Triangle Solution Formulas
Triangle Solution Formulas
TRIANGLE
                                                    MARKS                                          3
SOLUTIONS OF TRIANGLE
1. I nt r oduct ion
     There are 6 elements in a ABC, the three sides BC = a, CA = b, AB = c and the three angles
     A, B, C.
     A + B + C =  = 180Ĉ
                                            1
     1.    Area of the triangle () =         (Base) (height)
                                            2                                          A
                                                              A
           The area of a triangle ABC = a.c. sin B = b.c. sin   = a.b. sin C
                                                 2            2            2
                          a     b     c
                                  
                        sin A sin B sin C
                            b2  c2  a 2
                  cos A 
                                2bc
                            a2  c2  b2
                  cos B 
                                2 ac
                            a2  b2  c2
                  cosC 
                                2ab
                                            SOLUTION OF A TRIANGLE
4                                                      MARKS
    4.   Projec tion formula :
         a = b cos C + c cos B
         b = c cos A + a cos C
         c = a cos B + b cos A
    5.   Semi-Perimeter of  ABC (s) :
               a  b c
         s
                  2
               2s = a + b + c
                2s ă 2a = b + c ă a
                2s ă 2b = c + a ă b
                2s ă 2c = a + b ă c
    6.   Ha lf a ngle fo rmu la e :
               A      (s  b)(s  c)
         sin     
               2            bc
               A      s(s  a)
         cos     
               2         bc
               A   ( s  b)( s  c) ( s  b)( s  c)
         tan                      
               2       s(s  a)            
               A          s( s  a)      s( s  a)
         cot                          
               2      ( s  b)( s  c)       
         Tip : for sine formula, in numerator the other sides are taken and the side opposite to the
               angle is not in the formula.
               a bc
         
               4R
                                       B      B     B     B     C     C     C      C
         The expression for sin          , cos , tan , cot , sin , cos , tan , cot   can be derived using
                                       2      2     2     2     2     2     2      2
         symmetry.
                                              SOLUTION OF A TRIANGLE
                                                       MARKS                                              5
7. Find the value of sin A, using sin A/2 & cos A/2
                      2                           2
            sin A =      s(s  a)(s  b)(s  c) 
                      bc                          bc
8. Napier Analogy :
                  B C b c      A
            tan             cot
                    2   b c     2
     (i)    Circum-circle
            The circle passing through the vertices of the triangle ABC is called the circum-circle. Its
            radius R is called the circum-radius. In the triangle ABC,                        A
                    a      b      c
            R                
                  2sin A 2sin B 2sin C                                                           O
                                                                                            R
               abc
            R                                                                      B                 C
               4
     (ii)   In-circle
            The circle touching the three sides of the triangle internally is called the inscribed or the in-
            circle of the triangle. Its radius r is called the in-radius of the circle. In the triangle ABC,
                                                                                                A
            r
                  s
                              A               B              C
            r  (s  a) tan      ( s  b) tan  (s  c) tan                                 O
                              2               2              2
                                                                                                r
                          A    B    C                                          B                     C
            r  4R sin      sin sin
                          2    2    2
                        B     C         A   C         A   B
                  a sin   sin     b sin sin     c sin sin
            r          2     2        2   2        2   2
                          A               B             C
                      cos             cos           cos
                          2               2             2
                                               A     B     C                        1
            Remark : From r = 4R sin             sin   sin   , we find that r  4R.
                                               2     2     2                        8
                                   2r  R. Here equality holds for the equilateral triangle.
                                             SOLUTION OF A TRIANGLE
 6                                                    MARKS
     (iii) Escribed circles
          The circle touching BC and the two sides AB and AC produced of ABC externally is called
          the escribed circle opposite A. Its radius is denoted by r1. Similarly r2 and r3 denote the radii
          of the escribed circles opposite angles B and C respectively.
          r 1, r 2, r 3 are called the ex-radii of ABC. Here
                            A        A   B   C
          r1          s tan  4R sin cos cos ,                                                       B
                 s a        2        2   2   2
                                                                                                           r1   O1
                           B        B   C   A
          r2         s tan  4R sin cos cos ,
                 sb        2        2   2   2
                                                                              A
                                                                                                       C
                          C        C   A   B
          r3        s tan  4R sin cos cos ,
               s c        2        2   2   2
r 1r 2 + r2r 3 + r 3r 1 = 4R + r,
                                      r1r2r3
          r1r2  r2r3  r3r1  s2 
                                         r
4. m – n T heor em
     If a point D divides the side BC of ABC internally in the ratio m : n and BAD = , DAC =
      and ADC =  then                                 A
      (m + n) cot  = m cot  ă n cot                                   
                       = n cot B ă m cot C
                                                                                  
