~yTG = —48
Running Bear was 12.32 miles west and 17.14 miles
south of the village. (b) 0.4x + 0.05y = 5
(a) 2x = Sy ~480
(b’) 40x + Sy = 500
(a’) ~ 2x25 %= "480
30 5(b’) 200x + 25y = 2500
202x = 2020
S Il 30 sin 45° = NO — i) —
10.
" 10 160°
R
z
20°
21.21R + 21.21U
—9.40R + 3.42U
11.81R + 24.63U
164
Algebra 2, Third Edition
Problem Set 63
1, Vil, 17; 9 Fe Bl a et =f
ig RE U
3 3 = 3 — 2i(ii)@ii) — 3) ii) + -2i -— i = -i
Mo = -7.5Zr + 1370 1m 1m 1m
100 cm 100 cm 100 cm
1 km 1 km 1 km
13.
H 000Kn ~~ 10008. 100d
4(5280)° (12)° (2.54)? 3
3 3 (100)(100)(100)(1000)(1000)(1000)
5 343 4 [3(3'/4)]¥5 = 31/531/20 _ 314
LESS TIS 20.
Be te, i Og LORE E5449 000 cm? 23. 4 cy? |xy = (ey (ey = eye oe ie
m 1m
= xy
r2 = 6m?
3
=—+
S
pt
Sen
r= 6m XN
[a
+
Z Se
aet
z z
27. 12(90 — A) = (180 — A) + 20 HA,
oo 2 PROBLEM SET 64
et OD) aay 4
CoeF
Peete
Ae 12x = 352 7 4 300 = is
Lse= 9x 2
k = 600
De fy FG
600
C=——
05 = 12 00 grams
30. PEt eX Si
3 7
28x + 35 — 3x = 42
ie
i 7,
D5 7) 700 _ 2800
7 400,
x= —
25 T, = 1600K
166
Algebra 2, Third Edition
Problem Set 64
2 %3
A saytip:
2 oes 2+ cs y 30
Cc Cc
2G 2m + cms + 2c 150°
— +- ——qK— =
4 2+ cs 2 ECS a see
R
eeoe: ee ee Se ey A.
& Ti As ,
R = 30 cos 30° = 25.98
PY ep! «© —
Cc Cc
m 8c 2cem + m* + 8c?
= —
Cc 2c+m c(2c + m)
17: 20. =3 2h =e
7
Ce }-3
(3 +g x-
a
—
3
ete
V47.
= +—Zi
0G
4 -
3M NAT
Se a
4 4
21. W = mir + b
D ul Sob: ih = = = —0.14
250
Since @ is a third-quadrant angle,
W = -0.14Ir + b
6 = 56.31 + 180'=9236.312
Use the point (1850, 50) for Ir and W.
2/13 /236.31°
50 = —0.14(1850) + b
3 1 309 = b
18. (a) ey
5% 3) = 8
W = -0.14Ir + 309
(b) 0.02x + 0.4y = 4.4
22. Area = Areatyiangle + Afeasemicircle
(a’) 15x — 2y = 280
(b’) 2x + 40y = 440 = yi + Ley
e-0-(9
2) 2
20(a’) 300x — 40y = 5600 2
(b’) 2x + 40y = 440
Dy
302x = 6040
x = 20 Bey
4
(b’) 2(20) + 40y = 440 ye 119
40y = 400 2
y= 10
1 119 1
(20, 10) Area = |Fo
—(5 5 + —1(3)*
5 (3)
19. =
2 119 +
9 )
—7jm
5
4 2
és
iw)
+
| & + ll |
—N <7 n
Wl]
23.
400 cm? lin. 1 in. 1 in.
5
teeee
je] ————_
Ss
x
2.54 cm
x
2.54 cm 2.54 cm
9 3 9 60 s f 60 min
( al 14 1 min 1 hr
SE Sp ae
3) 9
_ __ 400(60)(60) in
poh ee (2.54)(2.54)(2.54) hr
3 3
24. 08/3) 82218 oo [32(3¥3)]¥3 = 328419
eee
x= —-— + ——— _ 37/9
3 3
168
Algebra 2, Third Edition
Problem Set 65
56x = -15x? — x?
25. 2|2 = a + 2140
x? + 15x? + 56x =10)
_ 27V5 __ 3V5 V7
"Ss ys rae“ee
mse 7)(x: +28), =A
x = 0,-7,-8
_ 14V35 _ 15V35 | 140/35 _ 139/35
35 35 a 35 (146,842 x 107)(0.0007892)
30.
a(b + c) d (96,478 x 10'*)(0.000712 x 104?)
26. See
— (1x 107)(8 x 1074) 0754
= ——— = 1 xX ]1
abf + acf — fmx = dx (1 x 10!°)(7 x 1078)
abf + acf = dx + fmx
bye acl.
d+fm PRACTICE SET 65
RpTp = 288
27. eae
a(b+ec d
(R12 — Te) = 288
abf + acf — fmx = dx 36Rc — 3RcTc = 288
acf = dx + fmx — abf 36Rc — 3(108) = 288
o = et fmx - abf 36Rc — 324 = 288
aera
36Rc = 612
(a) x -— 3y = -6 Rc = 17
—3y
= -—x - 6
Rp = 3(17)
1
y =<"3" + 2 Rp = 51
(Bb) 2x + Sy = 15
(51)Tp = 288
Sy "= "2x 4+ 15 288
ji es
et a)
96
‘pe
Pi y17
96
— +T,= 12
17 q
96
Te =. [homme
- 17
Ta
108
C7 17
PROBLEM SET 65
Substitute x = 3y — 6 into (b) and get: Si = kP
(b)) -2y = &) + Sy = 15 400 = k(100)
lly Il NX
"NN A=k
y Si = 4(12) = 48 kilograms
ea
11°11
P = 16,000 N/m?
(b) N; = 4Nz + 100 Substitute (c) and (d) into (a) and get:
Substitute (b) into (a) and get: (a’) 2R,(6 — T>) = 120
(a’) (4Nz + 100) = Ng + 400
3Ne = 300 Substitute (b) into (a’) and get:
Ne = 100 (a’”) 12R, -— 2(120) = 120
(a) N; = (100) + 400 = 500 12R, = 360
100 were erudite while 500 were ignorant.
Ry = 30
5. Be x T = 1920 R, = 60; T, = 4; T; = 2
100
= 1920 x ~~ = 2000
96 + 4 be ce :
x aS oem iea-tyD
at+—
Phosgenecombined = 2000 — 1920 Cc Cc
80 kilograms
Cc acx+ bx +c
= ie db = ee
6. (a) RyTy = 8 ac +b ac +b
(b) RgTz = 8
(c) Rp = 4Rw 10. Fs it dey Soe ae ee
leona 3 ab +1
at+—
(d) Tg = 2 - Ty b b
Substitute (c) and (d) into (b) and get:
ser b _ 4ab+4+be
(b’) 4Ry(2 - Ty) = 8 € ab + 1 c(ab
+ 1)
Substitute (a) into (b’) and get:
(b”) 8Ry — 4(8) = 8 2
11. BG op g =xt g = Sy
8Rw = 40 oe a+-1 a+l
Rwy = 5 a a
_ axtxta?
a+1
12. 4 = [35-3 ta
= 2i — J3iV3i + 2i(ii)(ii) — 4
=2i+3.+2i-4=-1+4
Gets Te = 15
Substitute (c) and (d) into (a) and get:
13. (Si 2)Q7 33)
(a’) 5Rc(15 = Tc) = 600
is 5 '
Ws (a)
a) 5x
=x - 6
~y= 1
De PL 2
R = 10 cos 30° = 8.66 aay a oe mes
U = 10sin 30° =~5.00 ch aed
3 36. -371.66
14.14R + 14.14U (é a 3
++OAT o/s oe
Xx = ==
“SA8R
é 9.
x + a = PME:
6 6
16. 1 JB
a
6 6
19 2x7 = 4 Fe =5x
fi + Sue + =2
p
xt 2 + i =2 =
2 16 16
(BE a
) a 57
16
ef
Sudo =
v7.
H = 3? +9 nae
4
x= 2) ia V7
H = 34 4°
5 20. K te= mRa
+ b
tare =: —
i Use the graph to find the slope.
@ = 59.04°
m = ee 0.89
} ; 560
Since @ is a fourth-quadrant angle,
K = 0.89Ra + b
a aan sa Use the point (2100, 500) for Ra and K.
134 /300.96° 500 = 0.89(2100) + b
-1369 = b
K = 0.89Ra — 1369
29.
(47,123 x 10°)(980)(476) AY _ BY,
(0.00134)(576 x 10°)
T, qT,
_ (5 x 10’)(1 x 10°)(5 x 102) (400)(6) _ (800)(60)
~ (1x 10)(6 x 107) 200 L
v 4x 101°
T> = 4000K
172
Algebra 2, Third Edition
Problem Set 66
0.4Py) = 32 1 mr
ey ater5
Pr, -=-80 93 @ D
4.
|10 — Mt (a) R7Tr = 300
Br = 800 grams
(b) R7Tr = 364
4 1 “x Ta - 1 A Ta (c) Tp = Tr - 4
x + 3 —-x -3 x+3 x +3
(d) Rp = 4Rr
sae Heel |
= os
Substitute (c) and (d) into (a) and get:
(a’) 4R7(Tr — 4) = 624
7 x+5 DXe— 3S KES 2x=5
> 843 72-3 =x > B43 x +3 Substitute (b) into (a’) and get:
xt 3 -16R7 = —832
Rr = 52
8. is 2 XG
Rp = 208; Tr = 7; Tp = 3
Yio 42 42-2
Z 4 2% +2) i
Area = n(3r)" — nr?
eee x -4 ;
= Or? — ar
_ -2x% - 4x +4
7 x 24 = 82r* m2
1 18.
13. ax + ie ea
a+ —
Xx Xx
x atx? +ax +x
= ax + =
ax + 1 ax +1
1
ie : pe oe 5)
i abs x x +1 eee
(rd
laa
akon
—fo»)
x By
m x mx” +mt x
3 x“ +1 x(x" + 1) 8 442
a a
R
20.
R = 10cos 35° = 8.19
NO
s + wwca) + i
U = 10sin 35° = 5.74 =, SS
174
Algebra 2, Third Edition
Problem Set 67
2 25 preay d
7 7
y =
5)
(1) =
5 PRACTICE SET 67
23. Mg = mCa
+b
3 +7.
1 meee Sig
RITA
awl 3et
Yaiay 2
Use the graph to find the slope.
3/2
- ¥3 15/2 — 53
= 1000 = 66.67
15 + 73 3V2
3/2 - V3 92) —3
Mg = 66.67Ca + b
_ 15¥2
- 573 _ 3/2 a3
15 3
Use the point (36, 2400) for Ca and Mg.
2400 = 36(66.67) + b
PROBLEM SET 67
0=b
1. R=KkA
Mg = 66.67Ca
2000 = k(12,400)
10in2 2.54cm 2.54cm _ 2.54cm
ee x —— x ——
hr 1 in. ire tn:
Lhr _ 10(2.54)(2.54)(2.54) cm?
3000 = (= 4
60min (60) min 31
18,600 Danes = A
as, Va/2 42 = [x!/2(x)] 4 = 1/6,1/3
xl/6, = 1/2
Te es le
a P\V\ =
PA 6d |bce zk xl/I5 1/12 os 3/20
(800)(300) = (1200)V5
V5 = 200 cm?
0 ae ~ 6/40
3. 0.2(400) + 0.8(Dy) = 0.32(400 + Dy)
V5, 15
32 as 2 4 — 1210 80 + 0.8Dy = 128 + 0.32Dy
3510_ 120710 _ _ 79/10 0.48Dy = 48
S
Dy = 100 pounds
— i=) 10 Sige 10
= x? amx + a + x?
-42- V5 Gs m+1 mx +1
-4+ 1/5 -4-5
S825 =8 = 2N5 14. (5 = NG +. 20)
1Ox=55 11 = 30 + 10i — 6i — 27% = 32 + 4
1 2/2
- V3 15. Aa 0 ae
2V2+ V3 2V2 - V3 =)25237 FA Dial BAG)
_ 2N2= V3 _ 2V2 - V3 = Dp = By) SS Oy a Ghee A
oe, 5
16. 27s
2. 3V5+3_
65 +6 a
eS
\W
35 ~3 BAS 3 — 4554.9
5 td S 10
6
4 2
10. +
x2 — 9 x -3
4 , 2% + 3) _ 2x + 10
x7 —9 x2 —9 x2 -9
R = 8cos47° =
uy 5.46
11. (a) RpTp = 1062
U = 8 sin 47° u 5.85
(b) R7Ty = 295
-7.99R — 6.02U
(c) Tp = Tyr - 2
17. 20 3x2 + 5 = 2x
(2 +Sr4 )--
3 3
ee) 1 5 1
xe + =—X + — = —— + =
3 9 3° 29
( i 14
x+—-] = -—
2 9
1 IAS
og oe ey
3 .
5 = 1, 914,
3 3
21. Since this is a 30°-60°-90° triangle,
tan@ = - V3 x SF = 7 af
6 = 36.87° SF = = 73
Since @ is a third quadrant angle, 5A. 5/3
@ = 36.87 + 180 = 216.87° oe 0 =macs
5 /216.87° ye a ov we
' y
a(b + c) m 2
27. ——— - =p
x y Ela
Beveatitd
aby + acy — mx = pxy Giainkaa
7+
aby + acy = pxy + mx att tt
mx — aby — abmp =
amp + ay
PRACTICE SET 68
29. Graph the line to find the slope. 0.00042 x 10717 4x 1072!
a. Estimate: —~oregit ae © aRIO
568,425 x 10 6 x 10
Md
= 7x 10 —32
2 <i’
Slope = S Calculator answer ~ 2.39 x 10710
f)
d. Estimate: (1.86) *°© —= 2-5 = 0.03125 and
| Eg b 1-* = 1 so the answer should be
eee between 0.03125 and 1.
Use the point (2, 4) for x and y. Calculator answer ~ 0.049
3
Ae D4
7?) PROBLEM SET 68
34 = 1. Dike
ye 800 = k(9600)
a
Bi a
ane
1
De po) = 2000 dastards
Dd PiV, = PxV>
(1200)(200) = (1600)V>
V, = 150mL
178
Algebra 2, Third Edition
Problem Set 68
21. 315 ° x2 —
3
2. + )—
3
3
= ») ice Sila
EN, ~ x? = ot SS See
3 ees
Se)1 ee16
2
40
U (: 7] 9
3 3
R = 40cos 45° = 28.28 1 4
1 = —hie—
U = 40sin 45° ~ 28.28 Bmulds
5
x= -,-l
10 3
U
aaa a 700 cm? 1 in. 1 in. 1 in.
R 25. ———— xX x x
min 2.54 cm 2.54 cm 2.54 cm
9.14R +— 24.210
37.42R
4.07U og h
: Ixy? [x>y a Gy)!4 ery)? = aye yea
= x17/6 13/6
= y
b} 6)
22. (a) =x —= =y = —2 D
Ory = 3) 28. 3/2 — 53 + 224
(b) —0.06x — 0.4y = -7.2 : 2) V3 SO Rie
(a) 6x — 10y = -30 V3 V3 2 2
(b’) -6x — 40y =.=720 _ 6V6 _ 15V6 | 246 _ 56
—50y = -750 6 6 6 2
y = 15
29. 8
ES elo
(a’) 6x — 10(15) = -30 1 (ae) a
6x = 120 my — apx — bpx = acxy + bexy
Poe, my — apx — acxy = bexy + bpx
my — apx — acxy _ b
(20, 15) cxy + px P
ome
it
400 = ‘ss
5
2000 = k
= hy = 80 tons
25
= 525,000K Tr = Sh lev
- 16i - 4i + 8 = -20i
3x45 +
o) 15. (4i — 2)(2i — 4) = 8i?
x—-5 x?
— 25
16. 220 2h
ns (3x + 5)x+5) Z
= Ji) + eLGD
a5 1 25
3x2 4+15x + 5x+25+2 = 2-2)
+ lipid aet
ae 05
17.
3x? + 20x + 27
x? — 25
4 efit 252 12 Aa
R = 20cos 30° =
SFnOe Bae 2 Cee)
12 + 4/2 U 20 sin 30° =
7
10.
2 ane Sit 32 10 + 62
et oe? 25
=18
10+ 6V2
7
11.
2. 3+2V8
_ 6+ 8V2
BS 33+ 28) - 9— 32
_ -6- 82 60 cos 30° = 51.96
23 U ll 60 sin 30° = 30
Rp = 57; Tg = 9; Tr = 3
1 1
13. m+ =m+ —;
ieee m + 1
m m
m m>
+ 2m
=m t+ 5) — ,)
m~ + 1 m +1
a a a D v 56,316
14.
as pin me AOe: aa ax +1 Since 6 is a fourth-quadrant angle,
a a
6 = (56.31) + 360 = 303.69°
Siar
x as
ax +1 113 /303.69°
2, 2 3 : : ; ;
4 ft . 12 in. y 12 in. ’ 12 in. 60 min
19, a) —x + —y = 28
23.
a) get 5? min 1 ft 1 ft 1 ft
x
1 hr
(b) -0.05x — 0.2y = 5.5 in?
= 4(12)(12)(12)(60) ——
(a’) 10x + 6y = 420 hr
28. eG Ore
21 3x2 + 8 = —5x m Zz
(# ot aie = al
axz + ayz — cm = kmz
3 3 axz = kmz + cm — ayz
kmz + cm — ayz
——————S——
az
x+2 x 3x—3 =
29.
5 4
4x + 8 — 15x + 15 = 40
~llx = 17
aes
5)
22. Since AABC is equilateral,
472.2 x 10726
mBC = mAB = mAC = 120° and 30. Re
1658.27 x 10AO,
BC = AB = AC = 10 -24
Use the Pythagorean theorem to find the height.
ee ae Sa 077
OSG 10)
10% = HH? +5? Calculator answer =~ 2.85 X 10-°’
H? = 100 — 25
H = 5V3 (b) (1.24)-2-73
Answer should be between 1 and 0.125.
Atrear= 10 x 5v3 = 25./3 units” Calculator answer = 0.56
PROBLEM SET 70
paar H mean
2bmp = bx + 6pxz
eS
RY _
Se
Pa, 2bmp — bx = 6pxz
F T,
b= _ 6pxz
PLV5T,
We 2mp —- x
FY,
e004 x 10°)(500)(4 x Ee 103) : A t
= ar aT Fe = +=
* ~ (0.001 x 107!3)(0.04 x 10!) * {- +5 *)
(4 x 103)(5 x 107)(4 x 10°) a ny
Daa x0 eS
Ge 1°)5)4, & 10°) ac = . ieseee
13
T, =2%x 10~K ACER ACSZE= NXZ EP TLE SUX
2 3V12
+2 _ 12¥3 +4
3.12 2,40) 32 +0 PlOSEAE
_ 3v3 +1
26
12. 2 —2V2
+2 4/244
240
= oo Sig
= /2+1
R = 6cos 40° = 4.60
U = 6sin 40° = 3.86
13. (a) RpTz = 65
3.76R — 1.37U
(b) RyTy = 104 4.60R — 3.86U
8.36R — 5.23U
(c) Ry = 2Rz
(d) Ty = Tz - 1 19.
(b’) 2Rp(Tz - 1) =
Substitute (a) into (b’) and get:
(b”) 2(65) — 2Rg = 104
-2Rz = -26
Rp =/13
Ry = 26; Tz = 5;
14.
>
|
< |
<
6 = —(51.34) + 180 = 128.66°
y bf
m xy © amy + m+ xy? (41 /128.66°
— eeSe
y ay +1 — -y(ay
+1)
20. (a) st = > =.-2
16. (2 — 3i\(5 — 6i)
= 10 — 177-— 151.4 18% =-8 —1271 (b) 0.07x + 0.3y = 5.5
(a’) 4x - 5y = —40
M7, —,/-4 - J-2-J-3
+ J-9 (b’) 7x + 30y = 550
at = 4)Zig 34. + St
6(a’) 24x — 30y = -240
= 446 + 31 = 46 +i
(Bb): 7x + 30y = 550
18. 340° SiG = 310
i Halt)
(a’) 4(10) — S5y = -40
Sy = -80
R = 4cos 20° = 3.76 yr= lb
3 3 9. : alee :
2 V7. 2! Write the equation of the given line in slope
os = + ae i intercept form.
ax + Syr=e
a = 4(J3) = 4/3 my = =
b = 422) = 8 ;
Ve ae 0
24. Co = mNi + b 4
Co = -1.54Ni + b yoireS
-0.2Py = -26
(2 +2r+ )-- Py = 130
(b) (130) + Dy = 200
a a
= — - — Dn = 70
Finn A b* — 4ac | D; |
2a 4a
: RrTpr = R,Ty; Rr = 8; Ry; = 24; Tr + Tj = 8
ee ah ree BT pe —-24(Ri—
Tp)
he 2a 227 =r 192
ya TO tafAe Tr= 6hr
2a Dr = Dy; = 6(8) = 48 miles
b. 2x7 - 6x +4=0 5. Hydrogen: pee lene
Bi Bob 6 eS? Carbon: Lote ake
- Oxygen: 3 x 16 = 48
ee TO) # (6)? =42004) Total, i 2 12-448
=62
2(2) A
u 6 + 36 — 32 7 642 ae Hydrogen: x 100% = 3.23%
4 4
6. See Lesson 71.
2. “hee = Ix GU
PROBLEM SET 71
2) £2)? = 4046)
1. PV, = P2V> ape: 2(4)
PY, 2a" we
_ 2391S
Les Te 8 8 2
ee (40,000 x 10~°)(4000 x 10-7) 8. eS |
8000 x 10 wr+x4+4=0
eet
gy NBER) = 10)) = 20 Nim? eo hE VO? = 44) _ = + 431
x 10°) (8 2(2)
2 PF = kP x= oe = V31,
; ‘ 4 4
240 = k(4800)
1 ane 360 — 280 = 40
— =k 9
20
. ee 80 _ 50
600 = (=)
au Since the diagonals of a rhombus are perpendicular
12,000 people = P bisectors of each other, z = 90.
m 3m
r= =
x+c y 18.
rxy + rcy = my + 3mx + 3cm
rxy — 3mx = my + 3cm — rcy
20 U
_ my + 3cm — rey
4 ry — 3m
pe aes
11. R
19.
Substitute (a) into (b’) and get:
(b”) 2(160) + 2Ry = 400
2Ry = 80
Ry = 40
Rp = 80; Ty = 4; Tp = 5
14.
x+1
b b
15.
a ab+a
b b
b @ = 45°
ab+a abt+a
Since @ is a fourth-quadrant angle,
16. —3 Fane aco ioeb oie 0) 6 = -(45) + 360 = 315°
= (EDEN OR Ol, mae
4,/2 /315°
3i + 4i - 3i = 4
20.