                                                  B           m       :       D       n    C
The result can be derived using sine rule in ABD and ADC.
Illustration 1
                                                                              A           3 cm             D         B
                                                                                                 5 cm
                                               SOLUTION OF A TRIANGLE
                                                     MARKS                                         7
Solution :
     Using m ă n theorem,
           (3 + 2) cot CDA = 2 cot 30Ĉ ă 3 cot 60Ĉ
                              3
          cot CDA =
                             5
                 AC       AD
                     
             sin CDA sin ACD
                       3     5    3
            AC           .   5   cm
                    sin 60 28    7
                                              SOLUTION OF A TRIANGLE
  8                                                     MARKS
                DH = c sin B ă 2R cos A
       BOC = 2A
                                                                                                O
       COM = A                                                                                     R
       OM = R cos A                                                                     B       M       C
       The distances of circumcentre from sides BC, CA & AB are :
       RcosA, RcosB and RcosC respectively.
I mp or t an t T heor em
       The centroid (G), circumcentre (O) & orthocentre (H) in any triangle are collinear. The
       centroid divides the line joining orthocentre and circumcentre in 2 : 1 internally.
                 OG 1                                                               2
       i.e.                                                                                        1
                 GH 2
                                                                           H                G           O
       or               1
                 OG =     OH
                        3
                        2
       &         HG =     OH
                        3
                                                                          F                
                        1
                 BE =       c 2  a 2 2a cos B
                        2
                        1
                 CF =       a2  b2 2ab cosC                      B             D               C
                        2
                                                 SOLUTION OF A TRIANGLE
                                                        MARKS                      9
                    1      R
             OG =     OH =   1  8 cosA cosB cosC
                    3      3
     Distance between circumcentre (O) & incentre (I) / excentre
                                 A    B    C
             OI = R 1  8sin       sin sin
                                 2    2    2
                                  A    B    C
             OI1 = R 1  8sin       cos cos
                                  2    2    2
                                  A    B    C
             OI2 = R 1  8 cos      sin cos
                                  2    2    2
                                  A    B    C
             OI3 = R 1  8cos       cos sin
                                  2    2    2                              A
     Length of angle bisector
                    2 bc     A
             AD =        cos
                    b +c     2
                                                                       B       C
                                                                           D
 Illustration 2
                               A         BC
Prove that : ( b  c ) sin        a cos
                               2          2
Solution :
     Since b = 2R sin B and c = 2R sin C
                          A                         A
             (b  c)sin      2R (sin B + sinC) sin
                          2                         2
                                       B+C      B C      A
                            = 4R sin       .cos      .sin
                                        2         2       2
                                       A      A     B C
                            = 2R  2cos 2 .sin 2  cos 2
                                                
                                             BC         BC
                            = 2R sin A cos        a cos
                                              2           2
                                              SOLUTION OF A TRIANGLE
10                                              MARKS
Illustration 3
Illustration 4
Solution :
     b c c a a  b b cc a a b a b c                             A C A+C
                                         (By ratio proportional i.e.  = =    )
      11   12   13      11  12  13   18                                B D B+D
     b c a c a b ab c
          ,     ,    , then
      11  7 12   6 13  5
           a b c
     Let       k (say)
           7 6 5
               b2  c2  a2      (62  52  72 ) 1  7
     cos A =                 k2    2
                                                 
                   2 bc            k 2(6) (5)    5 35
             c 2  a 2  b2 k2 (52  72  62 ) 19
     cos B =                                 
                   2ca          k2 2 (5) (7)    35
             a 2  b 2  c 2 k 2 (7 2  6 2  5 2) 5 25
     cos C =                                      
                   2              k 2 2(7) (6)     7 35
                                        SOLUTION OF A TRIANGLE
                                                   MARKS                                    11
Illustration 5
Illustration 6
                                                           4
In a triangle ABC, a = 6, b = 3 and cos (A ă B) =            . Find the angle C.
                                                           5
Solution :
                    A B a b      C
     Since, tan               cot
                      2   a b     2
              1  cos(A  B)    ab      C
                                   cot
              1  cos A  B   a b     2
                 4
              1
                 5  6  3 cotC
                4 6 3       2
              1
                 5
                   C      C
            cot      1   45  C  90
                   2      2
Illustration 7
                                A       B       C
If in a triangle ABC, tan         , tan   , tan   , are in harmonic progression, then show that
                                2       2       2
the sides a , b , c are in arithmetic progression.
Solution :
           A       B      C
     tan     , tan   , tan are in H.P.
           2       2      2
                   A       B       C
          cot       , cot   , cot   are in A.P.
                   2       2       2
                                          SOLUTION OF A TRIANGLE
12                                                        MARKS
                          B      A      C
                  2cot      cot  cot
                          2      2      2
                           s( s  b)          s( s  a)          s( s  c)
                  2                                      
                       ( s  a)( s  c)   ( s  b)( s  c)   ( s  a)( s  b)
                 2 (s ă b) = (s ă a ) + (s ă c)
                 2b = a + c
                 a, b, c are in A.P.
     We have studied that a triangle has six parts or six elements viz three sides and three angles.
     From geometry, we know that when any three elements are given of which necessarily a side is
     given, the triangle is completely determined i.e., remaining three elements can be determined. The
     process of determining the unknown elements knowing the known elements is known as the
     solution of a triangle. In practice, there are four different cases for which the solution is discussed
     as under.
                 A   ( s  b)( s  c)
           tan     
                 2       s( s  a )
                 A      (s  b)(s  c)
           sin     
                 2            bc
                 A      s(s  a)
           cos     
                 2         bc
                                           b2  c2  a2
     or   by cos formulas, cos A 
                                               2bc
                                               SOLUTION OF A TRIANGLE
                                                       MARKS                              13
Illustration 8
The sides of a triangle are 20, 30 and 21. Find the greatest angle.
Solution :
    The grea test a ngle is opposite to the side whose length is 30.
    Let a = 20, b = 30, c = 21
    We have to find angle B.
                   B     (s  a )(s  c )            a  b c 
             sin                          where s           
                   2           ca                       2     
                         (15.5  14.5)
                    =                  =   5351
                           20  21
= 0.7315
                   B
             sin      0.7315
                   2
             B
                47 (Approximately)
             2
            B = 94Ĉ
    Case 2 : When two sides and the angle included between these are given.
Illustration 9
           BC bc       A
     tan            cot
            2   b c     2
                   B  C 251  147
            tan                   cot 23  30´
                     2    251  147
                             26
                         =      tan 66 30´ = 0.268 ï 2.2998       {we have used these]
                             97
                                              SOLUTION OF A TRIANGLE
14                                                MARKS
                          B C
                   tan         0.6164
                            2
                    B C
                         31  39´ (From the trignometric tables)
                      2
                   B ă C = 63Ĉ 18´
     But B + C = 133Ĉ                         (180Ĉ ă A = B + C)
     Adding 2B = 196Ĉ 18´
                   B = 98Ĉ 9´
                   C = 34Ĉ 51´
                 a sin B
            b
                  sin A
Illustration 1 0
          a sin B
     b
           sin A
                                          SOLUTION OF A TRIANGLE
                                                   MARKS                                         15
Ambiguous Case
Case 4 : Given two sides and the angle opposite to one of the sides
    Given the elements b, c and B of a triangle. This case is called Ambiguous case.
    Draw the specified side AB (= c) and make the angle B (= ABD) as given. Now to make the
    triangle mark an arc of radius equal to b with centre at point A. This arc may intersect or touch
    or neither intersect nor touch the line BD. Accordingly we have the following results :
B D
    Ć    Ib b = c sin B and B is acute, there is one right angled triangle and right angle at C.
                                                   A
c b
                                B                                           D
                                                           C
    Ć    If b > c sin B and b < c and B is acute, there are two triangles satisfying the given
         conditions.                       A
                                           c                   b
                                                       b
                                    B                                           D
                                                   C2                  C1
                                        SOLUTION OF A TRIANGLE
16                                                       MARKS
     Ć       If b > c, there is only one triangle.
c b
                                         B                              D
                                                                 C
Illustration 1 1
Solution :
     Two sides and included angle is given (case ă 2)
           BA ba       C
     tan            cot
            2   b a     2
                       3 1  2
                  =                   cot30
                       3 1  2
                       3 1
                  =               3
                       3 3
                       3 1        tan60   tan 45 
                  =           
                       3 1       1  tan60  tan 45 
                    BA
                        15 
                     2
                                               SOLUTION OF A TRIANGLE
                                                       MARKS                                            17
     or    B ă A = 30Ĉ                                                 ...(i)
     We know, A + B + C = 180Ĉ     A + B = 120Ĉ                    ...(ii)
     Solving (i) and (ii), we get B = 75Ĉ & A = 45Ĉ
     To find side c, we use sine Rule
               a       c                 2 3
                           or c    2           6
             sin A sin 60               1 2
Illustration 1 2
If A = 30Ĉ, a = 100, c  100 2 , find the number of triangles that can be formed.
Solution :
     Here a , c and A are given, therefore we will have to examine whether two triangles are possible
     or not. For two triangles
     (i)   a > c sin A and            (ii)     a < c
 Illustration 1 3
In the ambiguous case, if the remaining angles of the triangle formed with a , b and A be
                                       sin C1 sin C2
B1 , C1 and B2 , C2, then prove that : sin B  sin B  2cos A
                                            1       2
Solution :
                          b sin A
     sin B 1 ă sin B2 =           (using sine rule)
                             a
               c1 sin A              c2 sin A
     sinC1             and sin C2 
                   a                     a
                    c1 sin A   c2 sin A
                        a         a                                       c1  c2   2b cos A
          L.H.S. = b sin A    b sin A                        L.H.S. =                       2cosA
                                                                              b         b
                        a          a
                                             SOLUTION OF A TRIANGLE
 18                                                      MARKS
 Illustration 1 4
In a  ABC; a , c , A are given and b1 = 2b 2, where b 1 and b2 are two values of the third side :
Solution :
      a2 + b2 + c2 ă 2bc cos A
      Consider this equation as a quadratic in b.
            b2 ă (2c cos A)b + c 2 ă a2 = 0
           b1 + b2 = 2c cos A
      &     b1 b 2 = c2 ă a 2
      &     b1 = 2b 2
           3b1 = 2c cos A and 2b 12 = c 2 ă a 2
                        2
               2c cosA  2   2
            2          c a 0
                   3   
           8c2 cos 2 A = 9c 2 ă 9a 2
           8c2 (1 ă sin2 A) = 9c2 ă 9a2
           9a2 = c2 + 8c2 sin 2 A
 3 a  c 1  8sin2 A
Illustration 1 5
                                                    