3 1 24. f81V3 Heastal3 = [3473 42)] 1/2
ianh=xXee. - 5)
—y = 2
= 3231/4 = 39/4
3 3
» See ya 1
he ay
x=—+—i
4
x“ 93
- 6y
3 3
Tae 2
mt
= —(1) = —11 Calculator answer =~ —6.56 x 10°
eo vs 2
11 11/3
b= 5 (3)3 . Answer should be between 0.125 and 0.037.
Pb = 36B - 144
a (A Wr = 100 mL
ay
-230° . 3.07°x AP = 31,314
AP = 10,200 things
sin 50° = a
. (a) Np = Ny + 160
(b) 6N; = Ne + 40
sigs Seo
Yr
Py =
PT.
1-2
T,
|fol ||| re (500 x 10°)(0.002 x 10°)
C7 Ha alolWa ae 0.0004 x 107
100 102 104 106 108
ae (510524104)
7 2
Carbon in grams
4x 10°
Use the points (100, 80) and (106, 130). Py = 2.5 x 10° N/m?
(a) -80 = -100m — b
. There is never an exact solution to these problems.
(b) 130 = 106m + b
One possible solution is given here.
50-= 6m
S = mC + b
S = 0.075C - 2
7.
12. Q ll =
|-
3 Sak
+
eS
tA: <_
——
a=—+-—
amymy = MX + M4xXy
mix
2
my = ——
am,
— xy
R = 3cos 70° = 1.03
2x +3 3x —2
U = 3 sin 70° = 2.82 13. = Saar Ce
xX —2x-8 x-4
-1.03R + 2.82U
2x +3 4 Gx = 2) + 2)
8. (x — 4)(x + 2) (x — 4)(x
+ 2)
2x +3 + 3x°.+ 4x -—4
x - dees
= 3x7 + 6x -1
7 2y ees
14.
3-2-3420
_ 6 - 18V5
es ND = 34 08 eet 190
3+ 9/5
88
15. (a) RpTp = 693
(b) RcTc = 165
(c) Rp = 3Rc
Gil, Te 2
D v 18.43°
Substitute (c) and (d) into (a) and get:
Since @ is a third-quadrant angle, (a’) 3RATc + 2) = 693
6 = 18.43 + 180 = 198.43°
Substitute (b) into (a’) and get:
20/10 /198.43° (a) 3(165) + 6Re = 693
10. 5x27 = -7 ~ 2
Rp = 99; Tc Si5j/Tp = 7
5x2 + 2x +7=0
_ 2+ 42? - 467) 16. ab + e = ab al:
2(5)
72 2+ -136 1, V34.
Li Vet
b b
10 5 5 b* ab> + ab + B*
magus br2 +1 ne Lie ks
Ged |
11. 3x2 + 7x = 3
3x2 + 7x + 3 = 0 ~u8n a 4 =
Li
y+ cyte tet
xy xy
2(3)
- ay xdy? + x2 + xy?
i a Pea) ie be
= 6 6 6 xy +1 xy +1
191
Algebra 2, Third Edition
Problem Set 72
ge
et4 et
= 16 29. Write the equation of the given line in slope-
elee 7 31 intercept form.
* aig ube 4y - 3x = 1
272 ee
— 40 m, foe
= Z
(b) x = Pie. = 116° 3
2
= 20
Calculate spewer 4 AO aLt Substitute (a’) into (b) and get:
(b) °9/243 (b’) 7INp = 3(2Np + 4) - 4
Answer should be between 3 and 5. Np = 8daisies
PRACTICE SET 73
5+ V3 2V3 _ 10V3
+ 2(3) R, Ty, a8 R7Tr = 256; Ry, = 16; Rr = 12
ABOVE k
4. Nr SSS
2a — 63 Se.
2/5 Foy) tot:
A = 18 50 = =
— 9/6 +126
64436 2500 = k
213 — 3/2
D9 Fad v @
12 -"6./6 5: rae es
- 6 — 18 1 2
2 ons = 6 ae Fe
6 + 3V6 _ Bakn1| V6Gi = meni M6& eet(0.08)(700 x 10°)
—6 —2 2 i
0.0004
es 107 )(7. x 10°)
|) a Sire;
a ae
PROBLEM SET 73 4 x 10r*
T, = 14 x 10'°°K
1. Carbon: Xe S24
Hydrogen: Sox 1 = 5 BS Dh
ee eA
Bromine: i x<7505=a80 = 5 Beals
H= 9% +4
8. Length of side = “all = 7N2 m H = V97
42 2
2,
4 tan@ = 2
Area = 2 = (=) = =m? 4
@ = 66.04°
9. There is never an exact solution for these problems. 197 /66.04°
One possible solution is given here.
12. See Lesson 71.
H=mC +b
13. 2x? +5 = 5x
Use the graph to find the slope.
2x? + 5x +5 =0
eh aa
5
a _ 5 £45 — 425) _ -S.t V=15
a 2(2) 4
H = -8C
+b
5, wis.
x= —— 2
Use the point (105, 80) for C and H. 4 4
80 = -8(105) + b Dx? — A= 55x
14.
920 = b ee Se 0
H = -8C + 920
SS
Ra
Be ee Oe ae
2(2) 4
10. 8 5. /57
U x=-—-—t
eet i 4 4
Bila ss
ckm, + kp
194
Algebra 2, Third Edition
Problem Set 73
18. gress 2 2 2. 80
feed
a= BS a-x = | ee
ax ax
ax? J ax
80 40
wines
fe a;
= ax2 _ a*x a>x3 =
gs Ted a*x —1
-2? 1/4)3
24. Seis mele las
= ayl2zli4y = gyl/4y3/2
Dao8)+ ——
ONS AS
2(a) 4x + 6y = 12
3(b) 3x -— 6y = 12
=
Roe
——— — -
ges caera 2,40
fe = 24
_ 10/40 , 24V40 _ 80/40
40 40 40
24
oS He
7 _ _46V40
_ _23/10
. 40) « 10
24
w) (|—]-2y
b) (+) =4
x(t Bix 12) (x — 10Ke4 3S)
4 27.
I ee (x —10)(x
+ 2) x(x — 8)(x
+ 3)
er
— sites
ae
alll,
oF
weap6!
ae 28. ya arth
21. x* +6= 3x
— 34.4
(7 = "-6 2 = —-—(-5)
+b
og I ae a ed Ol=5b
4 4
( Al 15
Nea | =
p: 4 1) ee
x-—--—-=tHt
3 45--l
2 2
ee Sen IE
2 2
? 4(30) - 8Rc = 80
9x -— 15 -— 2x = 36 -8Rc = —40
ix sr R Rink
ey a
— 7 Rr = 20 mph; 7c = 6hr; Tr = 4hr
PVs PV
PRACTICE SET 74 3 pe = aa
Ds 1 2
———— PLVoT
120 LS ee
PY,
Dp
SS 7, we= (400
SOE x 10°)(500
ax 10*)(0.06 x 10°)
105 A (0.004 x 10°)(0.02 x 104)
RgTg = 120; RpTp = 105 7, = (4X 107)(5 x 10°)(6 x 10%)
Ry 2 Ril = Ty — 3 Z (4 x 102)(2 x 102)
RzTz = 120 T, = 15 x 104K
(2Rp Tp a 3) =a
24Rp — 2(28) = 28 5 A ee
24R; = 84 " =V/3
= 2 30
Ry; = 3.5 mph _ -2V3 +44+3-2y3 _ ouaG
Rg = 7mph; Ty = 8hr; Tp = 4hr i. aa we
4/2 -5 2+ 38
pete,his Bae
by3)
R42 + 48 10 30,/2
rae
_ -19
+ 11/2
34
5/2 /225°
N = 70F + b
12. See Lesson 71.
Use the point (30, 50) for F and N.
14. xb 3x° = =4
3x7 +x -4=0
R = 4cos 45° = 2.83 epee {2 a 4(3)(-4) ei {49
x Sooo =
2(3) 6
U = 4sin 45° = 2.83
ol es
6m 6G 3
Leer
15. a= nf ~ “|
pe x
m km
SS
pe x
R = 6cos 20° = 5.64
acpx = mx — ckmp
U = 6sin 20° = 2.05
ckmp = mx — acpx
2 83 Rae) SOL :
-5.64R — 2.05U Be ey
m — acp
-8.47R — 4.88U
197
Algebra 2, Third Edition
Problem Set 74
Bie as Fe ES ay
a 1
16.
anaes.
m x, ih
a he be
1 1 A 1
oe
m x, te o) Soe ee a) a
ee OG. at ae
ax \X_ = cmXx, + bemx,
axX\X_ — bemx, = cmxy 6 36
cmx x=
1 Set
83.
38 SSS 6 6
: ax, — bem
pa eeRa Se
6 6
17. gees = Gee %
peakoe 22. (a) 4x - y = 45
a
Ae Bites ghee ae (b) 3x + 3y = 90
95 GR =
ax — x ax -x 3(a) 12x -— 3y = 135
(b) 3x + 3y = 90
18. Ci —3\@es) eso 15x =1225
= Or — Gi— 3i + 9sse8i it ili) per aket
26.
6
planar 7 eG)
enc
(b)'3x + O0.5y = 17 7 6
(a’) 15x - 4y = 20 _ 2N6 V7 , 3V7 V6
iT ERE ci
(b’) 30x + S5y = 170
_ 12V42 | 2142 _ 12642 _ _31/42
-2(a’) -30x + 8y = -40 Soa SAD, 42 es
(b’) 30x + Sy = 170 27. Write the equation of the given line in slope-
intercept form.
4x -y=7
i) nn= | KRLae S — Il NOi=)
y=4cx-7
—~ —
— —
28. Vx -5-2=7 P. P.
oie Score
x—) = Sl if 1
x = 86 ee PT,
— 5 425.7
Checks «(86 T,
9 = a7 py = (0.0036
0.0036x 1072)(40
x50
1077)(40
x 10
x 104)
x104
oo tad i ee p, _ (3.6 x 10™)(4 x 10°)
7 3 5 5 x 108
ee 9 91x 4414=. 105 P> = 2.88x 10-8 Nim?
5x = 100
x = 20 3 peat
pat Sooo
Nu
k
30. Lengthof side= 222 = 9m aes 500
: =k
5000
Area = 5 = 9m)* = 81m
T = TO = 25 days
PRACTICE SET 75
4. Dr
oe
x 8x4 4%
Leet
eee
Dp
See onl
tail i allan aa ae RgTp + 20 = RyTr: Rr = 60;
(x — 4)(x + 1) (x —4) (* 41)
Rp = 40; fp = Typ +2
eae = fae + Gee 5) 2 x Sr = 7
fd ix A)(x rf 1) (x a 4)(x ri 1) 40(Tr + 2) + 20 = 60TT
100 = 207;
PROBLEM SET 75 Shr = Tr
1 Dp
ister, 5. (a) 4N, + 6Np = 192
(b) Nr. = Np oF P)
D-
aes Sl Substitute (b) into (a) and get:
(a’) 4(Np — 2) + 6Np = 192
RpTp = 120; ReTrE = 360; 10Np = 200
Rp = 2Rp; Tg = Tp + } Np = 20 poinsettias
2Rp(Tp + 1) = 360 (b) N;, = (20) — 2 = 18 lilies
2RpTp = 2Rp =5360
x+4 2,
120) + 2Rp = 360 [ig Se
coat it
ie ¢ x4+2x-3 I1-x
=e
2Rp 7 x+4 a 20Gb ae
Rp = 60 mph TANG 1 -Ce 3-1)
Re = 120 mph; Tp = 2hr; Tr = 3 hr pees 10
A vay m3
199
Algebra 2, Third Edition
Problem Set 75
ie — a5 x+2
Fae que
Roe ie ore
Z x —3 , + 2) = 4)
(x -—4)(x+3) (x - 4)(x
+ 3)
i
Ree 2gee tae 8 R=" 10 cos 20%=
9.40
x* —-x-12 U = 10sin20°
= 3.42
x7-x-11
Stee pants 8.66R + 5.00U
x" -x - 9.40R — 3.42U
18.06R + 1.58U
3 Ne
SA iat ap) 14,
Wier Or ee Be,
7 TD 5 ow
; 2-3V3 _ 2-3V3 3+ 43
Be 4 3 aS
_ 6 + 8V3 - 9V3 - 36 _ 30+ V3
9 — 48 39
10. Acircle = ar? = 9ncm*
r= 3cm
15. 2x + 4 = —5x?
V = -1.25K +b Gs aes
Use the point (95, 27) for K and V.
27 : 1.25(95) + b 7 EG EEO
145.75
= : ;| my
_ Bt Neer
= ae
V = -1.25K + 145.75 ie ds a
12. See Lesson 71. m a Uh
16. ——— en(©+ °)
oe x (ep
13.
my = acmy + bemx
my — acmy = bcmx
a Il 10 cos 30° u oe D fon
ebone 2) ex
iH 10 sin 30° I Nn SS I
m — acm 1 -ac
200
Algebra 2, Third Edition
Problem Set 75
3 -SF =8
Seta
3
en ON, . 163
3 s) ae’
Asemicircle = Beh 20
y = 83, - 83
r? = 4m?
3 oS
r=2m
2 a2 a
18. a“y + = a*y+ zt
23. A232 = 22[2(2/3)]¥2 = 2292916 — 28/3
ane a
y y
2
ee
3a 2 3 2
Y 24. ae tas) 1/2)3)
ae 42 = (4 = -8
ay+a ay+a
a*y?
+ a*y + ay 25. Alesmp Srey
m pt we = (mp?)'! 4 (mp*)'9
yr = m4 4B p¥3 a pe
19. (240)
— 4) — -/-16
S284 4 —4 26. at + 2/8 - 256
== S21 = 4 4 = 9 -
3/7 8 +
2487
—— — -
2/56
20.
1 1
(a) =e7 =yred = 115
AS ATT
_ 21V56 , 16V56 _ 112/56
(b) 0.02x + 0.2y = 6.4 56 56 56
(a’) 3x + 4y = 180 _ 75V56 _ 7514
va O56 es
(b’) 2¢°4 20y = 640
ay 215 = 209 = =900 fw) 4813 x 10714 bees io
27.
(b’) 2x + 20y = 640 C00 Me 0
S1\2% =O) ~3 x 10)
eo) Calculator answer v 2.53 x 109}3
(a’) 3(20) + 4y = 180
(b) *°198
4y = 120
Answer should be between 3 and 5.
y = 30
Calculator answer ~ 4.34
(20, 30)
ie 3x7 +2=—%
2
es ai st + = “3
Sp Ch SEES ae
3 36 3 36
ee Pees
6 6
Ine 23),
x=-—t l
6 6
(b) Gy) + y + z = 56
yet 2 =50" (0)
(d) 4y+ z= 56
—4(e) —4y + 12z = 100
Since the slopes of perpendicular lines are negative 133.2056
reciprocals of each other, z=12
m,= 1 (d) 4y + (12) = 56
y=extb 4y
= 44
(7) = (5) + b y=Il11
2=b (a) x = 311)
y=x+2 x = 33
seB
20. Se5 -— 2
Nid~ | Nn iH] om
il ao pes
~~ s5 4 =15°
‘Oo | i) i] ~
30. i SRS lO
2 3
2x
Ww
Ni[w C = 5sin 70° = 4.70
(c) x =—3y = 22 = 16
(b’) 3y + z = -198
RcTc¢ = 32; RrTr = 72;
Rr
= 3Rc; Tr = Tc - 2 (c’) -y — 2z = 16
3RC(Tc — 2) = 72 2(b’) 6y + 2z = -396
3RcTc - 6Rc = 72 (c’) -y-2z= 16
3(32) — 6Rc = 72 5y = -380
—6Rc = -24 y = -76
Rc = 4mph
Ry = 12 mph; T¢ = 8hr; 7; = 6hr (b’) 3(-76) + z = -198
26 i Wwi=)
203
Algebra 2, Third Edition
Problem Set 76
11.
2V2-1
1+ +2
(eae THAD
ee
fo
R = 5cos 20° =
emcomel} Zo 4-400
U = 5sin20° = 1.71 12. 44 2\8° 44 492.
A 4d2
_ 12 -12V2 -4V¥2+8
_ -5 + 4v2
re 16 — 32 4
180 = 10.5(4) + b
138.270
Al = 10.5B + 138
15.
a m m
=—_—-
+ —
Cae as r t
Re ee10 cmr
+ mrx
= ae eae ar — cm — mx
x? + 3x - 10
“fla 44 _ _19V6
2
18. x + ng “ 18
ae! ax +a 0.00842 x 10 Sal 15
a 26. (a) FE.
SPP aCR 68 ey
nea Ds
x ; x A NO Ses axe Om A Se KOT
ae: ax 4 OX wyat AX ct AX = 9S 1022
ax + ou ax +a
27
1 2 r
20. (a)
(a) —xAgere
+ —y = 31
(a’) x + 2y = 93
(b’) 2x + 70y = 2760
—2(a’) -2x - 4y = -186
(b’) 2x + 70y = 2760
66y = 2574
yen 39
Graph
(a’) x + 2(39) = 93 ie the line to find the slope.
P
r= + 5°
(Vil)? 4= (2)+
yr =-6 .
£a =
92, 512575 = 5¥5°+V5 =95[525"/7]!2
= 5(5(5"*)) 215 9/4 Poae
y= Tr + —
4) 7
perry (41/2)
23. 7) = “36
205
Algebra 2, Third Edition
Problem Set 77
H = y(V3)?
-P E==
H=4=2 E
2
k
Argue = ow ' a(S) |n
in2 500)
(500) = (10)
——
5000
=k
(2+ an}in.? ~ 3.96 in.2
FE = 22 ~ sooo
Se ee 14N = 98
—2+2
N= am
Ss
WME 6 4. Ss
(Vs - 16)? = (4 - Vs)?
S 16 =816 — 85 4-8 Da
8s = 32 RcT¢ = RoTo; Tc = 6;
Vs =4 Tg = 12; Ro = Rg + 4
s = 16
Rc(6) = (Re - 4)(12 )
Check: ,/(16) — 16 + ./(16) = 4 6Rc = 48
4=4 Rc 8 mph
28 = Ey 5 5
Check: 4 (-2)3 Oe 27 SS ite D r= 4(v3) = 4V3
eee) t= 4(1) =4
De v¥m-—1 sr eS en 11.
Am 12 ="/m 2
m—-12=m-— 4/m+4
—16 = —4./m ia
ab Jim ache
16 =m
R = 4cos 30° = 3.46
Check: 416 -12 - 416 +2 =0
2—-44+2=0 = 4 sin 30° = 2.00
8. (a) 2x+y-z=7
(b) x — 2y + z = -2
(co) 2¥ + Z= 0
Z=-2y
Substitute (c) into (a) and (b) and get:
(a’) 2x + 3y =7 R = 6cos 20° = 5.64
(b).x—4y = 2 U = 6sin 20° = 2.05
(a) 2x+ 3y= 7 -3.46R + 2.00U
—2(b')+2x 4+ By.) -4 —5.64R + 2.05U
+ rae ia We TD -9.10R + 4.05U
Flynea 1)
yas 12. y
(b’) x.— 40) =.-2
=2 2
‘. il
(c) z = -2(1) = -2 ha
- x
(2, 1, -2) a
Bi
9% (axtyrz=7 -
(b) 2x -y-z=-4 Y
(c) z ="2Zy
Substitute (c) into (a) and (b) and get:
(Di) 2k = Sy = 4 H = V53
= 4 =o r
x =] * tan @=-—5
ee 3y = 6
9 ~ 74.05°
y=2 @ is a third-quadrant angle,
Since
(c) z= 2(2) =n4 0 = 74.05 + 180 = 254.05°
fh Sw 2 20.
13.
==
15. Se x
rz Tx +2 , 2 +3)
(=
5S) +3)" “Aa SGeeS)
tet 2x Om 9x+ 8
oe en ee x? —~2x - 15
(b’) 3x = 2002-158
Ves LO 26.
Oo = 40%] = 27
x= 14 27. (2V5 + 5)(5./20 - 1) = (2V5 + 5)(10V5 - 1)
(14, 10) = 100 — 2/5 + 50/5 — 5 = 95 + 48,/5
5 3
ys=-—x+ =
4 4 A 40
45.16
0
D? = 10748?
De, jose
cae ee 6.62
D = 2V41
In polar coordinates,
3x -1 —_
x -—5
—— = t eé = —
45.16
nt 4 7 ore Co.62
21x] = 4x +.20 = 28 0 = 81.66"
945 D=2
(a) N = 5(2)= 10
RrITpr = 135: R,Ty = 945;
Fraction = aw = i
Tr = T; - 4; R,; = 3Rpr D2
3Rr(Tr + 4) = 945 7 Vx-9
+ Vx =3
3RrTr + 12Rp = 945 x-9 =3-vx
B. =% + 3 ‘ ,
cE 5x% — 14 2 ex 20. a+ =a+ >
nee x a+x
ee xr=3 nj? 3x(x + 7) a
(x + 7(x-2) (x + T(x - 2) " a a +axt+a?
_ Sea = 2k on oa a? +x
x? + 5x- 14
es hy, 3 a. -5i? — J-9 + J-3V-3 = -SiGii) - 31 + 3()
LE =-3 + 2i
= 5i- 31-3
211
Algebra 2, Third Edition
Problem Set 79
2-SF=5 im
30.
x 60 cm?
= 400(2.54)(2.54)(2.54)(60) ——
min
_ Ne
4V5V8 ee— ee
3v8 V5 AO), Since this is a 45°-45°-90° triangle,
V8 V8 5 HS —_—
1 > SFt=3
_ 20V40 24/40 - 80V40 _ 194/10
~ 40 40 40 ~ = ae5 SF= 3
y=1- SF
T0213 < 10 7 ee10" ya=us
28. (0) ee 1 x 108
5062 x 10 5 x 10
Z=
2 or
Calculator answer = 1.39 x 1078 Zee Sa)
(b) >/263
Answer should be between 2 and 4. PROBLEM SET 79
Tc = KNp
Calculator answer = 2.81
2142 = k(3)
714 =k
Tc = 714(10) = $7140
ey 20(12)(12)(12)(2.54)(2.54)(2.54) fiters
RpTp = 900; Tp = S5Tx; (1000)
ReTe = 120; Rp = Rr + 10
8. x’ = 4x +4 =x $2
x74
t+4x7 + 4x +4
RR Toe OT p= 900
5(120) + 507, = 900 —8x = 0
50Tz = 300 a0
Ty = 6hr Check: 0? - 4(0) + 4 =0+2
Tp = 30hr; Re = 20 kph; Rp = 30 kph 2=2
rea (d) 3x — 2y aa
(a’) 7Newords = 2Nspears Substitute (c) into (d) and get:
(b) SNgwords = Nspears + 120 (te Tones
(b’) Ngpears = SNewords — 120 Ry ees
213
Algebra 2, Third Edition
Problem Set 79
11.