      (r1 + r2) + (r 3 ă r) =  s  a  s  b          
                                                  s c s
                             2s  a  b      s  (s  c) 
                        =   s  a s b     s s c 
                            (     )(   )      (      ) 
                               c        c    
                        = s a s b  ss c 
                           (  )(  ) (   ) 
                                     c
                        = s( s  a)( s  b)( s  c)  s( s  c)  (s  a)( s  b)
                                              SOLUTION OF A TRIANGLE
                                                                                    MARKS                    19
Alternatively :
                                                       A     B     C          B     C     A
               r 1 + r2 = 4R sin                         cos   cos   + 4R sin   cos   cos
                                                       2     2     2          2     2     2
                                                 C         A     B       A     B
                          = 4R cos                     sin 2 cos 2  cos 2 sin 2 
                                                 2                               
                                                 C     A +B           C
                          = 4R cos                 sin       4R cos2
                                                 2      2             2
                                                     A     B     C          A     B     C
               r 3 ă r = 4R cos                        cos   sin   ă 4R sin   sin   sin
                                                     2     2     2          2     2     2
                                                 C         A     B       A     B
                          = 4R sin                     cos 2 cos 2  sin 2 sin 2 
                                                 2                               
                                                 C     A + B             C
                          = 4R sin                 cos         4R sin 2
                                                 2      2                2
                                           2 C       C
              r 1 + r2 + r 3 ă r = 4R  cos     sin2   4R
                                             2       2
Illustration 1 6
                         1         1             1         1        a 2  b2  c 2
Prove that :                                                 
                         r12       r22           r32       r2               2
Solution :
      1
     r12
           
                1
               r22
                     
                          1
                         r32
                               
                                   r
                                       1
                                       2
                                           
                                                 1
                                                  2   ( s  a)    2
                                                                         ( s  b) 2  ( s  c) 2  s2   
                          =
                               1
                               2
                                       4 s  2
                                                   2 s( a  b  c)  a2  b2  c2            
                          =
                               1
                                  2   4s   2
                                                  2s(2s)  a 2  b2  c 2            
                               a2  b2  c2
                          =
                                           2
                                                                         SOLUTION OF A TRIANGLE
20                                                MARKS
Illustration 1 7
                                                                   p
                                                         F                     E
                                                                       H
                                                        q                  r
     From figure,
           HBD = EBC = 90Ĉ ă C
                                              B                                    C
                                                                D
           HCD = FCB = 90Ĉ ă B
          BHC = 180Ĉ ă (HBD + HCD)
                     = 180Ĉ ă [90Ĉ ă C + 90Ĉ ă B]
                     = B + C = 180Ĉ ă A
     Similarly, AHC = 180Ĉ ă B and AHB = 180Ĉ ă C
     Now, Area of BHC + Area of CHA + Area of AHB
                     = Area of ABC
             1                1               1
              .q.r .sin BHC + .r. p.sin CHA + . p.q.sin AHB = 
             2                2               2
               1
                  bc.sin A
                  2
             1                    1                  1
              qr .sin(180  A) + rp sin(180  B)  pq sin (180  C)  
             2                    2                  2
             1            1          1
              qr .sin A + rp sin B + pq .sin C = 
             2            2          2
             1      a  1     b  1     c
              qr .    pr .    pq .   
             2     2R 2     2R 2     2R
                                           abc                 abc 
          aqr + brp + cpq = 4R.  = 4.        .   abc   
                                           4                  4R 
                                          SOLUTION OF A TRIANGLE
                                                      MARKS                               21
Illustration 1 8
If the bisector of the angle C of a triangle ABC cuts AB in D and the circum-circle in E,
prove that CE : DE = (a + b) 2 : c 2.
Solution :
          AD is internal bisector of C.
             AD b
              
             DB a
                                                                              C
             AD + DB a  b
    or,             
               DB      a
                                                                            C/2 C/2
                     ac
     or,     BD =            {remember this result}
                    ab
                                                                                D
     Since angles of the same segment are equal.                    A                 B
                                   C
          ABE = ACE =
                                   2                                          E
     and BEC = BAC = A
     applying sine rule in triangle BEC,
                                                           C
                                                 a sin  B + 
                 CE
                     