Sip iat 16.
Gon ee
EX, R, R,
a |a b |
17.
5e R, R,
Cee ne
x R, R,
CSri"cos 45 7 NI=" 071 aR R> = amxR» + bmxR,
6 = 345.48° x 3%
13.
-2-3 2v3-2 (b’) 25 4 e120
PEE phe OMe Pe,
(a) 45 =15y = 120
_ 443 +4-6+ 243 | -1- V3
-2(b’) -4x — 4y = -240
a ad ~~ Pay 4,
—9y = -360
-1-J2 -5+ 2 y = 40
14.
5 -J2 -5+2 (69) 20% 2(40) = 120
_ 5- V2 +5V2-2
93+ 4y2 2xXC= 40
ae) 23
x = 20
15. See Lesson 71. (20, 40)
3x7s~
Ome lero Answer should be between 5 x 10°? and
3 x 10°,
2(3) Calculator answer ~ 3.21 x 10°
= 2+ V16 = iL + 2 = 1, a}
6 3 3 3 29.
SF
= 3
a V¥3(1)
= V3
b V3(/2)= V6
40 mL 1 cm? nt n. iain:
x x
Ss Lil 2.54 cm 25476
1 in. ¥ 60s 60 min
x
2.54 cm 1 min 1 hr
40(60)(60) = in?
~ (2.54)(2.54)(2.54) hr
wi,
Carlw ey
wi
pee
LTO
= On 14
14/14 F 6V14 84V14 32-14
14 14 14
PROBLEM SET 80 8. Vs - 18 + Vs - 36 = 0
1.. S@ei s — 36 = 324 = 36+/s-+s
119 = k(14) 36Vs = 360
k = 8.5 Vs = 10
C = 8.5(32) = $272 s = 100
(c) 2x —-z=0
NB 4
ah (a) a SNR = 4Np z= ax
Np 5
(b) Ng = 2Np — 1200 Substitute (c) into (a) and (b) and get:
Substitute (b) into (a) and get: (a’) 3x + yoe ts
(a’) 5(2Np = 1200) = 4Np (b’) -3y 2g
6Np = 6000
Np = 1000 acrobats in pink y=2
(b) Ng = 2(1000) — 1200 = 800 acrobats in blue (a’) 3x + (2) = 8
1 SX =—6
4- 3— =< P=, 650
4 x sz
(2, 2, 4)
5. (a) 40Np + 2Nc = 820
(b) Np ate Ne = 310) 10.
—200°
216
Algebra 2, Third Edition
Problem Set 80
|W wo = re) ok tO Il | Ww=
(2-24 )-4
3
9 (Peas |
xo -x+—
SS t+ —
4 3 4
( y 11
x-=|] =—
2) 12
1 433.
x--
= +—
2 6
x=—-—-t—
i, Aik!
94 6
tng = 2- =3 pee:
y
mqx
Cc
@ = Ji 57° y Cc
acy = cmpx + m@xy
Since @ is a second-quadrant angle,
acy — mqxy = cmpx
6 = -(71.57) + 180 = 108.43°
_ empx
2/10 /108.43° Z ac — mqx
12.
5 ere 18. 3a — = 3a - 5 2
x 366-16 x«-8 a- 3 a~7—"3
YS 4x2 B(x 4:2) a a
BiB) x 2) BG-= 82 +2) = Bye 5
3a =
3a 5
9a — 3a
a“ —3 a“ —3
eet es
i Ea!
A=
4 x SF =
SF =2
im) ll | ay T
(5)Z 2.8 +20 ~~ —
Mm
mi]
10.
= B +5
Q ll | il ll
S="B
Cae we
(12, 8) i3 Bon
b) yyo=. —2( (>
(b) = beeis
7
22. ee es
x7 -x-5=0
_ -(-1) + ¥en? = 40-5)
can
eee |
3 3X 7x
2(1) 28. pest
la 2 a1 ax a“x x+a
26.
an
= (eo
ee |= 8 m,
= +1
Y= Xe b
3=2+b
27. (a) x — 3y = 6
-l=b
y= 3 —2Z
y=x-1
Dr
re
Dy
2-21 2-21 -2-2i
2i-2 -2+2i -2-2i RrTpr = SIS RT; = Bil:
Rr = 3Rj; Tr = 1; — 10
ABOVE
3R(T, = 10) = Bi)
BO
Ok
3R,T,; — 30R, = 375
—4 + 4i 3(375) — 30R; = 375
~ A -30R,; = —-750
—4 —A = 8
R,; = 25 mph
BELOW Rr = 75 mph; 7, = 15hr; Tr = Shr
Dy
=) —E2I (a) 0.1Py + 0.4Dy = 38
Asay
(b) Py + Dy = 200
4i — 4i2
4 +4 =8 Substitute Dy = 200 — Py into (a) and get:
(a’) 0.1Py + 0.4(200 — Py) = 38
ge me —0.3Py = —42
Py = 140
M = kT? 40
oS, = 1120
100 = k(2)" Tir
2 =k Ny = 1120 - Boe
40
M = 25(5*) = 625 monkeys Nr = 2800
5 Sa alES 12.
Dees oS 5
6-15 -21+5% 1 _ 17,
a 4 — 2572 “39 29°
32), Died
Di, SA Di FRA taba ink
Gi: 2 difie A
= 4i2 — 16 Seo 10
8 cos 71° = 2.60
(180
— A) = 4(90
—- A) + 30
B = 8sin71° U 7.56
180 — A = 360 — 4A + 30
—2.60R + 7.56U
0.00R + 5.00U
—2.60R + 12.56U
ipa es
2.60
~TIx
= -21 @ = 101.70°
so = 8}
F = (2.60) + (12.56 ~ 12.83
Check: ./32 — 3 + 30 -3 = 3
12.83 /101.70°
6=3 23
1x = 2 Bex
10. ip — 48 =12.-4/p 13. +
to9) (3x
p — 48 = 144
- 24,/p + p
2 Tx —2 SxS)
24,/p = 192
(Kee 3) 3) Be 3G
P = 8
_ 3x4 - 2x -2
p = 64
x2 -9
Check: 64
— 48 = 12 - /64
4.= 108.8 V2-5 ¥2+2
14.
nD 22) Oeste?
11.
(b) 2x -y-z=0
_ 2+ 22 - 5vy2 -10 _8 +32
Dora 2
(c). y.— 3z = 0
y = 3z
15.
2/3 -1 14+ 3V3
Substitute (c) into (a) and (b) and get:
(23.3) 15379
(ain jn = 95 RN Sich 18 carl SalSee kde Ee
(Db!) 24 — 47 = 0
1-27 26
—2(a’) -2x — 6z = -10 1+ V2 342
16.
(BON 2.42 I i=) 3.2 Tot Ne
~ =10z = =10 _34+V24+3V2+2
5+ 4,2
z Hf aR 9-2 ye
(ix 3(1)-=' 5
17.
40
go UG ie
x= 2
2
(c) y = 3(1) = 3
140
—1
(2, 3, 1) y= = 00
Zi
2 1 x+y
21. (a)
a) -xa = oe
--yo= 6
wy rs SOY ty) + 2X(xX + y)
(b) 0.15x + 0.0ly = 0.84 2,
X-YW(X
th VW wah W(x ty)
2
x y(x + y)
(a) 2x-y= 18 xd y + 3x + 3y + 2x? + 2xy
(ob) 15x + y = 84 x*y(x
+ y)
ix = ike
= 0 28. 4 ee) a Oe) ll
-16-1-x+1+2x+5
(a’) 2(6) - y = 18
y=-6 x 18
(6, -6)
29.
22. 2 = -2x* - 3x
2x2 + 3x +2=0
x=
3+ /3? —4(2)(2), _= —
-3 + V7
POD) 4
meer ir
4 4
4x? + lox + 63 + 4
23. x — 4)4x3 + ne —- x FAS
4x? — 16x?
16x27 - x
16x? — 64x
63x + 2
63x
— 252
254
0.5061 x 10° 5 x 104
30. (a) 0.0071643 x 10 ase
Since this is a 45°-45°-90° triangle, 7x 10 31
V2. SF = WW = 7x 10-*
oi - LIND Calculator answer ~ 7.06 X 1074
2
221
Algebra 2, Third Edition
Problem Set 82
PRACTICE SET 82
a. = =
ae x ax RrTr + RwTw = 60; Rr = 10;
3 lla =
omen a ap
rae 3 BO Ee 3a +3 Rwy
= 5; Tr + Tw = 8
a a
. 1 a 3a + 3 10Tp + 5(8 — Tr) = 60
— 9a+9+ax ~ 90+94ax STr = 20
3a + 3 Tr = 4hr
a 3a + 3
Tw = 4hr
~ 9a + ax +9
Dr = 10(4) = 40 miles
46 Na
PROBLEM SET 82 142 852
2
1 Bh 22) 142Na = 46(852)
a 5; Na = 276 grams
300 _ (10)?
05 6) Sodium: s x 100% = 32.39%
100Q, = 25(300)
Q> = 75 m z m
m m
2 + 2
2 Dp 742 2p+2
nl
1920 P
reek LSet wos mt
Dp 2 4 —mP 4p +4+ mp
320 2pit 2 2p.+2
RpTp = 1920; RrTr = 320;
_ _m(2p
+ 2)
Tp = Tr + 4; Rp = 3Rp
4p + 4+ mp
3Rp(Tr + 4) = 1920 P # p
3RrTR oe 12Rp = 1920
a+ ? at to
3(320) + 12Rp = 1920 oe ym +
12Rp = 960 y Y
Rr = 80 mph
(eo PLVoT, 2
ar“h
TORY Veons = ala
Ty 2 (50)(200)(540) ~ 4320K
12(3) m>
(5)(250) i= ee = 4m
9m
222
Algebra 2, Third Edition
Problem Set 82
xe —-x4+47 = x2 + 10x + 25
llx = 22
Se eo)
Check: 25 + 24 + J@5-= 12
71+5 = 12
13. (a) 2x -— 2y — z = 16
(b) 3x — y + 2z7 = 5
(c) -y + 3z = 0
y. = 3z
Substitute (c) into (a) and (b) and get:
(a’) 2x — 7z = 16
(6) y = 3¢-2) = -6 Es
»
BS ieiaaamnniaeee
3X
=
a Xk
3
Oy ae
oO
oe
= 3
= 2
(1, -6, -2) re x2 =) Ls x? -— 9
223
Algebra 2, Third Edition
Problem Set 82
2 1
Gp OB Lee 23. (a) oe
57 3) |
(a’) 6x -— Sy = -15
18:
2-75
Se
2-2V5 (b’) 7x + 20y = 215
DES e245
4(a’) 24x — 20y = -60
_ -44+ 4/5 - 2V5 +10 _ -3 - V5
4 — 20 8
(b’) 7x + 2y = 215
Sky Up)
19. 5? = A? + 3? x=
25 = A7 +9 (a’) 6(5) -— Sy = -15
16 = A’ Sy = -45
4=A
y=9
5 x SF = 9
(5, 9)
25. 3x2
— 2 = 5x
3x* + 5x42= 0
5-4
5 Sian Se) scant
5-385 2(3) 6
5 2
6) «6s ae
20. +=
Zz
2(2+))
x
m m\a [55%
LVN Sie oes
RY = Gy) l2G4y)!s
26.
ee BEE a x72 yll2 2/3513 = x iby Isle
m am m
27.
az — ampy = mpx
se Pe
Z — mpy = 24 22 - 0
z
6/2 ¥ AF 9072 29,/2
aie +=F (ys i y) 6 6 6 2
m m\a
ean eg 2° 1/2)5
m am sm 28. Spare
= 1-4'2)"],=.22
az = mpx + ampy
az - 29. (a) 4x -— 3y = -3
mx + amy
oe Ae
di 3
22. Length of side = suagonal = om = 3/2m (b) 4x + 3y = 6
4
Area = s* = (3/2 m)? = 18m? y Sree
5h
PROBLEM SET 83
1. Equal ratio method:
upsur a
R, C,
1200 _ 300
R, 100
300R) = 100(1200)
R», = 400 were resentful
Variation method:
R= ke
(a) 4x -— 3y = -3 1200 = k(300)
(b) 4x + 3y = 6
4=k
8x ="3
R = 4(100) = 400 were resentful
_ 400(60) 5 pal Ds
(2.54)(2.54)(2.54)(12 )(12)(1 2) min RsTs + 400 = RyTy;
Ry
= 5; Ty = Ts = 400
R,(400) + 400 = 5(400)
PRACTICE SET 83
400R; = 1600
a* = x/2,.m +m/5 _ gq X!26mI5
m 73x,ml5 qx!2 2 Ry = 4yd/s
Be
225
Algebra 2, Third Edition
Problem Set 83
= q2*!3-3y_-2x+2
(-2, 1, 2)
eee
ee Sie
Ge aa) ats
ee) 22. : Sinceage
this is a45°-45°-90°
-45°-90" triangl
triangle,
1x SF =4
— 5x? = 20 + 6x + 3x3 + 6x? _
x(x? — 4) tr DO
_ 3x3 + 11x? + 6x - 20 m = \2(4) = 4V2
xx =A) p= 1(4)=4
227
Algebra 2, Third Edition
Problem Set 84
= a a i v7 ae Sa
2D Ain ALT i ——(-3) +b
oa a Pag 1a
14 14 1 8 8
11
6. -2° (-3°) = -{-[-(27'/7)
a 1/32 11 == -9
? ]} raha
8
9 11
27. 3]
(3/x2y)4 = [(x2y)"3]4 = (x23 y!)4 = 28y3.4/3 eo a
PROBLEM SET 84
1. Equal ratio method:
Ay B,
A, B
200, B10
A, 80
10A, = 1600
A> = 160 were admired
D2 = 92 + 82 Variation method:
D? = 145 ee
as :
(uses80
30. Graph the line to find the slope. 16002 k
4 = 1600
10
A = 160 were admired
ies
i 7,
4 gots
4T)
= 2584
T, = 646 kelvins
646. —.273 = 373°C
1+7=
4. 0.1(160) + 0.3P, = 0.22(160 + Py)
16 + 0.3Py = 35.2 + 0.22Py NS seAAG 5 dee cei
0.08Py = 19.2 DLP a8
Py = 240 mL Ces ae
Ri=ay
5. 250 — 140,000 = By Substitute (c) into (a) and (b) and get:
(ax 3) =) =6
350,000 tons = Br (b’) a)
6. yPxl
+2yPB,-2-P = xo+2y-2—Pybyb3 — ye —pyAbl3 x= 1
(49.30) 2.3y = =6
a aa yet 32+ PybyBIS= ye+p + 1y2b/3 —3y = -9
yb/3 .2-—p
Park y=Si. 3
16.
10. ——P__ 2 —_?
ee he
= am + |
am
is i" 5
is 1h eon | C
bpx — p — bx C = 4cos 20° = 3.76
He 2 cig, | du em Seis 3 D = 4sin 20° = 1.37
Sih ico ilkaea 1+1 5.20R
+ 3.00U
(es Tas Warr 3.76R + 1.37U
= 5 = “> a 3" 8.96R + 4.37U
229
Algebra 2, Third Edition
Problem Set 84
23. ~2x*
x =3
eeeie foe
1a) —4
3
’Circle = ee=3m
6 = 69.44°
25. There is never an exact solution for these problems.
(73 /69.44°
One possible solution is given here.
4 2 DN Y = mB + b
18.
(ey ay Use the graph to find the slope.
4(x — 3) iS ee
pe aA sg
Bn) x a 3) ee EB) 6
_ 4x -12 + 2x - 5x3 Vee 50: aah
i ee (ye 3)
Use the point (99, 100) for B and Y.
-5x>+ 6x - 12 100 = -50(99) + b
x” (x - 3)
100 = —4950 + b
(b) (84.9)-4-9!
20. (2 + 3V20)(4 — 5/45)
Answer should be between 3 x 107!° and
= (2 + 6V5)(4 - 155)
4x 10710.
8+ 24/5 — 3015 — 450 = -442 - 6/5
Calculator answer ~ 3.38 x 109719
21 Bean ofirs
iG Se y 27. 33 +22 — ava
ee ee Pe. _ 35v3, 2W3V5
Cc x y
mxy + xcy = cpy + cbpx
eae ee
mxy = cpy + cbpx — x*cy Siig ees
mxy
J _- =
—- 25 _oJ8 | sng
py + bpx - x”y 5 5
230 Algebra 2, Third Edition
Problem Set 85
x= 10 1 = kT
PRACTICE SET 85
2 ee
a. (a) BTp + 9Tp = 36 /———_—_—__+]
a ae = = = 18 ‘ aD
2BT = 54 B
(c) : BT = 27 ee
(a) (27) + 9Tp = 36 RpTp = 640; RpTz = 280;
OT) ="9 Tp = 2Tp; Rp = Rg + 20
Ip Sih (Rp + 20)2Tp = 640
(b) B(1) = 27 2RyT y+ 40Tp = 640
B=27 2(280) + 407g = 640
(b) 3Np == Ny + 10
Substitute (b’)into (a) to get:
(a) x2 + (4x? — 20x + 25) = 25 (b’) Ny = 3Np — 10
231
Algebra 2, Third Edition
Problem Set 85
4. (a) 0.1Py + 0.5Dy = 136 Substitute these values of x into (b) and solve for y.
b) y = 2(0) - 4
(b) Py + Dy = 400 lan e
y=-4
Substitute Dy = 400 — Py into (a) and get: 16
The desired integers are —9, -7, -5 and —5, -3, -1. + x(cm + x)
acm + ax + bm
6. (a) BTp rf 6Tp = 24
(c)y
=1
WA, =fald — 3) a ee 9
(2, 1, 1)
So for lt = 2 = 3h Se
16
B a a ae ES
‘ J - 2
ele 140 = 120 + x
20°
= 3
0.00R + 6.00U
3.39R — 2.12U 1 1
3.39R + 3.88U 2B. ADS Rea mee
ee 3.88
es Gn (b) 0.3x — 0.04y = 2.46
E 3.39
@ = 48.86° (a’) x + 3y = 27
F = (3.39) + (3.88)? ~ 5.15 (b’) 30x — 4y = 246
5.15 /48.86° 30(a’) 30x + 90y = 810
-1(b’) -30x + 4y = -246
94y = 564
17. Tide GeV xin 2 7%
vis 6
tas J 0 ee of , 9, 6a!
sila a oa|
(a’) x + 3(6) = 27
- yx -a
a)
ig BN ee
Soma 2: 54 ae (9, 6)
% 040-4 342 —4 ~ 11-72
2: 15=1002 +902 —4 3 24. See Lesson 71.
233
Algebra 2, Third Edition
Practice Set 86
25. There is never an exact solution to these problems. 100 £2 . 60s . 1? in. * Din TOT.
One possible solution is given here. 28. 3 tani ft ift a
Na = -5Mg + b
Use the point (54, 82) for Mg and Na. aha I 3 2 ap
82 = -5(54) + b 12 5
PRACTICE SET 86
a. -x £ 4; D = {Integers}
-x > 4; D = {Integers}
=61- 7-6-5) -4
Substitute y = —3x + 6 into (a) and get:
(a’) x — 4(-3x + 6) = -8 , x74 y%= 11 (a)
Tee 2 5e= 8 "Wawel (b)
13x = 16 (bo) y=x+1
_ 16
pacer
ie
(b’) y S097 ae Peers||
2 =) = Lt YQ) = 4(2)-10)
13’ 13 2(2)
_ 2, 1 P21
Ae 4 ee:
ia S
rt
Xt
Ss
234
Algebra 2, Third Edition
Problem Set 86
y= (46B).
4. Hydrogen: 20x? lvek?
Ohyextl
1 Carbon: X12 22
2 2 Oxygen: 3 x 16 = 48
lr Tet Total: 24 12.4 48-= 62
ya eth
~*~ ie 372
62
y=x+l
62GE=aI2G72)
1 21 C = 72 grams
ae pee enn ot: |
2 a
braee ir ee
D ——|——9—$_|
—}—
P OG 1, 2%ae4
= Dy | B= 12
900 liters
235
Algebra 2, Third Edition
Problem Set 86
ll. @) x’ +y =4 pg aaa ae
(b) y-x=1 , 5
y=x+1 N + 22 = 45
x =
SAO),
eoCaE OT
wale, VI Jp =1
2(2) 2 2 p=1
1 si) ee ll
if =e
ab =}|—-—
we +—]+1
ep:
Pigg 19. + 2y-—-z=0
(a)x
2 2
1 7 (b) 3x + y — 2z = 3
wy=(t-) a1
2 4 (c) 2x —-z=0
pee a Sk z= 2x
2 Sipconeg
Substitute (c) into (a) and (b) and get:
Yo i: aa ean 7 - _ j
2 a7? 4 2 (a’) x + 2y =0
14. —_+— Se : ~,
Sa=eeSS = -12
(c) z = 2(-6)
bee i ax” +x+a fae a5
x+=— ea ax +1 Sore?
a
o ax +1 20.
+x +a?
ax?
=;
—13 + 131 = SS
1 + —I
26 2
: ] 7
—220 25. 5,|2+ 3 [2SIG
Gr=s10\cos402 >= 47.66 seal Deb gig AMES re
Crt Ox leeeel
5)
(oe ) owes ee3
H = N10?
+ 3? = 109 PR
x he
s
pete eae
3 x= Syn
@ = 73.30° 3
Since @ is a third-quadrant angle,
40 in.? pelt, piaieties) tydi eld
rth 180 = 253.30° 27. eee ee
an eatin Fe aie a ake ft
v109 £253.30" ,, Omin _ _ 40(60) yd?
Paesepiaahea + Ww 1 hr (12)(12)(3)(3) hr
2, ——___ - ——_=
Merels. 14 34/3
2
eget 943 — 213 218 15-21 1173 28. — 1 = 6x
-2x°
[97 —26 x? + 6x +:1=0
A+ 11435
pie TE -6 + /6% - NT
26 ia ey Oe ee a
2(2) huge ey)
x+2 (¢
23. = (S| = Ges
y b
Bt eon
y b
237
Algebra 2, Third Edition
Problem Set 87
3 2 = -—(7)
+b
oy = -—x-1
re:
2 ep
lA 2
3 25
= —-—x + —
Pee
PRACTICE SET 87
J)
~\
on
=
xj = —3; Vi = 96; Xo = —11; v7 = 49
|
[||
aon
eS
pes
———————— SS
(49) — (96) _ 49 - 96
X,-xX, (-11)-(-3) -11+3
Solve the equations by elimination:
ae!