                          BC
                                CE =                      2   ...(i)
             sin CBE sin BEC                       sin A
                                         C
                                  acsin  
              DE
                   
                     BD
                          DE =          2
                 C sin A        (a  b)sin A                     ...(ii)
             sin
                 2
                               C
                    a sin  B + 
             CE
                               2
                                    ( a  b)
             DE               C
                       ac sin
                               2
                                  C
                  ( a  b)sin  B + 
             CE
                                 2
    or,      DE                C                                 ...(iii)
                          csin
                                2
                                               SOLUTION OF A TRIANGLE
22                                                     MARKS
                  C        C    C
          sin B +  sin B + 2cos
                  2
                            2    2
     Now,        C           C    C
             sin        2sin .cos
                 2           2    2
                       sin  B + C  sin B
                  =
                              sin C
                       sin A +sin B a  b
                  =                                            ...(iv)
                           sin C      c
                                    2
             CE a  b a  b (a  b)
                    .     
             DE   c     c      c2
Illustration 1 9
                                           A       B       C
                                              cot  cot
                                                      cot
                                      (a  b  c) 2
                                           2       2       2
Prove that : in any  ABC 2    2   2
                                     
                          a  b  c    cot A + cot B + cot C
Solution :
               cos A 2 bccos A b2  c 2  a 2
     cot A =                  
               sin A 2 bcsin A     4
                            b2  c2  a2   a2  b2  c2
             cot a           4
                                         
                                                4
                             A
                       2cos2
         1  cos A           2  cot A
                   
     Also sin A          A     A     2
                     2sin cos
                          2    2
             2 bc(1  cos A)       A
                              cot
                2bc sin A          2
                          =
                                2bc   (b2         c2  a2 )
                                               4
                      A
              cot 2           (a  b  c )2
                          
              cot A           a2  b2  c2
Illustration 20
If p 1 , p 2, p3 are the length of the altitudes of a triangle ABC, prove that p 1 ă2 + p 2ă2 + p 3ă 2
Solution :
        1           1   a
          ap1      
        2           p1 2 
                1         a 2  b 2  c2
             p2     
                                   4 2
                 1
                           1                 cos A 
                     =
                          2   2    abc      a 
                          abc             cos A      
                     =
                          2   2     2R sin A 
                           cot A  abc 
                     =                     R 
                                          4 
                     =
                           cotA          since abc = 4R.
                               
                                                          SOLUTION OF A TRIANGLE
 24                                                        MARKS
Illustration 21
If a 2 , b 2, c 2 are in A.P., prove that cot A, cot B and cot C are also in A.P.
Solution :
      b2 ă a2 = c2 ă b2
      sin 2 B ă sin2 A = sin2 C ă sin2 B
      or   sin (B + A) sin (B ă A) = sin (C + B) sin (C ă B)
      or   sin C (sin B cosA ă cos B sin A) = sin A (sin C cos B ă cos C sin B)
      Divide each term by sin A sin B sin C
          cot A ă cot B = cot B ă cot C
          cot A, cot B, cot C are in A.P.
Illustration 20
Prove that
(b + c ă a ) {cot (B/2) + cot (C/2)} = 2a cot (A/2).
Solution :
                             B+C
                           sin
      L.H.S. = 2(s  a )      2
                            B    C
                         sin sin
                            2    2
 Illustration 23
                      1       1       1
Prove : 2a bc cos       A cos   B cos   C = (a + b + c)S.
                      2       2       2
Solution :
                  1       1      1
      2 abc cos     A cos   B cos C
                  2       2      2
                        s( s  a)   s( s  b)   s( s  c) 
           = 2abc                 .           .           
                            bc   ca   ab 
= 2 s s( s  a) ( s  b) ( s  c)  ( a  b  c)S
                                              SOLUTION OF A TRIANGLE
                                                                 MARKS                                25
Illustration 24
              1                1                1
           tan   A        tan B            tan C
               2                2                2        1
Prove                                                 
      (a  b )(a  c ) (b  c )(b  a ) (c  a )(c  b ) S
Solution :
                1     (s  b) (s  c ) 
     Putting tan A   s s a             etc.,
                2         (  ) 
we have, L.H.S.
                    ( s  b) ( s  c)     ( s  c) ( s  a)    ( s  a) ( s  b)  
                                                                                 
                    s( s  a)             s ( s  b)                s( s  c)  
                                                                 
           =      ( a  b) ( a  c)       ( c  a) ( b  a)       ( c  a) ( c  b) 
                                                                                         
                                                                                        
                                                                                        
               (c  b ) (s  b ) (s  c )  (a  c ) (s  c ) (s  a )  (b  a ) (s  a ) (s  b )
           =
                           ( a  b) ( b  c) ( c  a)     [ s ( s  a) ( s  b) ( s  c)
     Nr   = ă  {(b ă c) {s2 ă s (b + c) + bc}
          = ă s2  (b ă c) + s (b2 ă c 2 ) ă bc (b ă c)
          = 0 + 0 + (b ă c) (c ă a) (a ă b)
     Note that on simpliication,
     bc ( b ă c ) + ca (c ă a) + ab (a ă b) = ă (b ă c) (c ă a) (a ă b)]
     Substituting in (1), we get
                          Nr                    1                        1
           L.H.S. =         r
                                                                    
                          D         [ s( s  a) ( s  b) ( s  c)]       S
Illustration 25
                                                                                                      A
Given S = a 2 ă (b ă c )2 in a triangle ABC whose area is S, then find the value of tan
                                                                                                      2
Solution :
          1
     S     bc sin A  ( a  b  c) (a  b  c)
          2
                   A    A 2(s  b).2(s  c )          A
     or      sin     cos                     4sin 2
                   2    2        bc                   2
                   A 1
            tan    
                   2 4
                                                    SOLUTION OF A TRIANGLE
 26                                                    MARKS
Illustration 26
          1 3
      =     k [sin2 A [sin 2B + sin 2C) + sin 2 B (sin 2C + sin 2A) + sin2 C (sin 2A + sin 2B)]
          2
      = k3 [sin 2 A sin B cos B + sin 2 A sin C cos C + sin 2 B sin C cos C + sin2 B sin A cos A +
                                                                        sin 2 C sin A cos A + sin2 C sin B cos B]
      = k3 [sin A sin B (sin A cos B + cos A sin B) + sin B sin C (sin B cos C + cos B sin C)
                                                                      + sin C sin A (sin C cos A + cos C sin A)]
          3
      = k [sin A sin B sin (A + B) + sin B sin C sin (B + C) + sin C sin A sin (C + A)]
      = k3 [sin A sin B sin C + sin B Sin C sin A + sin C sin A sin B]
      = 3k sin A.k sin B.k sin C = 3abc.
Illustration 27
                         1   5       1    20           1
In a triangle ABC, if tan A = and tan B =    , find tan C , and prove that in this triangle
                         2   6       2    37           2
a + b = 2b .
Solution :
                      C              A B       A B 
      We have tan        tan  90        cot  2  2 
                      2                2               
                       A    B      6 37
                      cotcot  1    .    1
                       2    2     5  20
                  =    B      A     37 6
                    cot  cot          
                       2      2     20 5
                  A      C     ( s  b) ( s  c)   ( s  a) ( s  b) 
      Again tan     . tan                       .                   
                  2      2      s (s  a )   s (s  c) 
                                            SOLUTION OF A TRIANGLE
                                                        MARKS                                          27
                      5 2 s b
      Hence            . 
                      6 5   s
                     3s ă 3b = s or 2s = 3b
      or              a + b + c = 3b or a + c = 2b
 Illustration 28
If p 1 , p2, p 3 are the altitudes of a triangle from the vertices A, B, C and  be the area of
                                1    1    1         2a b          C
triangle, prove that                                     cos 2
                                p1   p2   p3   ( a  b c 
                                                         )        2
Solution :
      Since p1 , p2, p 3 are perpendiculars from the vertices A, B, C to the opposite sides, we have
               1      1     1
               ap1  bp2  cp3
               2      2     2
            1   1   1   a     b     c
      Hence p  p  p          
             1   2   3  2   2    2 
                           a  b  c a  b  c  2c 2 s  2 c
                      =                           
                              2          2           2
                           s  c ab s (s  c )
                      =             .
                                 s    ab
                        ab    21         2ab          21
                      = s cos 2 C = (a + b + c)  cos 2 C
Illustration 29
If ,  ,  are the length s of the altitu des of a tr iangle ABC, prove tha t
                1      1    1
                   a   b  c                                        ...(1)
                2      2    2
                      1          1
               Also     absin C  bc sin A
                      2          2
                                                 SOLUTION OF A TRIANGLE
28                                                                       MARKS
                 1
           =       casin B                                                                   ...(2)
                 2
             1        1        1        a2         b2         c2         a2  b 2  c 2
                                                                                         ...(3)
             2       2       2       4 2       4 2       4 2           4 2
             1                           1 a 2  b2  c2
     And       (cot A + cot B + cot C) =
                                               4
                 a2  b2  c2
           =
                      4 2
Illustration 30
Let O be a point inside a triangle ABC such that  OAB = OBC=  OCA =  then show that
     (a)   cot  = cot A + cot B + cot C
     (b)   cosec2  = cosec2 A + cosec2 B + cosec2 C
Solution :
     OCB = C ă  and
                                                                                                                A
     BOC = 180Ĉ ă  ă (C ă ) = 180Ĉ ă C.
                                                                                                            