—3(a) -6x + 1I5y = 45 . 8
2(b) 6x + 8y = -8
23y = 537
x=
80
-—
R,T, = 1440; RgTp = 120;
23
Ry = 4Rp; T; = Tz + 4
4Rp(Tp + 4) = 1440
Gye
23° 23 4(120) + 16Rz = 1440
16Rp = 960
30. Write the equation of the given line in slope-
intercept form. Rp = 60 mph
Variation method: si (x1, 91) = (-2, 108); (x, yp) = (—21, 47)
ne m=
Yy- My _= 47-108 ==_ -61_=
61
H
X,-x, -21-(-2) -19 19
10 = HE.
400 x £ —4; D = {Integers}
k = 4000 x 2-4
4000
H ——— 500 = 2 0 hours =5"=4 -3 -2,-1
y dz —5 = Vz— 45
+25 =z— 45
z—-10Vz
13 (m2) -y = m24~ %y = m% ~ &y-5
10/z= 70
oo my? +1
Vz =7
z= 49
a a a(a* + b)
14,2 =.
—— =
ee a a at+abt+a Check: 49 — 49 - 45 =
b GateG
Ze = a’ +b 7-2=5=
a
be a> +b 20.
a*>+bta
B 5
15 a eee oe Ee ol et eet
ee ee ees 121 72°
a aes
2 2
A.= 5 cos 72> = 1:55
16 Bot 2 ele Osi ai
B = 5sin72° = 4.76
oe Laat
4 The -1.55R + 4.76U
=—- —i 8.00R + 0.00U
5 5
6.45R + 4.76U
17. (a) (9315 x 10°)(-2.065 x 10%) 4.76
tan 0
Estimate: (9 x 10°)(-2 x 10%) 6.45
St se 10" 6 = 36.43°
(b) 3x -y-z=3
22. -3i(ii) — /-2J-3 = 6 + 3i
KC) 2607 =
23. a2 = 32 — 4 189
Z = -2¢
NE eek eesali)
Substitute (c) into (a) and (b) and get: = a eee) 1901
(a) Sx 49 = 7 3 NORE Aa)
Tam
(bh) 5x. y=, 3 _ 21V21 | 921 _ 252V21_ _74/21
10x east)
mil 21 Re oe
x=1
24.
(a) S@)P Fay =-7
a bcy + 4bc acmp + bmp
bey + 4bc — acmp bmp
(c) z = -2(1) = -2
bmp
(1, 2, -2)
by + 4b - amp
OH.
10km ~
1000m x
100¢m__lin.
a
ee
hr 1 km lm 2.54 cm Dp
Siar 2
Pie 0) Z
See PVT,
ib)
so Ba?
= saa at y, < (740)(10)01473)
= SS 2 (573)(1480)
RT (0.0821)(159)
PV
—}$ =n
RT
The desired integers are 0, 2, 4 and -10, -8, -6. | - /64 +25 = /89
241
Algebra 2, Third Edition
Problem Set 88
=x 6 13. y4p24 me
Xx IV
IA -6 = y(7a/2)
+4,1-2a
27-654 —3ee-1 0
r r _ rd + rm)
14. z 5) a D 2
a —x + 2 % 3; D = {Negative integers} ae i a Me r mt+rm” +r
x+2< 3 ;
x<l
x 2-1
15. pe 3 cp
hh
or) C
aren err na ee
3-2-1 0 1 Gay
| Os 1 Dez pe a
ig ee
pe
rie
10. (a) BTp + 6Tp = 22
242
Algebra 2, Third Edition
Problem Set 88
x = 2y 0 u Ta
Substitute (c) into (a) and (b) and get: Since @ is a fourth-quadrant angle,
(a) 6y — z ="14 6 = 360 — 71.57 = 288.43°
(b’) 9y + z = 16
4/10 /288.43°
1Sy "30
ye ad 22. Ai? = 5/29 4= 33
(c) x = 202) = 4
9
4 ae
3
9 7 5N27 = 43 + V3 - 1503
(a) 2(4) + 222) -z= 14 23.
12-z= 14
= -10/3
z= 2
rtd
= 20 sin 20° = 6.84
Loe 1 1
C 26.
=e, B
c Cees 2
Aone
2g aye Py
D Cc ue r
30
x?r + 2xyr = cyr — cxy
& b 5)
10 mL 60 s lcm 1 in. 1 in.
28. x x x x
S 1 min 1 mL DSA Ci) 2o4,6em
243
Algebra 2, Third Edition
Problem Set 89
PROBLEM SET 89
29.
1. Equal ratio method:
en
A, 8B,
~ Il | nA5) 500
_10
An. gas
A, = 2100 altercations
Variation method:
A = kB
500 = k(10)
y + 83 = 180 50 =k
SA
Il 97
A = 50(42)
VLaQ aij, OF 2
0.79(800) — E = 0.30(800 — E)
=1 <x = [sy5: 2D =f Reats} 632 — E = 240 — 03E
=< ~ — leandesx
— I lA 392 t= OE
-4 + 4? — 4(2)(1) 2
x-S5< -3 and x - 3 < 1; D = {Integers}
2(2) 2
-x $2 and ee
x = -—2 and Substitute these values of y into (b) and solve for x.
ae cel
-4<x-4<
1; D = {Reals}
wx=(1-2)+2- je
Oreo 55
Ct Dia
St kG
—-3 2-10 1
x= 4
k - k
10. 15.
m aa ))
m + 1 m + by
a. — am +1
m
a k(am
+ 1)
am2 + m2 +m
11. (a) BTp Sie 5Tp =
Substitute (c) into (a) and (b) and get: 22. 4 + 23 ; 3/3 +2 - 12/3 +18 + 8 + 4V3
Rigae BB! Pee
(a) x+2y= 9
(b’) 5x - 2y = -3 _ 26+ 16/3
6x = 6 pe
ie = 1 ae
S
(a’) (1) + 2y = 9 23. ate et
/ 6
~ oe
B 8
26. AcsB am
246
Algebra 2, Third Edition
Problem Set 90
PRACTICE SET 90
2s PV SARE
x-—-2y+2z=2 “(a) ie
Byes 5 (b) V= cpa
ax — 294-22
= 2. (Cc)
_ (0.832)(0.0821)(400) . | :
(a) x -—2y+2z=2 V= Ss ore liters ~ 9.11 liters
(c) 3x — 2y - 2z = 2
85 4
3°3°3 720 liters 10%, 80 liters 40%
247
Algebra 2, Third Edition
Problem Set 90
6. (a) x4 y— 7 =93
(3,
2,-2)
3(d) 15x + 12z= 21 Substitute these values of y into (b) and solve for x.
-4(e) -12x — 12z = -12 (bye = 2 445 ea
3% = = 2) ob BS
i=-3 (b) x = (2- V5) - 4
(ce) 3G) 4532= eS = 5
94-37 = (<204 5.24 5/5) and 2= 5, aes)
3z
= -6
4 = J) 12. oe wig? F302 425 — 34 2 mays
—b)\2
13. y°(m~”)
— yom=2b 4 + b/2 = yom=3b/2 C = 6cos 60° = 3
m
D = 6sin 60° = 5.20
x a xX 3.06R + 2.57U
14.
as _ me 3.00R + 5.20U
inh mx — | 6.06R + 7.77U
Di
(be P a P p(x
- p)
a Sap 2 px? x? — px — px?
i-= x-p
x
aa eee
26 48626
24. |x | 3 Il v |
aeels Sle
3
Lagan pegnys aa
c b
bcex — bemy = bpry — cpy
bcx — bcemy + cpy = bpry
te bpry
bx -— bmy + py
25.
3194/3 = (3231/43 = Gy 3 33/4
249
Algebra 2, Third Edition
Problem Set 91
hc ee,
12 12
The region we wish to find is on or above the line
y = -x — 2 and on or below the line y = }x — 2.
1 V119. This region is shaded in the figure.
x= —-— tH 1
12 12
y Sex
=3
1Dsine 12". 12 in.
28. 42 ft? x x x ysx+3
1 ft eft 1 ft
The first step is to graph the two lines.
2.54 cm 2.54 cm y 2.54 cm
x x
1 in. 1 in. 1 in.
= 42(12)(12)(12)(2.54)(2.54)(2.54) em?
Sie
13
Rs eee eee
Be 43
30. Write the equation of the given line in slope- The region we wish to find is above the dashed line
intercept form. y =x-3 and on or below the solid line
Lee ODY =a, y = x + 3. This region is shaded in the figure.
1 4
sey 2S
ye hag &
PROBLEM SET 91
Since the slopes of perpendicular lines are negative
reciprocals of each other,
nae
m, =5 i, 7,
y = 5x + b P, wa PT,
7 = 5(-2)
+b i,
17 =%B ae (740)(1600)
, = +
400
y = 5x + 17
P, = 2960 mm Hg
0.3Py = 36
G, 70
Py'= 120 Gy = 49 were glabrous
Oxygen: 6 X 16 = 96
Total: 300 + 96 = 396
D,
e—— ++]
3000
<>
Ds
800
The region we wish to find is on or above the solid
T, = Ts + 1; R, Tr = 3000; Ry, = 3Rs; line and below the dashed line. This region is shaded
RsTs = 800 in the figure.
3Rs(Ts + 1) = 3000 7.
(a) Vie eel
3RsTs + 3Rs = 3000
(b)y
Ss x\+ 2
2400 + 3Rs; = 3000
3Rs = 600 The first step is to graph each of these lines.
Rs = 200
Variation method:
Ge
~ G = 49 were glabrous
251
Algebra 2, Third Edition
Problem Set 91
(c) x -— 2y - 3z = -9 x=4-y
(e) 2x - 4(3) = -8 Substitute these values of y into (b) and solve for x.
Ase
=a a (b)x = 4—(2
+ 2)
cae tu Aa
BS RS AD
(a) (2) + 2y - (3) = 1
2y
=2 (b)x = 4- (2 - V2)
x= 4-242
Sa
Mage te
(2, 1, 3)
(2 - (2,2 + /2) and (2 + /2,2
- 2)
9. 4<x+4< 6; D = {Integers}
b\2-a ab
Oe
52 eH 13. (x ) x s 2b — ab + ab — ab/2
x abl2
~ x 2b - abl2
=| @ 7. 2 2
a(cx + 1)
Ome e253 4
bex* +b +x
(c) BB) = 45
i+2'°4@6e “a2 ae
-16 + 3i 16 3
B= 15 25 = ig” “wus
252
Algebra 2, Third Edition
Problem Set 91
17.
3i- 6 -2i-1 tan@=
207
—28+1 21-1 2.94
6 + 12i - 31 + 6 6 uv= 41.16°
eS P= 4057) + @94)- = 3.90
=
12+91 12 9 = ol= = C—'! 3.90741.16°
—5 5
23. There is never an exact solution to these problems.
1-2 4452 One possible solution is given here.
18.
4-5/2 4452 O = ml + b
4-4/2 +5/2-10 -6+-2
Use the graph to find the slope.
16-30 ne 34
LOO sO Bie / 0.5
6 - /2
30 — 20 10
34
O 71 +b
XG
-110 = b
20. iH} Q >
my
+
Ql
——~ Si O = 7I - 110
x
iH] | a = oe oe (oa). mg T 3
my a 24. 72/3 ~ (273) Te0. ee
ax = dmry + abdmy
ax y(dmr + abdm) 25. 54 3i3 — J-9 + J-4 - J-2/-2
=f = 31 — 31+ 2b 2 = 2 — OL
7 ek
~ dmr + abdm
9 5 6
26. STB
[2 3/3 +8 =5 Not BS et OND
21.
3+ HT} Q
oNSoi
—
+ S
ee _ V5 , SVS | 45V5 _ 56v5
| oor.) 5 5 5
T =
27. See Lesson 71.
ax = dmry + abdmy
ax — abdmy = dmry 400 mL 60s — 1cm? 1 in.
28. x x x
a(x — bdmy) = dmry Ss 1 min 1 mL 2.54 cm
1 in. 1 in.
dmry x <———
2.54 cm 2.54 cm
x — bdmy
_ 400(60) in.
22. ~ (2,54)(2.54)(2.54) min
4
3x7- 6x + 10 - —8,
aera
? . E 29. v4 2)oe Or re 2
3x3 + 6x2
A = 4cos 40° = 3.06 ca mh
6x? — 12x
B = 4sin 40° = 2.57 10x + 2
10x + 20
—3.06R + 2.57U
6.00R + 0.00U
-18
2.94R + 2.57U
253
Algebra 2, Third Edition
MM @x-
x = 390 +3D PROBLEM SET 92
x= 36 ii (fa) (8 + WTp = Dp
x=6& (10 + W)T> = 70
() 22 + 4 = 1+ ®) (8 = WTy = Duy
W=1+4x
Tp = Ty, so we use T in both equations.
l=2z
(a’) 107 + Wr= 70
(b’) 107 - WF = 30
20T = 100
PRACTICE SET 92 T=S ip
4Tp + WTp =N (a
W = 4mph
(8 _ Wy = Dy
(4 - W)Tp = 30 (6 + weH = €
(a’) 48 + 4W = 00
(>) (8 — WTy = Dy
(a) 4Tp + WTp =
(B — WS = 55
(bd) 4Tp —_ WTp =30
i z (b’) SB -— SW = 55
8Tp
Tp = 10 hours = T,, S(a’) 20B + 20W = 300
4(b’) 20B — 20W = 220
(a) 4410) + WUQ = 3
408 =3 20
10
10w =
B = 13mph
wz=1 mph
(a’) 4(13) + 4W = 60
4w=8
bh (6+ WI = Dp W = 2mph
{8B + WG) = @
3B + 3W=33
(a) (8 + W)Tp = Dp
(B + 7)Tp = 3S
B+We=ll
(bo) (8 - WTy = Dy
(B - W)Ty = Dy (B -— 7)Ty = 21
(B — WX4) = (12) TD = Ty, so we use T in both equations.
4B —- 4W = 12
(a’) BT + 7T = 35
B-W=3 &® (b’) BT - 7T = > 21
(a) B+ We tl 2BT = 5
(a’) 28) + 77 = 35
8 = 7 mph WM=7
T= bie
(a) (7) + W= 1)
(c) BU) = 28
W =
" 4mph
B = 28 kph
234
Algebra
2, Third Edition
Problem Set 92
Cy = 70 delicious comestibles
Variation method:
G=kC
500 = k(20)
25 =k
1750.= 25(C)
70 delicious comestibles = C
2a) 2 Dy 22-= 12
(c) x- 2y+ 2= O
(e) 3a + 3z = 12
Std) l2vett6g=" 42
—2(e) —6x — 6z = -24
6x =
yas
(e) 3(3)
+ 3z = 12
ae
cl
y=2
The region we wish to find is on or above the solid
line and above the dashed line. This region is shaded (3, 2, 1)
in the figure.
255
Algebra 2, Third Edition
Problem
Set 92
ys4-x . Wee
S-2-1012345
Wl. x-122arx+
2 & 2; D = {Integers}
x-le2Qarxt+2<2
x23a x <Q
2101283 4
(y***)? x 2/3 m Rees =A
Lae = yatta, BB -6 [ = S$ cos 30° = 693
12. aap)
ey
= ytd 08 = §sin3Q° = 4
P : —4.70R -— 1L71U
is = SS —6.93R — 4.00U
ye = ye -11.63R - S.71U
a any L + xy
x © 19 y
oe . eet xy) ;
yt xy? + xy
14. m : m
a am
at ; at rtriTtiVintiit
“Pe. mta Buna —
me Lid it
_ m(m + a) x
2am + a
15 PS EE - eeoe ee
TVHti 49 +] adhe ee
7-i
-36+2i_ 18 1
30:té<CUS:tS os 7206
256 Algebra2, Third Edition
Practice Set 93
20.
3-5/2 2+-2 28.
15 cm
x
1 in.
x
1 ft
OSS
1 yd 60 s
OSS
PExewarcK? Ss Do aIcm 12 in. ft 1 min
21.
8- V2. 8-2 »44 2/2 4 x ope
Mien dich 4ee2N2: AE 25/2 29;
x2-9 —34+%x
_ 32:4 16V2 -4V2-4 28 +122
7 4 = 3x(x
+ 3)
16 — 8 a 8
(x + 3)(x —3) (x — 3)@it3)
_ 74+ 32
melee 4 = 3x?
= 9x ~3uti
tx H4
5xy? 3 [xy? = xM553/5,1/3)2/3 _ y 17/15,,19/15 (C3 x="3) x7-9
22. Bs
23.
a 1 1 2 Mt
20% 6
by R, R, 2
2 i
hs *a | PRACTICE SET 93
by R, R,
ceo = =ehe
dh
a X Xx
—[S = Ss oa =
by R, R, x? + 3x-2=0
aR 1Ro = byxR) TF byxR 1
26.
AS RD
= 3,7) SA ee S
tS nite ae GaltS
ks. adn b? — dac = (-4)* — 4(3)(3) = 16 — 36 = -20
boys Ov IS | ae The discriminant is a negative number, so there are
6 5 two complex solutions that are conjugates.
5/15 3615 | 120V15 _ 89/15
ps 20 30 30
257
Algebra 2, Third Edition
Problem Set 93
PROBLEM SET 93 4. De
+1
1. Downstream: (B + W)Tp = Dp (a) 40
(a’) 4B + 4W = 48 PT,
T> =
P
SS
(b’) 8B — 8W = 64
1)(4000 y= 300K
T> = a
2(a’) 8B + 8SW= 96
(b’) 8B - 8W= 64
eo Sa isn
16B = 160
B = 10 mph a
x* +.5x —1,= 0
(a’) 410) + 4W = 48
b* — 4ac = (5)? — 4(1)(-1) = 25 + 4 = 29
4W=8 2
b= —-4ac >20
W = 2mph
There are two real number solutions.
3. Downstream: (B + W)Tp = Dp (a)
cf 3x = -2x% -
Upstream: (B- W)Ty = Dy _(b) io maak
2x? —- 3x +5=0
Since Ty = 2Tp, we substitute and get:
b* — 4ac = (—3)2 = 4(2)(5) = 9 — 40 = -31
(a’) 40Tp + WTp = 210
b* — 4ac < 0
(b’) 80Tp — 2WTp = 380
There are two complex number solutions that are
2(a’) 80Tp + 2WTp = 420 conjugates.
(b’) 80Tp — 2WTp = 380
1607p = 800 8. (a) x +2y <2
Tp = 5 d2y<—x+2
(a’)") 40(5
40(5)+ W(5)W(S5) == 2 210 wie ole,
1
5W = 10 2
W = 2mph (b)
y = -l
The next step is to graph each of these lines. Solve this equation by using the quadratic formula.
y SS)
-§Sa+ {82 — So
4(3)(5) Ae =e
25) 7 ONS
3
= —-—,1
bin oS
- Substitute these values of y into (b) and solve for x.
tees) 5
eae
5) 5
(bo) FS 2EP) + 2 0
(0;=1)-and (<.-2)
The region we wish to find is on or above the solid
line and below the dashed line. This region is shaded
in the figure. 12. (yon? Pye? _f ytd ease ie yias+6
259
Algebra 2, Third Edition
Problem Set 93
cae,
23.
g 9
I mi
— + —
=6x7.= 18%
5 d (Ese =. 2D
Gi m mb 18x + 54
+ —
—56
m 58 d
adx + cdx = dm* + m’bx
adx = dm* + m*bx — cdx 30; ees
2)
_ dm* + m*bx - cdx
90 — x = 50
x = 40
Q io)
|
+
24. TH} 3 +
[>
Sa
25 + 5y = 44
Sy =F19
adx + cdx = dm? + m*bx
adx + cdx — m*bx = dm?
a
_w7
dm?
ad + cd — m7b
b. Function
p(x) = x? — 2x
c. Function p(-2) = (-2)? - 2-2)
p=4+4
d. Nota function
p=8
e. p-5)="5)7 = 55)25 +125 = 50
=x" = 4x +4
Oma + 4x 404
PROBLEM SET 94
b* — 4ac = 42 - 4(1)(4) = 16 - 16 = 0
Eve an
PV There is one real number solution.
n= —
RT
(a) 2x + 3y > -6
ee ph
sohmole
(0.0821)(473) 3y > -2x
-6
D2
2. 0.2(40) + 0.6A = 0.44(40 + A) >--x —-2
ae
8 + 0.6A = 17.6 + 0.44A
0.16A = 9.6 (b) x - 3y = -6
A = 60 gallons —3y
> -x - 6
4. P,V; = PoV2
(700)(1400) = (2800)V>
The region we wish to find is on or below the solid
Vous (700)(1400) _ 3659 mI. line and above the dashed line. This region is shaded
2800 in the figure.
P= ae = 16 purples AeeOme
Gn) = Ome om 1
11. (a)x
+ 2y-—-z=2 Pp 3 P
m 2
(b) 2x -yrz=2 m+ 1 mt me
| |
ro] j
t
Il iw) {I
a
ie
oe— - +
/
a
18.79R + 6.84U
yal?2 y?9
ya3 - 3a/2)2 2a x 7aloy2 -2a -18.79R — 6.84U
13. yial2 (y*)? 0.00R + 0.00U
tan@ = —-—
: Ne Ten
3 A
4
@ = —63.43° (b) Since this is a 45°-45°-90° triangle
Since @ is a second-quadrant angle, 1x SF =4
@ = -63.43 + 180 = 116.57° SF = 4
oe etsy C=1 xe4ged
H = 4V5
ss D= 2x4 = 4/2
4/5 /116.57°
27, ee ee
my, 2a 5V2 32 +2 epic ey
Ogee}
oat 3.2 +22
_ 6¥2 — 30 + 4 — 10V2 ee ee Oe ere
ce 4 Sete
=«
. gels -
x13
7
22 28.
20 liters x
1000cm3
——— x
Lin. x
Lin.
S 1 liter 2.54cm 2.54cm
% 1 in. \ 60s
yaa 3 = — 2240 2.54¢m, =) i min
215 <2 eagal 15 29. There is never an exact solution to these problems.
3 One possible solution is given here.
ods wis this = oe et are
15 15 15 15
Use the graph to find the slope.
+ D ] -
23. or
Xx = ae
aaa pega
120ices
— 180We,
aR R> i bR{R> = XR, of cxR NS (-1.17)R ad
263
Algebra 2, Third Edition
—
Problem Set 95
ee Dp = 2(24) = 48km
Ope
; cine ale es 2. 0.6A + 0.2(200) = 0.52(A + 200)
yo aye pelle. 0) 0.6A + 40 = 0.52A + 104
Gat Dy — 3) = 0 0.08A = 64
eo pes) shoes 64
(). x7) <7 0.08
A = 800 mL
x = =1
+ y? = 10
(a) (-V2)? (b’) 8B - 8W = 72
er y- am) 2(a’) 8B + 8W = 120
6. (a) 4x - y = 3 8. (a)x+2y-z=4
(b)
xy = 6 (b) 2x -y+z=-3
6 (Cc) ty
+ giee4
x=
y (a) x+2y-z= 4
(b) 2x + 3y > -3
3y > -2x - 3
y> -=x
z - 1
: 3
The next step is to graph each of these lines.
(a) (V5)? + y? = 16
y=11
y= +tyll
(a) (-V5)? + y* = 16
i aia Lb
The region we wish to find is to the right of the
y= tyll vertical dashed line and above the slanted dashed
(V5, +V11) and (-/5, +11) line. This region is shaded in the figure.
265
Algebra 2, Third Edition
Problem Set 95
=3 -2 -1 0 1
ete 2 Ni 2
(a ) x Ee qi2t! — X,2a-a
13.
a x*
= qri2ztilya
EY P x
14.
4+ a 4+ ug
(ees 4+x Reet We
4 23.83
x(4+x) _ x(4+x) @ = -16.10°
16+ 4x + 16 32
+ 4x
H = .|(-6.88)2 + (23.83)? = 24.80
15. ee
ay oe 24.80 /-16.10°
—— fo ae
oR me ee
38
2x +52
20.
2/2 -5 22 -3
gn DNF IZ) 2k Fon) = 10(x + 1)
2/2 +3 22-3
Aga dee x «(Sxet4. | Sy 4A 8-10V2-6V/2 +15 23 - 16/2
Sot 6) a4
Ute FL ES ie
16. =23741642
3-Si 3+ 5i
Wie Al 25 ig 0 av 163
21.
3-2 2-4
‘ 9 + 25 ” 34 J2+4 2-4
sped Caat 3/2 - 2-12 + 4/2
TAT
2 - 16
17.
et AAI ga Pees ree -14+7¥2 2-2
-14 2
18. Acco OL. eee mor (242)
\x2 + 2x +34 2x44 22.
x? + 2x + 34 = x7 + Bx + 16 x pa
18 = 6x mapq + mbpq = qx + prx
x=x mapq + mbpq — qx prx
Check: 37 + 2(3) + 34 -3 =4 ampq + bmpq —- qx x
N49.= = 4 px
L=3.= 4
19, 14 6 23. mer). (242)
ee
x Pp q
at
mapq + mbpq = qx + prx
12 mapq + mbpq — prx qx
C = 12 cos 35° = 9.83 qx
D = 12sin 35° = 6.88 amq + bmq — rx
14.00R + 0.00U
9.83R — 6.88U 24. 4 — 317+ [0 4 e353
23.83R — 6.88U =44+3+31-3=443
25.
7
2,|2- 3/3— av
3 30 mi —-5280 ft 2c 24 Cin
30. x x x
hr 1 mi 1 ft 1 in.
_ w3i3 _37 x
1 hr
x
1 min
60 min 60s
_ 14V21 _ 9V21 _ 84v21 _ 79/21 _ 30(5280)(12)(2.54) cm
21 21 21 21
(60)(60) s
26.
PRACTICE SET 96
x - 3y = 5° (a)
xy = 3 (b)
3
27. x=
y
| w
fat)—
a. — I Nn
x (1.32)(0.0821)(600) Sw
|wieee,
TE
V = 13.00 liters
5
@ x-f-3+ 4) -s
Se +
| iH] Wn
N{[n
eth
(a) x | ee) | | ll Wn
HAln |
5a eee”
* + oo
Il wn
nN
Nl
29. 4(4 + x) = 5(12)
16 + 4x = 60 = iH] |
Nl]n
4x
= 44
re TY
6(6)
= 4(4 + y) Gas 5 4 16 nd
36 = 16 + 4y
Desde 46.26
20
= 4y ( - 4-8 - 4)
say
267
Algebra 2, Third Edition
Problem Set 96
me FA Sy 3 RM,
D
Sy RM,
(75)
k(15
k(5)
(85)
100 _ 4(5)
20 R(2)
63/5) =nlok
R = 2 ratchets
ADK:
Tp = 5
Tg = TR + 5; Rp = 2RG
65 = ——
2RG(Tc = 5) = 300
k = 13
2RoTg = 10Rg = 300
NB 30 = Rg
Nz = 260 boys
Rg = 30 mph; Rp = 60 mph;
Equal ratio method:
aa ll 10hr; Tz, = Shr
6. (a) x =3y= 2
Oa)" ox"+ saye=* 50
(b)
xy = 4 (-3)(e) -15x - 15y = -30
4 20y, = 20
ea —
y y=)
ofi)-s
Substitute (b) into (a) and get:
(ce) Sx eo(l =210
2 oe = 5
X= 1
Aa 2y
0 = 3y° + 2y—4 (b) (1) + (1) + 2z = 6
22 = 4
Solve this equation by using the quadratic formula.
z=2
ee ee
6 aye (1, 1, 2)
Substitute these values of y into (a) and solve for x.
Sets (a) and (b) are functions. Set (c) is not a
a) x — 3} -— +
i as function, because 4 has two images.
(a) -; 2) —|]=2
x + 12-13
=" 10. g(x) = x — 4; D = {Integers}
x=
17 413 g(-2) = (2 -4=4-4=0
a is (ete LED =P 11. (a) x —-y < -2
3 3
-y<—-x+-2
x+1+-
13 =2
See
ae
ie = all3
(b)
y >-2
[1+ 3,- i ae
+ 8) and
a-bs-3 The next step is to graph each of these lines.
fe Bae 1-13
tS 3-4-3
7 (@) axe = 4
(b) 4x? - y? = - 4
Ses = 0
x2 =
y=
(a) (0)? + y? l=
y=
y = Teg
Ee The region we wish to find is on or above the solid
(0, 2) and (0, -2) line and above the dashed line. This region is shaded
in the figure.
8. (a) x + 3y -Z Ul i)
SE
H = (3.52)? + (2.34)?
x ay
14.
“4
= ab 2 H = 4.23
a+ b i
a? + — ab +1
ab
x(a°b + 1)
a*h + a + ab?
(25
= 13 =8 _ 3+
5 = 5
ere
19. 7 c= n(2te_,|
p
am
+ dm
C= ir
6 B Pp
2
cp = am + dm — mpr
beer cp + mpr = am + dm
A
gia asc
a c + mr
AS 600s 67 = 2:34
B= 6sin67°°= 5.52
23. c= nf2* _,)
2.34R + 5.52U
Pp
0.00R ~2.000
2.34R + 3.52U
=
am
+ dm
SSSnh
P
cp = am + dm — mpr
aoe
tan@=
2.34 cp — dm + mpr = am
6 u 56.39° cp — dm + mpr _
m
270
Algebra 2, Third Edition
Problem Set 97
2(4)
= =——
8
i —!
Zi. (a) x 4+ 2y = 6
2y=-x+6 PRACTICE SET 97
Me 3%
= Sys—ell (a)
2x
— 4y = -6 (b)
(aysx Sy =11
y= 11 — 3x
ete
5
dl!
5
(b) 2x - (Ss - 2) = -6
5 5
3 11
2x() = a(S = =\6 = —6(5)
SRSee4aan
SY 288 2088 x 10x — 12x + 44 = -30
ae
—2x = -74
veo
(b) 2(37) -— 4y = -6
—4y = -80
2(a) 2x + 4y = 12 ye= 20
(-1)(b) -2x + 5y = 10 The solution is the ordered pair (37, 20).
Qy = 22
22
o PROBLEM SET 97
(a) 2Nr = 3Ny + 12
(b) 4Ny = 3Nr — 48
Care|
9’ 9
0= Ny - 60
Ny = 60 were untalented
28. 4O in. . a5 L 1m - 1 km
(a) 2N7 = 3(60) + 12
hr 1 in. 100 cm 1000 m
2Nr = 192
1 hr 40(2.54) km
Nr = 96 were talented
* 60 min (100)(1000)(60) min
271
Algebra 2, Third Edition
Problem Set 97
A = 200
mL Substitute (b) into (a) and get:
(a’) 2x + 3@ - 4) = -7
os 2x + 3x — 12 = -7
Svi=3
Fig rly
|
Ear8
t= a
Ty = 21 = SON =150K
_
() y=()-4=-3
(1, -3)
4. Variation method:
ee (a) 4x -— 2y = 8
—2y
= -4x + 8
,-8 =
y=2x
(b) 3x — 2y = -4
-4
32 °= i (a) y = 2(12) - 4 = 20
3
(12, 20)
G = 6 greens
(a) y — 2x = 3
Equal ratio method:
2
y=
2x 83
BM,
(b) xy=4
B, GW?
Substitute (a) into (b) and get:
come 0 (b’) xOK +3) Hee
a) Ju,(2°)
2x? + 3x = 4
G>) = 6 greens
2x? + 3x ='4 B10
5. Variation method: Solve this equation by using the quadratic formula.
C = kFF tee V3" = 4GAR. ad _ v4
1000 = k(100)(4)* 2(2) Arta
k = 0.625 Substitute these values of x into (a) and solve for y.
(a) (V3)? + y?
3+ y?
|—|—|—|—1
WP
Oaaf
10. (a) 3x +y +z
Oi
eae2eee:
(b)-2%
—y =z (x? + ye x3al2 b
14. YT’ GIT Sake et BVO
(cl 2 + 2p - —b/2 aa ary
y
= x24 1,36/2
EVR
oe oe oe ged
3) PS ge
Bod
13; Pp if P
5x
m A m-x
X
ft 4¢b== mx +1
MX
lay
ak ae Os ZS 2
p(mx?
+ 1)
(c) x + 2y - Zz 8 m2x> + mx — mx
(d) 4x + 3y
16.
5¢ 14 (= De Seat
(d) 4(1) + 3y = 2 i) -i0i er) 2i= 1
By.= DOLEes 7 an ie, eee
ve nar 5
(a) 301) + (2) + z= 2 17. SiaJ2 = (23(2'2))¥6 = 2'2gil2 — 27/12
Siar he 15 — 21), 8 = 2i 5 + 2i
18.
(1, 2, -3) fey a(-Doe Gl
19; Jz? — 33 + 4z = 11
11. g(x) = x2 — 2x + 2; D = {Reals}
az = 33¢=" liye
(5) 25" 26) 4 2 = 17 28 = 12122242 +2
222 = 154
12. (a) x - 2y <2
Vz =7
—2y <-x +2 7 -= 49
1 Check: (49 — 33 + /49 = 11
aes
> —-x-1
NIG + 7geadl
4+7=11
(b) y2 0
20. 26. Il S
io |e
lea |e
a ey,
4 Ze 2 [rR
+a
els
[DS
& a é
C = 4cos 34° = 3152 pac = cmxy + amxy
D = 4sin 34° R 2.24 pac — amxy = cmxy
-4.00R + 0.00U cmx y
3.32R + 2.24U cp -— mxy
-0.68R + 2.24U
2.24 27. ACirele = mr = 497 cm?
tang =
—0.68 Pe IGN
@ ul= -73.11°
Diagonal of square = 2r = 14cm
Since @ is a second-quadrant angle,
@ = -73.11 + 180 = 106.89° 14
Side of square = —cm = qe. cm
H = J(-0.68)2 + (2.24)? 2
H = 2.34 Asquare = (7/2 cm)* = 98 cm?
25.
a
Feyts e tar
1
= at + —
5
Xa oy r 2 24
ar* — crx — crey = x+y
ar“
2
— xX — crx
a)
= y + cry
2; ae She
24 «24
ar?
p>
— x —cr’x
> a
1 + cr?
ao
_ 89
24
R= %:
4 = Tr
Tw = 8
360 a
— 2
12007 RcT¢; Ry = Rc = 10;
(a’) (B + W)4 = 28
(b’) (B — W)8 40
275
Algebra 2, Third Edition
Problem Set 98
6 B65 3
(2-5) iz
(aie 3x°="5
y= srr
6) xy= 6
x = -
-5 sooo
+ [25 — 4(-18)
_ =
a££ 97
-—— 13. £—-x+ 2 or x + 3 < -1; D = {Integers}
6 6 6 42—x+20rx+3<-l
Substitute these values of x into (a) and solve for y. < eG or a4,
yal 2
x24
= 24/3 + 2a—a/2
ip = a
ET; I I N + io)=.
(a) (2)? + y? = 16
y? = 12
y = +23 18.
24. a = (— + *)
Nagteey m n
a Zz 26
CG 10 cos 64° = 4.38 =—+—
5oii a) m n
D 10 sin 64° = 8.99
(BBE oF Va am BGG oe myz = amn
mz + nz
42 EB
ae BRE
16.38 keds 26. fo - 242 + sven S S21 221 Liga
| *
[20S
_ 721 621 , 210V21 _ 211/21
21 21 21 21
H = \(-8.99)* + (16.38)? 5
+
100
— —_—_—_—
100 ~=100
H ~= 18.68
18.68 /-28.76° 10 100
oF elon 3 ,
21. S=v2_ 2+ 52 10 10
PAD, 2 52
L311.
10 — 2/2 + 25V2 - 10 x=-—t
10 10
E
pe 4-150. ts
s pe
23.24 a2 oo ages ge ee SOUS 60(2.54)(60)
—~
ew P
dG 5 1 in. 1 min eet
Py = 480
(b) 13Ny = Np + 8
(b) (480) + Dy = 1200
(Wi) NpecaNye 8 Dy = 720
Substitute (b’) into (a) and get: 480 mL 5%,720mL 10%
(a’) 20BNy, — ee 10N ee 16 -|x| + 5 > 0; D = {Integers}
26Ny — 16 = 10Ny + 16 -|x| > -5
16Ny=-32 |x| <D)
of)
Substitute (b) into (a) and get:
|x| < —4
il 2
|x| > 4
x? —- 24 = 2x
ea
OL 4 4
Peer At FO)
(x — 6)\(x + 4) = 0
—§ —41=3
—2 E10, V1 208 84) 5
x = 6,-4
8. (a) Since this is a 30°-60°-90° triangle, Substitute these values of x into (a) and solve for y.
1 2 4
2 x SF= 124 (a) y = 3° )
—(6)-—-= ae —
SF= 62
1 (— v) (=)
m = ¥3(62) = 62/3 (a) y = —
rave =
3 ot
n = 1(62) = 62
(b) Since this is a 45°-45°-90° triangle,
2 x SF = Sle
12.
Se Se
3x? = 15
p=16)=S5
x2
=5
g= 16)=5 x = +5
(a) y? = 8 - (v5)?
ae Nw | yoiet3
I]t
aieWile ee
wl<ae,
ye ays
Il ++ (a) y? = 8 — (-V5)?
iae
SI}a
to
y? =3
NIE
NiI[F
mw _ NN = ee) y = +V3
- i) 42. 4 (V5, +,/3) and (-V5, +,/3)
Ss! x ES (b)x+y-z=-l
(c) 5x + 2y + 2z = 8
(b) 4x — 6y = -8
(a) 3x + 2y-z=1
Substitute (a) into (b) and get:
-l(b)
x - y+z=l
(b’) 4x — 6(-x + 3) = -8 (d)2x+
y =2
4x + 6x — 18 = -8 2(b) 2x + 2y — 2z = 2
10=-10 (c) 5x + 2y + 2z = 8
Va (e) 7x + 4y =
(a) y=-(1I) +3 =2
—4(d) -8x - 4y = -8
(ec) 7x+4y= 6
(1,2) —x = —2
x= 2
11. (a) x -3y=2
(d) 222) + y= 2
neyg y =2
. (a? sean 3
(b) @) + 2) &z=Fi
(b)
xy = 8 Lan
8 (2, -2, 1)
y= x
279
Algebra 2, Third Edition
Problem Set 99
UE apie O=41+b
(b) 3x + 5y < -5 Use the point (45, 0) for Jand O.
3 0 = 4(45) + b
Hi ales “30.20
The next step is to graph each of these lines. O = 41 — 180
23.
ae B
Pe Sa
A
abm
sae ie e ee bp + ap .
21. 2i s! Betis ak 2 Dt
=f aan 1 We =O Bi a ee ee
= -31 + 31 + 2i - 41 + 6i = 4i
9>,
/3
Plage ipEAs
[10
Saieaan£
From this we see:
10 3 “ (a) Opens downward
29. PV = nRT
Yee nRT
P
30. 40 cm Z lin. . 1 ft .
S 2.54 cm 12 in. 5280 ft
60s 60 min _ 40(60)(60) mi
x x SS ——————
1 min 1 hr (2.54)(12)(5280) hr
100(20)(100)
Ry = ————
(40)(25)
R, = 200 reds
Consecutive integers: N, N + 1, N + 2
NN + 2) = 8(N + 1) + 32
N? + 2N = 8N + 40
N? - 6N - 40 = 0
(N + 4)(N- 10)
=0
8. (a) Since this is a 30°-60°-90° triangle,
N = -4,10
/3 x SF =5
The desired integers are —4, —3, -2 and 10, 11, 12.
raped
3
yas x = 6x 4-1
We (tee Ce 459) 1 9
m = 2939)
= 10N3
3 3
y=(x- 3-8 _ 534) _ 5V3
From this we see: 3 3
w= 2 and xy
10.
11 3
y=—-x*t+4r44
=sto ee
aye (xe = 45°44)
24 4 Ss ENG 6
~y = (x - 2)? -8 yPe Ss
=-+—
3 6
Y=—-@ =2)7% 48
(b) x + y — 2z = -12
12. fa)x—y=d
(cy 2x = ys+-z
= 10
(oxy. =. 2
2 (a) ean 2 oe 0
ive —2(b) ~2x — 2y + 4z = 24
3z°= 24
Substitute (b) into (a) and get: Bae
. 2
(a’) r-(2)=5 (b) x+y
—- 2z = -12
x
2 (jar yz =e 10
x" -2= 35x Ais merce ae)
i? 2 CSL Ei0
(d) 3x — (8) = -2
Solve this equation by using the quadratic formula. Beef
2(1)
5 as ( + 2y
(a) 2(2) v= — (8)
(8) = 0
6 ah erry
2 H2 eam 2
Substitute these values of x into (a) and solve for y. ya
(yl
$, +=434
— a =
eee) (2, 2, 8)
2 2 2 2
15. None of the sets are functions.
5 38 eae
(a) y= 2 = a < o) = Ty = eRe Set (a) is not a function, because 2 has two images.
5 33 5 a 1 33
2 2" se 2
16. (a)
y < -3 23.
8
(b) 4x + y < -2 B
y<-4x
-2 el a
A
The next step is to graph each of these lines.
= 8cos 28° = 7.06
6 D
es Ta
C
The region we wish to find is on or below the solid D = 6sin 62° = 5.30
line and below the dashed line. This region is shaded
-7.06R + 3.76U
in the figure.
2.82R + 5.30U
-4.24R + 9.06U
li. ©4225 ox +3 -< 3; D = {integers}
9.06
tan 0
Xo On x <0 —4.24
0 v —64.92°
es} 0) Sl BE My ZEB
Since @ is a second-quadrant angle,
6 = (-64.92) + 180 = 115.08°
2x+4_b/2
18. a — = ght!
= gt tse
a
F = (4.24)? + (9.06)? ~ 10.00
10.00/115.08°
Oe
pe ates
ee 24.
5-2/2
V2 _ 4+ 5y2
ee xy + 1 f2 —2 2
xy
3-4/5
V5 +1
= ew ore Dae, bY t doy 25.
4 eal 5 +1
xy? ai x?y = 2Y xy? +xy-—y
_ 3V5+3-20-4/5
-17- V5
20. 3/9V3 = 3/37/73 =3-3.- 3/4 = 394 5] 4 4
Paes Sabres a
26.
2 13
[hee Od
41. 2 u 5 CANE cee Le nari te
13 2
—i —1 U —(-1)
~82 4B WEARao.
Sg = i. ay
13 Ailey a YD.
22 = :
RTT Oh Seas, RR, 4 2V26 | 39V26 _ 104/26 _ 63/26
26 26 26 26
ESO
tage ed
1+ 9 i, 27. —/-7/-7 + 2J-16 - 31> + 2i?
=7+8-3i1-2=5
+ 5i
284
Algebra 2, Third Edition
Problem Set 101
b+ ©
I |y + 3&
4. 0.6(400) + 0.8(Dy) 0.72(400 + Dy)
240 + 0.8Dy = 288 + 0.72Dy
ay = kmx + cmx + mdky + mdcy
0.08Dy = 48
ay — mdky — mdcy = kmx + cmx
Dy = 600 liters
kmx + cmx
a — mdk - mdc
5. Downstream: (B + W)Tp = Dp (a)
400fC * 412 in. = Prin. 12in- Llimin
29. - x x x Upstream: (B —- W)Ty = Dy (b)
min 1 ft 1 ft 1 ft 60s
_ 400(12)(12)(12) in.? Since Tp = Ty, we use T in both equations.
60 Ss (a’) (20 + W)T = 104
4W = 24
W = 6mph
PRACTICE SET 101
Selling price = purchase price + markup y= 2 opRE, ee
16,295 = Pp + 0.25Pp yee
ax feed Jared
16,295 = 1.25Pp
enter 2) eral
$13,036 = Pp
R=EG 4 2) 21
From this we see:
PROBLEM SET 101
(a) Opens downward
Selling price = purchase price + markup
78 = Pp + 0.3Pp (b) Axis of symmetry is x = —2
Ve ae 124 4+9 2
From this we see: 6p eer ~ = 8
(a) Opens upward
oes 8
1 e:
(b) )7 =?)
( q 5
——|+—
ae om
ner wale tae
Fa)
8° 4
, = 60%(3) em ae
ecm) x . x
3
h= er = 20cm Substitute (b) into (a) and get:
9ncm
(a’) 3x - (=) = 4
9. -|x| + 3 < 2; D = {Integers} x
ine —1 3x2 — § = 4x
2(3)
=
10. N= 334 242-32] caren.
3 S\ 6 3 ra es
_ 10 2(29 20 7
ns as slg =e Substitute these values of x into (a) and solve for y.
vo
|tN
13. (a) x7
y* =-16 16. (a) 3y — 2x > -3
(b) 2x7 — y* = 2
Z
3x2 = 18 >=-x -1
z 3
x?
=6
(b) x = —2
x = +6
The next step is to graph each of these lines.
(a) y? = 16 — (V6)?
y* = 10
y = +v10
(a) y? = 16 - (-V6)?
y? = 10
y = +10
(./6, +10) and (-6, +/10)
(d) 4x - y =9
(a) 3+ y+z= 7
(c)
x + y-z=-5
x+2\1/2 x/2 +1
18. Cte ain ea Y _ gxl2+11-20
(y7)4 $ yr J
(e) 2x + 2y = 2
2(d) 8x — 2y = 18
m a m
(e) 2x 4 2y = 2 19,
my — - i = my
10x = 20 al my — 1
ys sD my
m(my — 1) my - 1
(e) 2(2) + 2y = Z
y=-l
20. 7493/7 = WAT = 7(7)'27") = 71516
(c) -(2) + (-1l) -z=-5
= tS.mf
15. p(x) = x? — 4; D = {Reals} ee ee
ro Cage eae
-=43? —13
287
Algebra 2, Third Edition
Problem Set 102
23. 2x0y?
pix
pAypim _ 6xlyp
xp
tay”
B 8 =i ae
_ 2y ue * a B = 2mpty! — 6x-ly?