     Similarly AOB = 180Ĉ ă B
     Now from OAB, we have
                                                                                                            O
              OB         AB          c
                                                                                                                  
             sin  sin (180   B) sin B                                                                
                                                                                                 B                      C
                           c sin 
     so that OB                                                                      ...(1)
                           sin B
                OB             BC          a
                                       
             sin (C - ) sin (180   C) sin C
                      a sin (C   )
            OB                                                                      ...(2)
                          sin C
                                                          SOLUTION OF A TRIANGLE
                                                             MARKS                                                  29
Illustration 31
                                                             a                     b                      c
The sides of a triangle are such that                            2 2
                                                                              2       2
                                                                                           
                                                    1m n                  m n                (1  m )(1  n 2 )
                                                                                                      2
                                m
Prove that A = 2 tană1            , B = 2 tană1 (mn) and   mnbc
                                n                           m2  n2
Solution :
    From the given ratios we have
                   ab                     ab                             c
                   2        2
                                          2        2
                                                         
             (1  m ) (1  n )       (1  m ) (1  n )       (1  m ) (1  n2)
                                                                       2
             a  b 1  m 2 a  b 1  n2
                          ,    
               c    1  m2   c    1  n2
               a     b               a sin A
                                    
             sin A sin B             b sin B
                                        A B     A B
                                    sin      cos
             a b   sin A + sin B         2        2
                                
             a  b sin A ă sin B        A+B      A B
                                    cos      sin
                                          2        2
                                               SOLUTION OF A TRIANGLE
30                                                          MARKS
          a b       A B     A ă B
               tan      cot      
          a b        2        2 
or a + b = k si
              AB              A                   B
          cos            2 sin                              2
                2 1m ,                           2 1n
              A + B 1  m2     A                    B 1  n2
          cos              sin
                2                                  2
                A    B          A   B
          tan     tan  m2 , cot tan  n2
                2    2          2   2
                2A       m2              2B
         tan               2
                                 , tan         m 2n 2
                 2       n                2
                                 m
         A = 2 tană1              , B = 2 tană1 (mn)
                                 n
                1           1    2tan (A/2)
                bc sin A  bc.
                2           2 1 + tan 2 (A/2) etc.
SOLUTION OF A TRIANGLE