70s
p- x“ p
12
eo
A
PRACTICE SET 102
A Sicos 70 = 2.74
KX) =x +1
Ba=esisind 02s ee
g(x) = x? - 1
—2.74R + 7.52U (h + g)(x) = x2 + Xx
12.00R + 0.00U
9.26R + 7.52U (h + g)(5) = (5)? + (5) = 30
LS2 h@) =x 42
tang —
9.26 h(-2) = (-2) +2 =0
@ = 39.08° g(x) = x7 — 7
F = (9.26 + (7.52)" =111.93 g(-2) = (2) - 7 =-3
11.93 /39.08° hg(-2) = 0 - 3 = 0
fm =x+6;
gx) =x-4
24.
242
= 43 46 4/98 1342
V6 V6 6 fa(x) = & + 6) - 4)
fa(x) = x? + 2x - 24; D = {Positive integers}
25.
Br? 2 eee
6 2 2D
pO A228 ae
WES =150 PROBLEM SET 102
2 Ds
Ler
Br RG
26. Pic2D wea5 DAO Dp
RsTs + 40 = RyrT jp; Rs = 46;
_ IND V5 aN ing
Ryr = 50; Ts = Typ
TS Ser eee.
46(T;) + 40 = 50(Ts)
=
4V10
_ 20V10 +| 40V10
_ 1210
4Ts = 40
10 10 10 5
Ts = 10hr
ihe Ty
a ee ae eee Ds = RsTs = 46(10) = 460 miles
=3+2i+4-i+3i=7+4
Downstream: (B + W)Tp = Dp (a)
x=
_ 1+ yay? = 424) |,
-—
V3.
+ ——j
6W = 18
W = 3mph
2(2) PS 4
288 Algebra 2, Third Edition
Problem Set 102
hx) =x + 1; D = {Reals}
h(-5) = -5 + 1 = -4
g(-5) = (-5)° - 6 = 19
SEAMS
hge(-5) = —4(19) = -76 $d tt
f(x) =x + 4; D = {Reals}
fg) = & + NO - I)
fg@) = ne One A
pax? + 4x42
y= (x7 +44 4+4)4+2-4
ying
By — 2
289
Algebra 2, Third Edition
Problem Set 102
2x + 6x —- 27 = -3 (b)x+y-z=0
8x
= 24
(c) 2x -—yrzZ
8
(a)x+ yrZ=
(b) y = 23) -9 =-3 (bt) x+ y-Zz=
(3, -3) 2x + 2y =
13. (a) 2x -y = 6 (d) x+y=
(b)
xy = 4 (bt) x+y-Z=
4 (c) 2x -y+z
yes x
3x =
(d) () + y
(a) 2x. = (=) 6
Xx y= 3
2x?
— 4 = 6x (a) U). +.G) + z=|
x7 -3x-2=0 Z= -
oC
@y= 5S 3Sees
Z) 6 3- JI17
14,
18. tan0
10
4
6 X= 68.20°
2/29 /68.20°
a b
25.
D5 TU ERC.
am + ac + bx = amx? eaex,
2 2
ac — acx” = amx = am — bx
19.
amx 2 — am — bx
(ay =
a—- ax
20.
2-2/2 BAO
26.
EID) an) EY aes ee)
6V2+4-12-4/2 _ RR Ale
= -k(kx - 1) =k - Wx 18— 4 14
ae Ware |)
3/5 4) xy as
= x 3yl/3, oy 2 x23/ 12,,5/6
21. y 7
1. Selling price = purchase price + markup The desired integers are 22, 33, and 44.
1424 = Pp + 0.6Pp
ae 6xy + dy?
1424 = 1.6Pp
3x + 2y)27x3 a
$890 = Pp ee aes 18x7y
~18x*y
Downstream: (B + W)Tp = Dp (a)
~18x*y — 12xy?
Ld
r Il y=
6W = 24 12: $8 ll & + — Nn
W = 4mph Sax
Perimeter of triangle
3 Dn
a el =x+15+y+84+x4+x4+y+3415
720
3x + 2y + 41
Dy 3(5) + 2(12) + 41 = 80
200
Since 2 is not a member of the domain of b(x), it is
RpITp = (20: RyTy = 200:
not a member of the domain of ab(x). Therefore, the
Tp = 2Ty: Rp = Ry + 40 answer is either © or { }.
9, y=x? + 4x 4+ 6
12. wea + 325-4)
¥ =a" 4) + 6 Ao SN 82) ame
v= Gur oy + 2 1
=—-+-]—- —
(2 *)
4 3\.4 4
From this we see:
1 3
(a) Opens upward = — + —
4 2
(b) Axis of symmetry is x = —2 1 6 af
=—
+ —- = —
13. (a) 4x + 3y = 17
(b) 2x - 3y = -5
2 5
- aes 3
Ox 712)
y= (4x44)
+ 6 =4 D)
(b) = —@)=
ya Gs 22 3
y= -G—2y -2 2INn
4
=—+4+—2=+3
38
5
U6
From this we see:
(2,3)
(a) Opens downward
14.
(b) Axis of symmetry is x = 2
(b) xP ay" = 2
(c) y-coordinate of vertex is —2
y=ux {2
pe DEVRY 2
= 4OCD _ a 5
2(1)
x= po
2
; 1 fxi eees The region we wish to find is on or above the solid
pups penne ai Gham oa) and-solve Tory. line and to the left of the dashed line. This region is
(a) y? et Oe (> - qs shaded in the figure.
2 2
ben See 15 18. -3 < x - 3 2 4; D = {Integers}
pe eo Oma <a
5 ,vi5
Aamo Py pacers
ee SN = Ob haat es iad aie ae
0 ft 23°46 6. °7
x2 ab — 2b
16. (a) x + 2y+z=-1 19, ——— - 5b/2
= 2b
x
(b) 3x -y + z= 6
2 m m2
(b)3r— yy += 6 m° + <7 Ae i
(c) 2x — 3y — z=. 8 sa Rss m +1
(d) 5x - 4y 4. me +1) Pe te
(a) x+2y+z=-l wD +m +m m+ 2m
(c) 2x -3y —z= 8
—
3x — ay a
ae 21. 5) xy ‘ey = x2/5 3/5 1/4 1/4 Ee. x¢13/20,17/20
3}
€ = (3x —*7
i. ; 22 ae A ae hy
Substitute (e) into (d) and get: er a eet ea err anny tee:
(d’) "5x = 46x ars. 14 _ Bape see
SX = 124 2 28n=, 14 ° aeare et
ixe= 14
x=2 23. 41-23. Welt
294
Algebra 2, Third Edition
Problem Set 104
C x 2)
29. i = Al + Oi -1 = 91
Pepi Dy = RyTy = 240(12) = 2880 miles
1
8. Atriangle a Bee
H = (413)? - (23)
H = /48
—-12 = /36 = 6cm
1
12/3 cm?
ATriangle Fi 5643 cm)(6 cm) =
13. -|x| + 2 > -2; D = {Integers} Substitute these values of x into (a) and solve for y.
=x)
> —4
In) <4
@ yi +B) 2-414 iB
14. N= + (31-2)
1 V13
8
1
ee
(4
8
)
ff-Ba-ve)
——
8 DSS 8 17.
(a)x—y = 2z=-14
1 (2) (b) 24 + y= z= 2
= — + —| —
8 TAVRS
(Cc)x+y-z=-4
= rapa “A (a). .% = Y= 22 =
56 56 28
(Dayaee ee
1 2 abe — 3z = -12
iS, Oe—xX
—- 5) —y=-5
(d) x-z=-4
(b) 0.005x — 0.04y = —0.755 (a) x -y-—2z =-14
fa oe oF = 75 ()-x+y- z= -4
—3z
= -18
(b’) 5x — 40y = -755
z= 6
fg We 5 re 6y= (d) x — (6) = -4
—1(b’) -5x + 40y = 755 Lie
34y = 680
(ayy
gan Ore 16
y-=420
P= <=
(a’) 5x — 6(20) = -75 (2,
4, 6)
Se = 45
ea 8 18. (a) x — 3y S$ -6
Ai? 35a 2x
Ae I 8 0
Solve this equation by using the quadratic formula.
ee Dt T2
2) = 4(4)(-3)
2(4) The region we wish to find is on or above the solid
slanted line and on or to the right of the solid vertical
line. This region is shaded in the figure.
297
Algebra 2, Third Edition
Problem Set 104
19. O<x+2
4 4; D = {Reals}
aD ee Sa)
3-2-1041 2 3
iH]
GH=Z0icos20e u 18.79
5D (aatye ye e RG ty ae
+12v2 +18 43 _ gg
_ 8+ 6V216-2818 bmy + bmx - axy
29. -4x7
= x —5
25. -i + /-4V4 - 3-9 + 2i4 Age + 5 0)
=-1+4-914+2=2
- 6i
W 1 5
+e
= f=
26. ogee eae ee 7
= —_—
2/2 = An AO:
(@+dret)-5es
4 64 4 64
os 5
( al 81
= ee x+=—-] = —
8 64
_ 1510 fl4VJ10 80/10 _ 6110 gomsetye in
10 10 io 10 8 8
Pa ee oat
R Pilg
a BO
4
299
Algebra 2, Third Edition
Problem Set 105
9. N = 0.01651|651|651 ...
14.
1000N = 16.51651 651 651 ...
Nes 2001651 26515 651. oa. oe
999N = 16.5 TN Cg ee!
_ 165
9990
Be Sc
4 S\4 20 20
m? — mp + p D 1
10. m+p m + Pp
15. (a) =
ae ed = 6
m + mp
(b) 0.07x + 0.14y = 6.58
-m’p = mp” (a’) 8x — Ty = -168
mp” + Pp (b’) Ix + 14y = 658
mp” + p 2(a’) 16x - 14y = -336
0
(b’) 7x + 14y = 658
x“ -— xy + y? 23x = 322
11. x+y e + y? x= 14
+ xy (a’) 8(14) — Ty = -168
-x*y —Ty = —280
-x’y = xy*
y = 40
xy? ay:
xy* + y
(14, 40)
0
16. (a) 5x -y=2
12. y=x? + 6x +8 (b) xy = 6
y = (x" +.6x 409) + 89
yea a8) 1
ae x
From this we see: Substitute (b) into (a) and get:
(a) Opens upward
WN8 | II Zz
os
=e
—
5x?
— 6 = 2x
(c) y-coordinate of vertex is —1
5x2 — 2x -6 =0
Solve this equation by using the quadratic formula.
_ 2)#27
= 46)C-6)
2(5)
stlgp at
5 5
Substitute these values of x into (a)
DiaSi
@) y= 5) = a re ei
y's vag Ol
a) yy = 5}E
(a) — - —]-2=-
5 ) 1 - ¥31
1 31
(3+ os -1+ aan
x <1 and x > -l
1 31
ee
2-160 2 G-“Ba- ai)
300 Algebra 2, Third Edition
Problem Set 105
17. (a) x7 + y2 = 8
(ob) x= y = 2
y=x-2
Substitute (b) into (a) and get:
(a’) xo + (4 2)*4= 8
e+ x? — 4x 4428
a 2x = 0 20.
Solve this equation by using the quadratic formula. ES i Is
y= Rages al (eye
DHE VC) SE =! rig
2(1) (b) x 2 -3
Substitute these values of x into (b) and solve for y.
(b) y= (1+ V3)-2=-1+V3
Gj = C= ¥3) — 2= -1 = 3
(1 2i3F-1 + 43) and (1 — /3%-1—-,3)
18. (a) 2x —-y —- 2z =2
(Be) see y= 2 = 7
(c) 2x -y-z=0
(a) 2x -y-2z=2
(Dyer oy = Seay
3x —-3z=9
(d) Bi 2 The region we wish to find is on or below the solid
faye =p = 2 slanted line and on or to the right of the solid vertical
line. This region is shaded in the figure.
-l(c)
-2x + y+
a
eS —_
Ww =4 Complete the solution by using the zero factor
aaa
theorem.
| & ll | | O° (eS) te se =
0, ey
3x + 1 ll oS s
x= = 25. Op ap oO
Now we multiply the coefficient of p? by the
= constant term.
2(-5) = -10
3x = 6- el
a pots Lea 13
a -4 Bye = .
<
_ 16
Sol nad allied y? cy alee ie = 3B
27.
y2/3 4/6 i yb/3 ,al6 HF
2a +8 b (b) 2}—|-z=9
thas: Y_ +8, 25/3
_ ylla/6 13
eer Ta] we ae J
¥4:" 32
2-3 _ 24+3i -2i+2 seus
i+ 2i7+ 317 -2i-2 -21+2 pee
eer Seb Ss 13
7 =A 94 " egtevg
29. go ti oF
345 PROBLEM SET 106
sass 5 4 4 3./5
1. Selling
_ 20 + 12V5 + 10/5 + 30 ee price =
: purchase P price + marku
P
- 25 — 45 715 = Pp + 0.3Pp
_ -25 - 11/5 11S =" L3P ps
10 $550 = Pp
Rp = 6R¢; Tp =Tc- 1
i capa. = 4hr
To = Shr; Tp
—(c) —- 3y+z=-10
(d) 2x - 3y = -]
(a’) (B + 2)Tp = 56 4x =o
GS Dp
(b’) (B = 2)2Tp = 80
2(a’) 2BTp + 4Tp = 112 (e) 2) +y=1
(b’) 2BTp — 4Tp = 80 y=-l
“BT,
= 192 (c) 2):4.El ea 2
(c) BTp = 48
ha=-3
(a’) (48) + 2Tp = 56
Tp = 4 (2, -1, -3)
(c) B(4) = 48
bH
B = 12 mph 7. Atriangle = “a
(b) 4x +z=5
(c) 4y + 2z = -10 8. (a) Since this is a 45°-45°-90° triangle,
vis.
Gal) <2 (a) 12 5y = 00
From this we see: (b’) 12x + 70y = 2200
(a) Opens downward
=1(a’) 101 8 bye=e 180
(b) Axis of symmetry is x = —1 (b’) 12x + 70y = 2200
75y = 2100
(c) y-coordinate of vertex is —2
Wider}
ie = WY
(20, 28)
15. (a) 5x -
(b) xy MT
Se
ef
0 9-(9
12.
it a4 3
|x| 2 —4
5x?
—4 3x
All integers satisfy this inequality because any
integer (even zero) has an absolute value greater Sep 3 40
than —4.
Solve this equation by using the quadratic formula.
aut aR\e*)
Ne Substitute these values of x into (a) and solve for y.
ll +
|—
a
caer
@y-f5+)-s 3 , 489
wlS
=wo 10; 2F10 2 2
a|S
|
. 4 3° 80)
(A) 9b 10ies aad
10
|e Sle
2
a eae»)
89 3 BD.)
10 10° 2 y:
3
te
89 3 89
VE 9 3 2
(peat =
85
2
+—
y= et a9) 6 6
x= 1 + 85
(b) 2x — 5y = 26 ME rg
Substitute (a) into (b) and get: 41. A
a
(b’) 2x - 5(33 ~ 9]=026 yy
ig
a = =f a 45 = 26 B 10
ie = 19
g:
306
Algebra 2, Third Edition
Problem Set 106
11.59R + 3.11U ; 5
8.17R -— 6.29U 2z~ + 10z + 3z + 15 =
2z(z + 5) + 3(z + 5) =
tan@ = = 6.29
—= 9 = -37.59° (22 + 3\¢ +5) = =
SSS
10.31 /-37.59° ie 5
22. Yes, the set designates a function, because no two
pairs have the same first element and different “>? -5
second elements.
3 2 =
23. Since i is not a member of the domain of O(x), it is 28. 6p" + 33p" + 45p = 0
not a member of the domain of ‘¥@(x). Therefore, 3p(2p* +-lip*+ 15) = 0
the answer is eithe
© or
r { }. 3p(2p? + 6p + 5p + 15) = 0
3p = 0 ap +is= 0 p+3=0
4 a
mp ie 3
Seg oe
aes p=0 aes
pear
ip — "Pp i
0 0, -=,-3
2
2
ae (ies
2
hie Cink
ao 2
307
Algebra 2, Third Edition
Problem Set 107
b) (320) + Dy = 400
a My = 0.7(1400) = $980
Dn = 80
0
10. wien Zt. 4y?
—5 <
@ x-fi ) 224 ai
4 4
@ x= 44-4) 2-1 — i
[1a ai,4 +
1 2.
2h)an
15. (a) x? +y?=4 The next step is to graph each of these lines.
My
(b) x — 2y = 1
reeLy 1
5y* + 4y -3 = 0
Solve this equation by using the quadratic formula.
(a’) 5x - 3(x - 8) = 32 Hh
IN
2x = 8 Be
He
(b) y = (4) -8
“ae
= -4
an
he]
(4, —4)
6 = 63.43°
<
(b)x sy Since @ is a second-quadrant angle,
ares 3 6 = -—(63.43) + 180 = 116.57°
4/5 /116.57°
310
Algebra 2, Third Edition
Practice Set 108
22. Write the equation of the given a in slope- 27. 4x3 + 2x? — 30x = 0
intercept form.
5x - 3y = 4 Ox (2x78 x —415)p=10
2x(2x° 4+ 6x = Sxenals y= 0
2x(2x(x + 3) — S(x + 3)) = 0
a
ee
x= 0 sommes Yaa 35
p
3
¥ Sar rd eB
3
3 = -=(-2)
56 +b
28. Rye 0
| Dee
cae A(2x* + 3x + 1) = 0
3
xs 2x tie + 1 = 0
2h BD) 4 tee Die 0
= 5
Oxantlr cect 0
1 1
23. hi ——
mr mp
Pp
pe m? px -1
800 liters | 1000mL 1 cm? 29. 1O000N = 74,213.213 213 213 ...
N= 714.213°213 213 5.3
min 1 liter eras B
999N = 74,139
1 in. ‘ 1 in. tetas
_ 74,139
254cm 2.54cm 2.54cm
999
#1 Te ahh fF Toit ogy 1 tna
12m 12 in. | Assia. 60 s
30. (hits gx) = (eo + 2)+ (x3 4.2)
800(1000) ihe
(2.54)(2.54)(2.54)(12)(12)(12)(60) ry
(h+ g(x) =x 4x44
(h + g)(-3) = (-3)° + (3) + 4
25. Area of rectangle = Area of right triangle (h + g)(-3) = -26
10(#7)
10(5) ,
MG fim. YY
PRACTICE SET 108
FG = (oy + (10)? = 10V2m
64p%a? — x3y!2
= (4p’a*)> — (xy*)?
26. Area of circle = Area of square
n(2V2)* = s? This expression is a difference of 2 cubes and can be
factored as
An? = s*
(4p7a? - x y4)(16p4a® + 4pa>xy4 +x 2yey
27cm = s
Variation method:
PROBLEM SET 108
D
Sp = Pp + My Vie pees
B
6400 = Pp + 0.4(6400)
k eee = 500
$3840 = Pp
(1)
T = tens digit 2
ee 500(10)
U = units digit 10
107 + U = original number B = 5000 blues
10U + T = reversed number
Downstream: (B + W)Tp = Dp (a)
Qn +20 =16
T=6-U Upstream: (B —- W)Ty = Dy (b)
(b) 10U
+ T = 107 + U - 18 (a’) (Bue3)T = 92
(c) B(4) = 80
T = tens digit
B = 20 mph
U = units digit
107 + U = original number Tp = Ty = 4hr
(a) T+ U-=1%5
= (3a*p* + y)(9a4p® — 3a*p4y + y?)
T=15-U
8x12 76 S my? = (2x42?) a (my*)
(b) 10U-+ Tf = 107 + U =223,
= (2x42? — my>)(4x824 + 2mx4y2z? + m?y®)
Substitute (a) into (b) and get:
(b’) 100e+*(iS—1U) = 1015 Sa — 97 my? _ 2 = (my?) — (2?)
9U + 15 = -9U + 123
= (my? - 27)(m4y® +. my3z2 4 z)
18U = 108
We=e6 v1 SOS
ste! + V2 2 + 221 d
5 Rh 5
<4 sN21" 23geznl
ese 5
15. () 4x4 2y = 8
(b) Sune 32, =.-9
(c) —3x + y= i
(b) aye = Be =
(C)\=3x += <I
12. -2z = -8
z=4
(c) -3x + (4) = 1
XS" 2.06 x <.—2 36 = ak
+9 ++ + (a) 4(1) + 2y = 8
ae WG 1 2S ee
1
(1,
2, 4)
135 (a) 5 —--y=2
= 16. (a)x-y-3z=-2
(b) —0.008x — 0.2y = —1.68 (b) 3x +y + z= 12
= 40
(a’) 8x — 5(8) (b) 3x +y + z= 12
8x = 80 (ce2Qxieny #2) z= 5
(e) 5x +2z=17
x = 10
(d) 4x -— 2z = 10
(10, 8)
(e) 5x +27 = 17
iG ey = 3 Ox = 27
re 3
(b) y- 2x =2
y=2x+2 (d) 43) — 22 =410
z= 1
Substitute (b) into (a) and get:
(yan rt 2) = 8 (a) 3) - y - 301) = 2
x? + 4x7 + 8x +45 y=2
313
Algebra 2, Third Edition
Problem Set 108
18. see per Pel2 Use the graph to find the slope.
[i =P oP Se 3 i ee ds
-j-2-24+ 4i Dae 10
1+4 ~ &§ W = 15E
+ b
22.
28. 2x* + 9x +9 =
Dn? Gl tea Len! =
2x(x + 3) + 3@ + 3) =
(2x + 3)%
+ 3) = 4S)
ey
©
24,
+ 3= 0 xe
Ss = 0)
ae ed
10T + U=87T7+U
lk a ; 5. 0.46(600) — 1(Dy) = 0.4(600 — Dy)
(b) 6U=T+5 276 — Dy = 240 - 0.4Dy
T = 605 = 36
0.6Dy
; Dy = 60 mL
Substitute (b) into (a) and get:
(a’) 10(6U — 5) + U = 8(6U — 5) + 8U 6. Apply the power rule and get:
27x3/4 3/2,3
61U — 50 = 56U — 40 af
5U = 10 7. xl4 4 yl
y=2 x4 4 yl
xl 4 yl/4y
14
(b) T = 62) -5 =7 ly1/4 4 yl/2
ei/
Original number = 72 Fr teedaan ee
Sy bee
315
Algebra 2, Third Edition
Problem
Set 109
(c) y-coordinate of vertex is 3 Substitute these values of y into (a) and solve for x.
(a) x t)+s=6
(a) x = 2(-3) + 5 = -1
16.
(b) 4x +y+z=4
(c) 3x +y-—z=9
(a) x+ yu=z= 7
(b) 4x + ya=
(d) 5x + 2y =.1]
(b) 4x + y $zi=- 4
(c) 3x + ys3z= 9
(e) 7x + 2y = 13
2 1
14. (a) =x - —y=1
> 2
—l(d) -5x - 2y = -ll
(ec) Txt 2y S13
(b) 0.3x — 0.05y = 2.55
2 aD
(a’) 6x — 5y = 15 x=1
(d) 5(1) + 2y ll —_
20.
SND 5/9 =D
= 35 5/2 2 M5 EB
(a) (1) + (3) -z
(a
Zz Woof
_ 15V2 +6 + 20+ 4/2 _ 26 + 192
oe)
50 - 4 m 46
(1, 3, -3)
21. Y27V3 = (33)'3313 = 3(33) = 343
17. (a) 2x + 3y = 15
(ob) x — 22 = -~3 22. [By fx2y = S2yl2~yll2 _ Ty
(Cy Sy = 2.=.0
xa/3 ifs) 2/2
z= 3y - 6 23. My — ,—5a/3 - 2/3,,3b/2
x24 y-b m2 v4
Substitute (c) into (b) and get:
(b’) x — 2(3y - 6) = -3
cee 43) = bboy me NONE MIIG ne
x — 6y = -15
V3 2 3 2
2(a) 4x + 6y = 30
pals =, Be _ RV6 _ 296
(b’) |x = 6y = -15 6 6 3
es = 15
x = ka* 4 kee
25.
(a) 2(3) + 3y = 15 ifs so3 ror
ka are ka eea
y=3 k*a—1
—10.23R + 10.97U
20.00R + 0.00U
9.77R + 10.97U
10.97
tan@ = ——
9.77
@ = 48.31°
5 (NEG)(NEG) > 0
os san WPA Ueander eo
5 x < 4 and xs -l
yon Thus, the solution is x = 4 or x < -1.
2 (a) T = 9: — (3) = 6
Nee x= 3
3 Original number = 63
5, 3 2. T = tens digit
U = units digit
107 + U = original number
PRACTICE SET 110 10U + T = reversed number
a. (x + 1)(x - 2) > 0; D = {Reals} (aj T+ U=7
(Pos)(Pos) > 0 SIM a's
4 ts 0 and ee oo (b) 10U.4+-7
= 10 PeteUae4ss
SI and pee e) Substitute (a) into (b) and get:
GO: and.
x —.2 <0 9U + 7.= -9U +115
x < -1 and 5ak 18U = 108
aa Ul= 6
‘Thus, thesolutionis x« > 2 ot 7 <-—1.
(a) T= 7-6)
=1
Sed Ohh (2s 3 Original number = 16
318
Algebra 2, Third Edition
Problem Set 110
x2 _ yli4
4. Downstream: (B + W)TD = Dp (a) xll2 v4
Upstream: (B — W)Ty = Dy (b) 7 yi
oe J ye
(a’) (B + W)8 = 120
x — 2xW2y14 yl
(b’) (B — W)9 = 63
10. x2 4 yl/2
9(a’) 72B + 72W = 1080
x2 _ yl
8(b’) 728 - 72W = 504
sae glee
144B = 1584 _ xli2yli2
B = 11 mph
x —-y=x-y
(a’) 8(11) + 8W = 120
W = 4mph 11. 8x” — y®p* = (2x)? = (y*p)?
= (2x3 - y*p)(4x® + 2x3y2p + y4p?)
5. Sp = Pp + My
27x!4,? + p°m'> = (3x4y3)3 + (p?m°)?
12.
Sp = 1400 + 700 = (3x4y3 & p’m*)(9x*y6 a 3x4y3p2m5 + p'm°)
Sp = $2100
13. 1O00N = 13.62. 362°362)...
x 100% = 33.33% N= 0.01 362.302
brs es ane 999N = 13.61
700 _ 1361
% of cost = = x 100% = 50%
99,900
3-2-1012 345
7 5° . ay = 5 2 OS {Integers}
(x — 5a + 1) 2 0
(Pos)(Pos) 2 0
X eo 2 Uren x + 1 IV =)
x = 5 and x 2-1
15. 3 > xt 2 orx-+ 5S] 82 Ds=—"(Reals} Substitute these values of x into (b) and solve for y.
i>s0 or 5 wy=(f+Ht)-1-
‘ai AG)ae canker
7
O Wutees SPa4
pi i ge iu
as lae ae ek 2 S92
16. (a) te2aan
Ea 1ey
SY
(3 + 5 + an
9 Z 2 2
1_ Mnll 1 _ vai
(b) 0.03x + 0.07y = 1.12
(c) 3x -y+z=-l
(b) (1) + 2y
(a) 4e(b): 5x =)y =A —.@)
y NO
18. (a) x7 + y? =6
(b) x =y = 1
Yow!
21. 2i2+ %. 2
set Py2i at oO 28. 3s* + lly + 10 = 0
Jeo + 835i + Gao i 37 3a 3s* + 65 + 5s + 10 = 0
6 + 61 1 1, 3s(s + 2) + 5(s + 2) = 0
= =-—
-—- —!
= t= 2 (3s + 5\(s + 2) =0
35 + 5) = 0 Sac e—e()
Bo rd1 a5
bn Cae eon yea s=-—2
3
. 34+3V5 +4V5 +20 -23- 7,5 5
1-5 - 4 ae
Ae
7 we = gq’ — 5b/2,.2
- b/2 29. 8x3 + 6x2 — 2x = 0
x2 ge!2
Dx(Ax?t+23x\— 1) = 0
24. 18/2 = (23)'4gU8 = 93/4y18 _ 27/8 Qx(Ax® +o40p eevied en)
De Ax 471) =a 1) = 0
1
26. Jk Oo = vk — 46 Dae
k - 12Vk + 36 =k - 48
12Vk
= 84 30. Since —2 is not a member of the domain of g(x), it is
not a member of the domain of (h + g)(x).
Jk =7 Therefore, the answer is either © or { }.
k = 49
Check: ¥49 — 6 = V49 — 48 PRACTICE SET 111
N+D+Q= 35 (a)
@ = -75.07° (Dy
= 7/
Consecutive integers: N, N + 1, N + 2
PROBLEM SET 111 4.
MN + 2) = 5(N + 1) + 35
1. (a) Ny + Np + No = 28
N* + 2N = 5N + 40
(b) 5Ny + 10Np + 25Ng = 250
N2 - 3N - 40 = 0
(c) Ny = 5No
Solve this equation by factoring.
Substitute (c) into (a) and (b) and get: (N + 5)(N - 8) = 0
(a’) Np + 6Ng = 28 N = -5,8
(b’) 10Np + 50Ng = 250 The desired integers are —5, —4, —3 and 8, 9, 10.
-10(a’) -10Np - 60Ng = —280
Equal ratio method:
(b’) 10Np + 50Ng = 250
D)
-10Ng = -30 Lge=; oeBa 2)
No = 3 quarters S, T,(A,)
(a) Ng + Ng + Ny = 10 S = kTA2
(b) Ng + 4NG + SNy = 39 1000 = k(5)(2)*
50 =k
(c) Ny = Ng + 2
Substitute (c) into (a) and (b) and get:
S = (50)(8)(1)*
S = 400 students
(a’) Ng + 2NG = 8
(b’) Ng + ING = 29 (x + 4)(x — 2) > 0; D = {Integers}
(x2 x ey
13. -|x| — 3 = -7; D = {Reals}
x1/2 = phe
ex) 4
x2 = ape
|x| < 4
x + ry
xa la as yl? x <4 and x 2 -4
x + ya amy ahs Ps yl?
5-4-3-2-1012 3 4 5
(xi4 . np ia
10. Apply the power rule and get xywl, 17. (a) =x - =y = -10
y=4
(a) x + 2(4)= 10
x 2
(c) (4) + 2z = 16
eeroO
(2, 4, 6)
323
Algebra 2, Third Edition
Problem Set 111
UNeS
ima 2 18 AF
ime 2
The next step is to graph each of these lines.
1 ane ~ i + v7 and
2. 2 2 2
ei icp
Pita Wee 2 2
ade
2,Ol 28.
4 4
20
x= 3 Se of
4 4
5
x= >? = | A
2. 1 = tens digit
U = units digit
PRACTICE SET 112
107 + U = original number
a. (x + 4)@ - 1) < 0; D = {Reals}
(NEG)(Pos) < 0 10U + T = reversed number
Ger
4 <a) rand x. — I>" 0 (a) a Ue 7,
x < —4 and » eae | i
hg
Pos)(NEG) < 0
atl (b) 10U + T= 10T + U-9
x+4>0 andx-1<0
x > —4 and all Substitute (a) into (b) and get:
There are no real numbers that satisfy the first (b’) 10U + (7 —-U) = 107 -— U)+ U =9
conjunction, so the solution must be -4 < x < 1. 9U +7 =-9U + 61
Oo
————<
a5 24S Oe 0 1 2 = 54
18U
ie)
b. x” — 3x — 10 < 0; D =s{Integérs}
x -— S)\a + 2) < 0 (@) Tse7 S03)
(NEG)(Pos) < 0 Original number = 43
> << GQeandee
20> 0
iy< ) -and ri> <2 as Sp = Pp + My
(Pos)(NEG) < 0 1800 = Pp + 0.2(1800)
%— 5. > 0 and reo GO 0 — 360
> 5: ane x < 2 cee ities
There are no integers that satisfy the second Pp = $1440
conjunction, so the solution must be 298 Pals Be ey
Eg er
0.1 2 3 4 596
4. Downstream: (B + W)Tp = Dp (a) There are no integers that satisfy the second
Upstream: (B - W)Ty = Dy (b) j i
conjunction, i
so the solution must tbe be -1 < x < 6.
Dr 9g, x2 4 yl?
5.
|_________+| 2 _ \-1/4
1800 eee
pee xl/2y1/2
-
| H | 2 xl/2y-1/4 ~yl/4
1200 Pe : y/2y 1/2 4 xV/2y-1/4 be yl4
RrTp = 1800; RyTy = 1200; ee
10. Pr =k airy — &
Ry = Rr + 200; Tr = 3Ty
= (p*x” — k)(p4x4 + kp*x? + k*)
(Ry — 200)3Ty = 1800
3(1200) — 6007 = 1800 11. 100N = 401.43 43 43 ...
—600T} = —1800 = 401 43:43...
Ty = 3hr 99N = 397.42
(Pos)(NEG) < 0
xe 6e-0 and x + 1 <0
x > 6 and x<-l
(a) (4) — 2y = 10
y=-3
LS Sets (a) and (b) are functions. Set (c) is not a (4, -3, 1)
function, because —4 has two images.
21. (a) 2n=s =" 7
“y= 3(5) + b
—22 =D 22. (a)xt+yt+z=1
(b) 2x -y+tz=-5
y = dr, -,22
(c) 3x +y+z=5
19. (a) 2x + y = 28 (a)
+ (b): 3x + 2z = -4 (d)
y = 28 = 925
(b)
+ (c): 5x+
(b) 70x — 2y = 536 =1(d)
+ (ce): 2%.
=4
Substitute (a) into (b) and get: x=
327
Algebra 2, Third Edition
Problem Set 113
23.
377-29 — 34+2i -3+3i PRACTICE SET 113
f=3ai=3 =f=9 -3 i -=3.4,3i x = In 0.0052 = -5.26
= es9+91-6i-6 5,1
949 6 6 (ites 1
/2-1..2 x = @BBe* = Ine* = 1n(51.4) = 3.94
24. a* idl Shop
ye a
ates 3
(c) Ny = 2Np
Substitute (c) into (a) and (b) and get:
29. xe 23x ES (a’) 3Np + No = 19
DeteAieHe= 2-= Ng = 19 - 3Np
2x(x — 2) + lw - 2) =
(2x + 1)\x
- 2) = (=)
ey
Se
a
(b’) 20Np + 25No = 200
i= = x=2
(b”) 20Np + 25(19 — 3Np) = 200
-55Np = -275
Np = 5 dimes
(a’) No = 19 — 3(5) = 4 quarters
30. 3x7 + 8x + 4 =
3x? + 6x + 2x +4 =
(a) Nut (Sd) = 19
SAT)
OK 2 = Ny = 10 nickels
(3x+ 2)(x+ 2) = =>
SS]
5k =U ee ll =)
Ry = By (ey?
R, Z B,(M,)?
2
x= -= x —2
10 _ 4(20)?
peerrey
By = 120 blues
(NEG)(NEG) = 0
Dp x-3<0andx+2<0
(b) 4.14
12. |x| — 1 > 0; D =' {Integers}
7. (a) e263 >
2 or |
(b) 136.77
32-1012 3
8. AE x SF = AB
6 x SF = 24 13; | Seow
/\ ale De Reals}
SF =4 Dee?
AG = ADSCSF Se ee,
ee
SOO e213
AC = 4(4) = 16 meters
x3 2
ry erie
14.
9. @o+2e
— 3) < 0; D {Reals} 2/3 “ ue
15.
ah
8p°k
ee
xm
ee RO Up Y
OT eo em) ; ae 20. (a) wx x es) = 30
= (2p7k> — xm)(4p4k!? + 2p7kPxm? + x?m*) 5 3
(b) —0.18x -— 0.02y = -3.78
16. 100N = 0.316 16°16 ...
N = 0.003 16 16 ... (a’) 18x + 10y = 450
99N = 0.313 (b’) -18x - 2y = -378
nv = 313 Bye 2
99,000 vieeg
see (0) .
5
Substitute these values of x into (b) and solve for y.
(b) y = 3(0) - 2
y=-2
y= 3(2)-2
8.
oh ae
N=2+2(42 -2) 8
,
hee ree
Bera vriP
SENe
Vereere:
: 6 8
11 (0, —2) and | —, —
Brot 9 es
33° 33 33 22. (a) x -— 4y = -15
+ y = 13
(e) 52) B2y
9
y=3
(c) (2) + 3) +z= 30. 3x3 + Ix? + 2x = 0
Fe a Oxo
+! Tx 2) 0
(2, 3, 4) x(3x” + 6x +x +2) =0
x(3x(x
+ 2) + 1(x + 2))
=0
_ -16-6¥2
_ 8+ 32
-8 4
PRACTICE SET 114
26. ofxy3 3!xy? = for y2/3 = rey Region A (This region includes all points on or
above the line that lie outside the circle.)
NW + 4) = 8(N + 2) + 16
2s. Ie + x 3x = 0
s N2 + 4N = 8N + 32
KQx0,P x - 3) = 0
N? — 4N - 32 = 0
Min = Ont oe = 3) = 0
(N + 4)(N — 8) = 0
x(2x(x
Ixlx - 1) + 3(v.=—
— 1) el)1)) =) take
x(2x + 3\(x —- 1) = 0
The desired integers are —4, —2, 0 and 8, 10, 12.
=. 2/46 =O x-1=0
3 2. 0.2(240) + 1(Dy) = 0.52(240 + Dy)
xX — He =
2 48 + Dy = 124.8 + 0.52Dy
0.48Dy = 76.8
yee Dy = 160 mL
2
Pe
Region B (This region includes all points on or
inside the circle and all points on or above the line.)
2000
17. x=3
6 <x -4 < 8; D = {Integers}
10<x< 12 (b’) 3(3) - 3y = -36
Weald
8 9 10 11 12 (3, 15)
9
19. y= x = 4 47 3(a)
+ (d): llx
= 22
aia — A+ 4) 47-4 eae
y 23s. (avery. =. 6
bia
225005 ee oe Oa
a } 1
ae
n (a’) xX +(-=] =
v
ocaemie ae OX
x= 6xeeel =
9 (2 18 2(1)
=—+— /— -—
= BNA 5 Substitute these values of x into (a) and solve for y.
bette (a) y= 6-(3+ V10) = 3 - V10
Ze 3
(a) y= 6-(3-
10) = 3+ 10
_ 144 , 21 _ 165
= 39 732 32. (3 + /10,3 — /10) and (3 - /10,3 + 10)
24. (CONers
SE Re) 29. 5x7) toTx?
+ 2x 0
(b) 2x —-y + 2z7 = 9 x(5x2
+ 7x + 2) =0
(cjiar
ty + 2 Set x(5x2 + 5x + 2x + 2) = 0
—l(a) + (b): x +z=6 (Td)
x[5x(x+ 1) + 2@ + 1)] = 0
(b+
(c)2 x4 3z7,= 10° (©)
x(5x
+ 2)(x + 1)
=0
-(d)
-x - z=-6
(e). x 3z.='10 a) Swe do Os == (0) Xe =0)
eg
5 ia _2 x=-l
z=2 5
(d) x -+9@)
=-6
g)
x= 4 0, - % -1
@)4)= ys)
yrsus 30. x2 _ 12
zl _ 12
(4, 3, 2)
ye lie
25. There is never an exact solution to these problems. — xl 4 yl
One possible solution is given here.
x 2 ayll2y tes,
O = ml + b
Use the graph to find the slope.
225
m= a es)
10 PRACTICE SET 115
O= 22.5! +b
27 = 10**>
Use the point (85, 400) for J and O.
= 19*+5
400 = 22.5(85) + b
-1513 = b x +5
O = 22.51 — 1513 a wm~ TT x
99/10 a ee
139 Il WwW>
28. RW e a
0.46 =k
25 —- 10Vx + x
= E1ONia Ato = 400 €9-46(10)
Vx Ajo = 400 e*6
16= <x
Aig ~ 400(99.48)
Check: J16 - 15 = 5 —- 16
1= 1
Ajo = 39,792 rabbits
(b) 4U= T + 14
Rplz + RsTs = 280; Rp = 20; i= 4U
- 14
Rs
= 45; Tg + Ts = 9 Substitute (b) into (a) and get:
a P
480
heh ll Pt ae Ww
-1.47 = x
RyTy co 1200; Rplz = 480;
9,
102412 ~ 2582.26
Ty = Tg + 1; Ry = 2Rp
335
Algebra 2, Third Edition
Problem Set 115
2 S y
2 ED 100N = 104.747 47 47 ...
Anerc = H -( 5 )= *2 units? 21.
N= 1.047 47 47 ...
99N = 103.7
14. Region C (This region includes all points on or
inside the circle and on or below the parabola.)
_ 1037
990
iS: (x + 5)\(x — 2) > 0; D = {Reals}
22. y= i oe od
(Pos)(Pos) > 0
y= (x7 +2r4+1)+1-1
x+5>0 andx-2>0
ve omand x SD
yea 441)
From this we see:
(NEG)(NEG) > 0
aon<a ONeanGmey.
2, <0) (a) Opens upward
(NEG)(Pos) < 0
se o> See(pinta! Se es A Sal)
x <= —) and ~S —)
(Pos)(NEG) < 0
cate)
>) 0) cande«
bt 2. < 0
x > —5 and x < —2
=>
68
—4+—
1 =
23
—
went 4
=o 2) OR 123 24
(d) 4(2) + 3y = 20 3
My =4 4
—, 2
(c) 3(4) +z = 8
= -4
(2, 4, -4)
PRACTICE SET 116
a. |7|6|5]=7-6- 210
=5
26. (a)xt+y-—-z=4
-l(d) + (e&): x = 4 There are also only 6 outcomes with a total greater
(d) 3(4) + 2y = 14 a total
than nine, so the probability of rollin g greater
than nine is equal to
y Fh
6 1
(b) 2(4) + (1) + z = 10 Oar
z= 1
Thus, the probability for the given sequence of
(4, 1, 1) events is
4/2 +1 1432
23.0 ES
——— = +: pr PROBLEM SET 116
Fp LY ORO Pn Reeto aaa 1 fey i,) 1. Multiples of6: 6N, 6(N + 1), 6(N + 2)
P 12N = -96
Ln ee wb
shone
B
hae6 400
800
_ 200
‘T,
os :4 2 T, = 400K
(a’) (B + W)5 = 65
(b’) (B - W)8 = 56 8. (a) pH = log H’
pH = -log 0.00204
8(a’) + 5(b’): 80B = 800 oH ~ 2.69
B = 10 mph :
(b) pH = -logH
(a’) (50) + SW = 65 ieee at
We 3 mph 1073-2 = Ht
bees 1.10 ~ 3k
1000 =- k(2)(1) 2 a =k
037
=nk
co Ag = 400,000e°77) = 7,719,188 paramecia
T = 500(1)(2)*
T = 2000 tomatoes il. [9/8{7[6|5| = 15,120
3 1
SF -F D0 4 2 3 23. er eyes
(d) + (c): 3y = -9
ei
(d) x + (-3) = -2
vet Leh
(b) (-3) + 2z = -9
z=-3
339
Algebra 2, Third Edition
Problem Set 117
2(a) + (b): 6x + 5z = 33 €) ee a
—2(d) + (e): z = -3
20
tS Sie 3. eas (a’) Ny + 4Ng = 16
1-4/4 1-4i 1+ 4i (b’) SNy + 55Ng = 150
Beet eS ree oe 14 Ny + 11Ng
= 30
le 17> 17 -1(a’) + (b’): 7Ng = 14
a Bie Guut V6 No = 2 quarters
5000 = 4000 + My
29. jp—-45 =9-
, VP $1000 = My
p — 45 = 81
— 184 petrip
-126 = -18,/p % of Pp = soon x 100% = 25%
Weed
49 = p % of Sp =~ x 100% = 20%
Check: 49 - 45 = 9 — /49
2=2 gE:
a
4 5 200
30. 3x" = X= 24 = 0
x(3x° Bx S2)e='0 Ou
Max = 3x 4+ 20 2)5=40 650
x(3x(x — 1) + 2@ - 1)) = 0 RgTg = 200; RyTy = 650;
Hox +o 2)(x% = 10 Ty = 2Tg; Ry = Re +225
Gems Bre
2 =) 0 eRe!) 2Tg(Rg
+ 25) = 650
) 2(200) + SOTg = 650
am) ae x=1
3 S0Te 3-250
2 Tc = 5hr
0, -—,
3 1 Ty = 10hr; Rg = 40 mph; Ry = 65 mph
(a) 0.3Py + 0.6Dy = 234 13. Region E (This region includes all points on or
(b) Py + Dyn = 600 outside the circle and on or below the parabola.)
Substitute Dy = 600 — Py into (a) and get:
14. V = Apase X height
(a’) 0.3Py + 0.6(600 — Py) = 234
-0.3Py = -126 270 Eee
E (x(2 m)?) + 52 m)(2 m)|x 10m
Py = 420 (3m + 2)(10) m3
(b) (420) + Dy = 600 _ __114.25(100)(100)(100) 4,3
Dyn = 180
(2.54)(2.54)(2.54)(12)(12)(12)
420 mL 30%, 180 mL 60% = 4034.70 ft?
My = 0.8(4320) = $3456 15. 6x SF=9
SE ode5)
Sp = Pp + My
4320 = Pp + 3456
$864 = Pp
BMSE =
|S]4]= 6720
s[7[S peg
2
4 26 13 Ree
36 «636 162 3
x = 3(-5.50) = -16.50 aerfeor =+ (Hr
e
3 3
4e* = 24
e = 6 $2 F sarc
=n 0
=—21:79
82 3 sierr
3 2 2
10. (a) pH = —log H* 2AV2 9.802.
10°PH = Ht 6 3
1079-34 = ia 4V2 >
3
Ht ~ 4.57 x 10° —
iter 16.
x +1 > 12D {Integers}
(b) pH = -log H* xipn0
1p? = Ht
1970-00263 _ yt (yg) Pes Zt
341
Algebra 2, Third Edition
Problem Set 117
BE ok
22. Mev,
xhl2 cay lll
19. (ajeyeour
+. 3
ave
(b) y<—= By ey
Pa UE SLI yd!
The first step is to graph each of these lines.
24. w= 24412 - 2)
) VANES) 5
3 (2)
+—|—]=
2a
—+—=
16 43
—
5 9\.5 45° 45 45
25.
<<
Ht -(x — 2)? +2 —2(a) + (d): -—4x oo
Xx slWel
y= -4 log; x” = log; 16
(c) 2-4) +z = -4 x? = 16
; 2% x= +16
(2, -4, 4) tli
eee St
i+2 Pay PROBLEM SET 118
St
the Sao 24,8, 9
Ee?ier we 1. = xT = 6399
ae 24 w 4 T = 11,376
233. ————
4-J2 4+~72 S = 11,376 — 6399 = 4977 squatted
— 8¥2+4-16-4/2 — -6
+ 2V2
———“-2 °° = 2. Carbon: 2x12 =24
Hydrogen: 4°x l= 4
29.
3/5
we
413 _ _5/3,3/4, 1/4 _ ,29/12, 1/4
xy Oxygen: 1 x 16 = 16
ee Gert 3. (a) Ny + No = 18
1
dar x=6 (b) 5Ny + 25Ng = 270
1 —5(a) + (b): 20No = 180
>? 6 No = 9 quarters
(a) Ny + (9) = 18
PRACTICE SET 118 Ny = 9 nickels
a. logs (x + 8) + logs4 = logs 80
4. Downstream: (B + W)Tp = Dp (a)
logs (x + 8)(4) = logs 80
(B — W)Ty = Dy (b)
Upstream:
4x + 32 = 80
Tp = 2Ty
Ax = 46
3 x B = 15mph
343
Algebra 2, Third Edition
Problem Set 118
U = 3T - 11 mZABD Y=
oe 3x + 15 = 60
3x = 45
(ob) U = 34) - ll=1
x = 15
Original number = 41
16. 4 logex = log, 64
. Ap= Pe" :
- loge x* = log, 64
Ajo = 15,000e°°U = $38,785.64 5
ae Oo
12. pH = —logH*
pH = —log 3.14 x 10°
pH = 2. mn
13. H* = 10?°H
H™ = 107>-42
344
Algebra 2, Third Edition
Problem Set 118
3-2-1012 3 SS eK Se ee nee
=F 0. 71-28
20. (a)x
+ y 2-3
23. x°'+ 6x ¥°10 = 0
y2—x-3
(weet iGy +H 9)P= 10-49
(b) x — 2y < -4
Cae te = al
x See at
Te >: 4
The next step is to graph each of these lines. Sige ee 182
¥i 4. 14 = yl4
pl Se
xl/2 _ 14, 1/4
al ney oe we
x12 al Days a ye
26. N= 4 BS
A 5
The region we wish to find is on or above the solid
line and above the dashed line. This region is shaded _ 21 *(61 42
in the figure. 5 8\10 ~=10
(x — 3)@+ 1) <10
(b) 23) + y - (3) = 12
(NEG)(POS) < 0 yaa
xo 3%" ORand x“ fe>"0
x <"3 “and x >-l ' (3, 3, —3)
345
Algebra 2, Third Edition
Problem Set 119
= Wea Swe ee
kW
IB = RB
> Hoe)
(10)
PRACTICE SET 119 SO F=VI6
a. {xe R| |x - 3] <5}
= ae = 1000 pinks
oe
ande sn Ss)
i) ane Se << te
(a) Ny + Np + No = 24
(b) SNy + 10Np + 25NgQ = 425
29-2 =1 OV 1 Loa Gud Su GETS 9
(c) Ny = Np
b. {xe Z| |x + 3| < 2} Substitute (c) into (a) and (b) and get:
x+3 22 andx+3<2 (a’) 2Np + No = 24
x 2-—5 and xs -l No = 24 — 2Np
(b’) 15Np + 25No = 425
=6 -5 -4 -3 -2'-1. 0
Substitute (a’) into (b’) and get:
(b”) 15Np + 25(24 — 2Np) = 425
7. |x + 1] < 3; D = {Integers}
16. mZCBD = 180 — 130 = 50°
x+12-3 andx+1<3
x > -4 and x<2 mZCDB = 180 — 90 — 50 = 40°
4x = 28 mole
ay x 10> —
H* ~ 5.89
liter
61 484
= — + —
10 100
610
100
,~—:100
484 _547+
50
————
12. xl/2 ae
ie yin
Ve Fee 2
_ xyla Dy
x — 2x22 yy
A Triangle
rangle POE == 5|5)
(3 52) em) re
22 en 26.
See Lesson 71.
9/3 ®)
= —cm
8
4B 27. N= 324452 -32)
3a 0 9/3 EWEN Chae
Ashaded = (22= 23) cm?
10, (lege)
3? Sse eS
23. (a) 2x -y-z=8
=—_—+
10. 36
(b) 3x +y-z=9 TS
(c) 6x -y+z=0
_ 250 ,31_ 281
(a)
+ (b): 5x — 2z = 17 (d) in Sic 1G) 75
(b)
+ (c): 9x= 9
28.
27-2 — -2i-2 342i
x=1
Sena) oT 349i
(a5)
922 "=
_ -6i+4-6-4i 2 10,
z=-6
9+4 de Shes
(b) 3+
y= 6) I
b
y I =) 29. gixe = ghl2,bl2
qo!2 b/2
(1, 0, -6)
Ge +e =e —1 w= 2
wv 0g
il 1
+ (11 — U) = 30(11 - U) + 3U + 5
(b’)10U Ly = 24
= 30; My
LU Co 6. |x - 3| < 2; D = {Integers}
36U = 324
x-3>-2andx-3<2
U=9
x > ID and x= 5
Abani TO &
Original number = 29 ipe 3.455
349
Algebra 2, Third Edition
Problem Set 120
A, = Pe™
Ag = 2000e°8) = $3232.15
26 |25|24|10|9]8]= 11,232,000
e 15.91
10. = e 15-91 — 12.83 — 9728.74
e!2.83 19, yea"
Ir 3
= 3.30 x 107-8 =y = (77> 24 4.1) Hye. al
y= (x — 1)* +2
(ey = 10.665 ~ 428 x 104
11.
y=-(@- 1)? -2
12. 4x = 3 In 0.0037 From this we see:
15. Ht = 10°PH
H* = 1973-13
& a | * ll
AN fey ine Win © 2on, umn
16. — xX x x x
min 1 ft 1 ft EKG 60 s
= (60) s NO
& + I
nS Ma|R
er
17. 1000N = 21.63 163 163 ...
N = 0.02 163 163 ...
999N = 21.61
2161
S I
99,900
350
Algebra 2, Third Edition
Problem Set 120
3 3.76R + 1.37U
21. (a) os + y = 13 < 3.86R + 4.60U
7.62R + 5.97U
(b) 0.2x — 0.02y = 1.12
F = (7.62)? + (5.97)? ~ 9.68
(a’) 3x+2y = 26
— 2y = 112
(b’) 20x OEE Es
23x = 138 7.62
x=6 0 = 38.08°
(a’) 3(6) + 2y = 26 9.68 /38.08°
y=4
24. 5x? + 9x2 — 2x = 0
(6, 4)
x 5x" + 9x = 2) =O
22. a 5xoP + 10x! x) — 2) 0
x(5x(x + 2) — 1 + 2)) = 0
x(5x — 1)\(x + 2) = 0
GS f x = 2
3
geet;
3
2/13 /-56.31°
yy =.220
Se | 7/8
C 26. In(x + 5) + In5 = In65
A In (5)(x + 5) = n65
= 4cos 20° = 3.76 5x 25? 2°65
B = 4sin 20° = 1.37 5x = 40
be the
3/2 _ 32
2 _ pr
Fee
_ 3/2312 4 53
x2 — 2x32y32 4 3
Zee
L 1,
10 20
|
Sv x | Ne}
600T, ~= 1200K
7,
Downstream: (B + W)Tp = Dp (a)
S A; = PeM
Az = 1,000,000 e137) = $9,484,322.53 ‘wig
11.62
9 A, t = Ape”
0 oo 16. e ir. L ¢ 11624811 =e
19.73 = 3.70 <x 10
8
140 = 40e e
Baus
& . E 17. ZPOR + ZPRQ = 180 — 80
25 = ZPOR + ZPRQ = 100°
0.25 =k : :
1
Ayo = 40692500 ~ 487 5(ZPOR + ZPRQ) = +(100°) = 50°
10. |x + 2| < 3; D = {Reals} mZQSR = 180 — 50 = 130°
Xe 2 SS Scand tested 3 td
x>-S5and x<1 seen obra
pH = -log 0.053
—=}+—_o—__+_—_+——_o—
6-5 -4-3-2-1 0 1 2 pH = 1.28
11. Multiply both sides by (m + 3)" 107 teen eH
(m + 3)(m — 3) < 20m + 3) Ht = 1977.24 x10
m2 — 9 < 2m? + 12m + 18 vie
m-
2 + 12m + 27 => 0 Ht = 1.00 liter
(m + 9)\(m + 3) = 0
(ob) (2) = 37 = 2 I —
z —2
(2, 3, -2)
26.
l
~x + 1 ee
@) ri 3
(a’) 3x + 2y = 30
(b’) “4x — 2y
1 il InN]oe\)|nN
Ny
x=4
(4, 9)
27. (a) Sx + y 7
6 D (b) 2x -z = -1
(c)y+z=5
(b) + (c): 2x + y
ees
C —l(d) + (a): 3x I ee)
soa |
D= 6sm67° = 5.52
C =.6c0s 67°, = 2.34 (a) SQ) + y = 7
-3.86R — 1.04U
2.34R + 5.52U (c) (2) + re S
-1.52R + 4.48U
3
29. 3° — 4x" 2 - Tx rY
= 0 ; PROBLEM SET 122
x(3x* - 4x — 7) = 0
x(3x? + 3x —- 7x —- 7) =0 1, (@) 3Ny + 1OND = 255
x(3a(x + 1) = 7 + 1)) = 0 (b) Ny = Np + 25
x(3x — 7)(x.+.1) = 0
( I ) Substitute (b) into (a) and get:
eS 8x = = 0 tes ()
4 * (a’) 5(Np + 25) + 10Np = 455
same: x =-1 ISNp = 330 |
; 7 ; Np = 22 dimes
Variation method:
M = kA(Vy*
400 = k(2)(2)*
b MAX a ae
: 2
The points that are members of both M and X 1600 = (50)( a\(3]
A = 128 apes
3. T = tens digit
U = units digit
(b) 4U = T + 30
T = 4U — 30
U=8
(b) T = 4(8) — 30 = 2
Original number = 28
ye 2) and 5 Se il
Substitute (a) into (b) and get:
(b’) 2(My + 4) + 20 = My + 34 There are no real numbers that satisfy the second
conjunction, so the solution must be 1 < x < 2.
2My + 28 = My + 34
Mn = 6
OF 1 23 4
(a) Yy = (6) + 4 = 10
11. (m — 3)(m + 3) < 1(m
— 3)
Now + 10 YEARS m —9 < m* —- 6m +9
Petunia: Pn Py 10 -18
< -6m
Daisy: Dy Dy + 10 3>m
A, = Age“ OP Ries
2a a4
1,500,000 = 1000 ek)
1500 = e 13. |x + 3| < 4; D = {Integers}
2.44 =k x +3 2-4 andx+3<4
7T6Ts
[4]=840 -8 -7 -6 -5 -4 -3 -2 -1 0 12
102-7!
729 14. cts = 102-71 + 7.15 = 794 1016
M
log M log N 16. (10!4-%) (19-19-52) = 10!4-66 - 19.52
19, H = -lo Ht
| s P8 -34+i
ie3-
techV- 242i
aan ESAS) BOP BORE Tophrey
Se
ae Tas] Ate
OL eG
;
20. ne=e 10-PH
Ht
H* = 1074-02
28. 22-
4v 5 : 1+-72
a
A)
5
16
op:ai cs
5 mole
H* t = 9.55 x 10 re
trie Bas -:
(srg
(2 ++ |< 100a+100
x 5 100) The points that are members of f either
eitherZZ or
or S
S or
fs both
1 79
x+—| = -—
10 100
XY tes = =
1 179
10 10
oer),
= -—— t ——i
10 10
Dy
a Dw
RyTy = RyTw; Ry = 16:
Ry = 10; Ty + Ty = 13
16(Ty) = 10(13 — Ty)
The locus is a pair of concentric circles, one with a
radius of 5 cm, the other with a radius of 11 cm.
26T = 130
(Both circles are also concentric with the given Ty = 5
12. P ev R=, 7,13} 21. Region C (This region includes all points on or
below the line and inside the circle.)
13. AV B= {1,3, 8 753,10}
22. logy (x + 2) + logz3 = log, 15
14. PU K = {2,3,5,7, 8, 9, 10, 11, 13, 15} log, 3(x + 2) = logy 15
Tee te Lh)
2 Se 23) 3x
+ 6 = 15
Oe ee) eee | bye ea)
x7 —-x<0 x=3
xx-1)<0
23. In@ = 9) + In2 = 1n45
x = 1 cannot be a solution, because division by In 2(x -— 9) = In 45
zero is not defined.
2x — 18 = 45
(NEG)(Pos) < 0
2K = 63
kes Ocandex >) |
63
(Pos)(NEG) < 0 ee 5
ee cand 9. < a1
24 A/S S yn
There are no real numbers that satisfy the first 4/5 ys
conjunction, so the solution must be 0 < x < 1.
yes = 44/55
0-9 4/5. 4/5, .8/5
T'psa te 2 ealeie Bd ete ae
x85 _ 2,45 y4/5 8/5
16. (m — 1)(m + 1) < 1(@m — 1°
Me TS” 2 PM 25. am?! - py = at = yy oe
pre ne = (am? — p*y'?)(a’m'® + am?p?y"? + py)
12m 26. 1000N = 1.2352 352 352 ...
m = 1 cannot be a solution, because division by Ne= 0001293525852 P.:
zero is not defined. Thus, the solutionis 1 > m. 999N = 1.234
2 eee aes 1234
reap OTT 999,000
Lig. |x == 3| = 33 Dv= {Reals} Die y= x2 aie Be Yl
yr yey 4 5
From this we see:
18. pH = -log H* (a) Opens downward
pH = -log 1.42 x 1071!
(b) Axis of symmetry is x = 2
pH ~ 10.85
(c) y-coordinate of vertex is 3
19. Ht = 10H
Ht = 1072-27
20. A, = Age“
480 = 240eM1
= =)N \o U =
n ='/3(7) = 73
8. See Lesson 123.
(b) Since this is a 45°-45°-90° triangle,
1 x SF =3 1Gm
9. (m =:3)¢n +1320 +23)
SF =3 m= —9 > m= — 6m + 9
18 > -6m
aA > Fe
c = ¥2(3) = 3V2
3<m
d = 1(3)
=3
m = 3 cannot be a solution, because division by
zero is not defined. Thus, the solution is 3 < m.
PRACTICE SET 124
Pe PBL as
a. The conditions of congruence are SSS, AAAS,
SAS, and HL. 10. Minor seine B)
2
b. Since ZE = ZH, AEDH is isoceles. SS ee ee
Dee Wak ses
ED = HD Definition of isoceles triangle . ar
2x(x - 1) < 0
AEDF =Rt AHDG SAS
x = 1 cannot be a solution, because division by
D
zero is not defined.
(NEG)(Pos) < 0
x-s 0 and x.>"1
fe iF G H (Pos)(NEG) < 0
x 20 and x < 1
Man: Mn My + 12
Son: Sn Sy + 12 PRACTICE SET 125
(a) My = 11Sy
f ireie:@ 1. Given
(b) My + 12 = 3(Sy + 12)
2. ZOAP =,90° 2. Given
Substitute (a) into (b) and get:
(b’) (11Sy) + 12 = 3Sy + 36 3an2OBP) =u90° 3. Given
(a) My = 33 R
5. OP-=OP 5. Reflexive
7. APHESBP 7, GPCTC
18.
19. 3
8 ‘
3 (= = |
=-—+-|—_—--—
8 7\40 40
3 bE
8 140
los
280
, 146
280
_ 280
251
Algebra 2, Third Edition 361
Problem Set 125
ye ae ZAED = ZCDE
sae re eae 3. AABE = ACBE AAAS
CE = AE CPCTC
e« IOrko 1. Given
4. AOAM = AOBM _ SSS
25 PR IST 2. Given
as. 3 ZAMO = ZBMO_ CPCTC
3. S0 = TQ 3. All radii of circleQ ae ee
are congruent. OM 1 AB
4. RO = RO 4. Refiecve Two equal adjacent angles whose sum is 180° are
right angles.
5. ASRQ = ATRQ S-Ni ;.4) 2. oe te
> 5. Begin by drawing OA, OB, and OP.
6. SR = T. 6. CPETC
AOAP = AOBP HL
7. ZSRQ = ZTRQ Tt CPCTC ee ee
Ratios AP = BP CPCTC
8. RP = RP 8. Reflexive
6. See L :
9. ASRP = ATRP 9. SAS (6,7, 8) Semin £3
10. ZS = ZT t0Y CPQTC 7. See Lesson 123.
S S228 8. See Lesson 123.
T Aq = 1150e°8C) ~ $2773
12.
20. 1O00N = 31.54 154 154 ...
Sx = 3 In 0.0035
N= 0.03 154 154...
x=-_—_—_—_
3 In 0.0035 999N = 31.51
5 _ 3151
x = —3.39 99,900
13. Inx =
Ss
———
PROBLEM SET 126
3
ABCE = ADCE SAS
x =~ 0.18
BE = ED CPCTC
14. |x — 5| < 3; D = {Integers}
Draw radii OX and OW.
y—-)
> — 5 and x — 5 < 3
AOXY = AOWY SSS
Fae ee STvo | Xs
ZALL = ZW CPCTC
253 4-5: Geer 8 ZAC eee WY AA — = AAA
5. x? — 6x + 9 > 0; D = {Reals} OY 1 Wx
(x — 3)@ — 3)> 0 Two equal adjacent angles whose sum is 180° are
right angles.
(Pos)(Pos) > 0
sc SS Draw radii AP, BP, CP, and DP.
(NEG)(NEG) > 0 AAXP = ABXP = ADYP = ACYP HL
Sere 1)
AX = BX = CY = DY CPCTC
Thus, the solution is 3 < x < 3.
AAPB = ACPD SSS
1 25s eS AB = CD CPCTC
3(a’) —— (b’): Bn = 30
See Lesson 123.
By = 36
17, =40
Ppp 22221221212] See Lesson 123.
(a) T+ U= 14
x = 0.29
T=14-U
(NEG)(NEG) = 0
p=2.<
0 andp-6<sra oS
364
Algebra 2, Third Edition
Problem Set 127
Therefore, EZ XY
AABE = AACE HL
BE’2CE CPCTC
Definition of bisector
AE bisects BC Definition of bisector
Reflexive
See Lesson 123.
All right angles are congruent.
See Lesson 123.
SAS
See Lesson 123.
CPCIC
cs & Reflexive
See Lesson 123.
12. pH = -log Ht
pH = —log 0.081
pH = 1,09
13. Ht = 10 PH
Ht = 190711
6 mole
PROBLEM SET 127 Ht = 7.76 x 107 —-
liter
1; AAPB 2 ACFE Given
14. 91 = 10*+2
AB
= CB CPCIC 10!-96 = 10*%* 2
[9Gr= x 2
2." KABAPLSTACAP HL -0.04 Xx
AB
= CB CPGTE e720.49
= eo 20-49 — 13.16
15. els. 16
Thus, A is equidistant from B and C.
ie 22.43 X05
There are no real numbers that satisfy the first m(5cm)? — 25/3 cm
2
conjunction, so the solution must be
Wey
-9 <p < -3.
[25x= 24) cm?
a BD ale CA 2. Given
ZAXD = ZBYC_CPCTC a
Therefore, by definition, AOXY is isosceles.
=
B
4. AD = BC 4. From 1
367
Algebra 2, Third Edition
Practice Set 129
2/x em =r ae Dilan a2
(2 x SF = 10 VF = ;
SF = 5/2
A = 1(5V2) = 5V2 Mx>=7
B = 1(5V2) = 5V2 14
M= =
17. Since this is a 30°-60°-90° triangle,
Pas 3 9
Nes 3x >
—-= —5
il 3x a
i a 5
SHie=m)
20. = 40 al 9 3h OL Oe)
Range: 99 -— 47 = 52
20
eee ise ee ed he ae)
8
Mean = 6.5
22.. 60) 4,6) t= 15 7
Gy Aaa Medians 2° as
2
6y=)43
. 1B Mode = 5
’ 2 15 - e
Ra=ng 2 = 13
Ag Loe
2 A es cm)? = ou cm?
360 9
8 = 2x 10.
AEX,
2x SF = 7
p = (4+ 1) + (4 + 2) + B® —- 6] = 17cm
5. NO+ 20 _ ¢
4
4x = 5(3)
x=
15
—
4
l 1 ue
11. Atrapezoid = Pie 7 5 ONS) = 9 units
a 10 0
a
Acie = ar = 9 units”
4 SF = 11 r=
1 :
units
ripe
ead
12. See Lesson 123.
eens ake
4 13. See Lesson 123.
36
x= — 14. See Lesson 123.
i|
2-101 2
A Xx C y=xt—- 2-2
y = (x? eee hd) x24.
16. LSA
= 2zrh
y= (x- 1-3
6n2 cm? = 2n(3 cm)h From this we see:
mem =h (a) Opens upward
(b) Axis of symmetry is x = 1.
a7. mr? = 25n7 cm
ip = 5x cm
d = 2r = 10/xcm
18. PQ
= RS
Dyecke
Bis (oye ==
Gy=s4x%
3
— = xX
2D
PeaeePORS == 20 (2 5 4 el ty hilelela
Ppors
= 28
19. 2x + 40 = 90
ye OS
PaBcp = 4(25 = i) = 40
20. A, = Fe"
> a |= 1400e9°°) = $2195.64
21. A; = Ape?
400 = 50e3*
0.69 = k
Ajy = 50e°°2) ~ 197,209 bugs