0% found this document useful (0 votes)
84 views41 pages

DIP Unit-2

Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content, claim it here.
Available Formats
Download as PDF or read online on Scribd
0% found this document useful (0 votes)
84 views41 pages

DIP Unit-2

Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content, claim it here.
Available Formats
Download as PDF or read online on Scribd
You are on page 1/ 41
= —) utenti (<‘éé‘ité‘ SC‘: IMAGE ENHANCEMENT Enhancement 1s a paccess in which we ane gelling belley vesulls were as cemparecl to the oniginal trade Tage Enhancement *~ Jr0ge lO ana This %$ @ process “in which we arc gelling, beer image tne weae 05 Cormpawed to the oviginal image. classification of Image Enhancernent - the image fnhancement i classified whe ‘em bypes. 1) spatial derrain Enhancement 1) Peg. dornain Enhancement _ spatial filleaing- whe spotial fillexingy elp 5 sepresented by geny) if dhe ip <9 | image intensify. value (2) 15 den” Then ye cosnesterding | ob image intensity» value (3) 5° baghe. txt Ube tip srrage intensily value ‘x 3s batght (v-D-then, ‘the coxsesponding? ofp tmmage intensity value (50715 dosk. These 4enage tnfosmation of «v) lyanstormation 75 used tn” Medical - field #In osder te analyse x-Ray image of " pacast Cancer tissue”. $$ wey ae Bienes cee eee eee ‘ " m4 [deal cox) identily Laanefowralion’- | Ih An Lyansforrnation there 16 0 charge I the rmage ds oP | mlensily value of input - | ae i 3Yy | | oh A | ; YN | L ott : th Ye 3 Let | —— Tnpul ty? ransformation cuwe Shoo | combining, the ideal % -ve iin above figure | #2, ~ ansherrabion’ A leq, bxanstoymation can | Fe cbycvn] > Conolant be expressed as where , $3 ofp image intensity value Yip n 1 Rby Considering 7 | C=) 19 constant ||# By Considevings. cz! X #0 * We get the covvesponding, op image indensilyy value -i-e> BY gubstitubing- the clef ferent values of fp image Intensity ex ty? in the above expression g& constant te’ value 19 4. Then jwe get | dfesent of Tnbensityr values. wonit-2y LAN ££ | 1 ip ienage tle | | ¥ Fore the Lt¢, we tn conclude thal the rano- ange of | th image intensity values one mapped into widex - vange cf blip image intensity, value. # he. opposite functon of dsansfeymation log-cusve 15 called | as " Invexse by fransfosmation cuave”. In this » wadex ange cf ip wrage imlensity, values are mapped into navyocw lk . \ yange of Gp tmage intensity value | 3)powex - - law byansformation cuzve .~ EN ar essed as, # the power - law lyansformation cuzve Can be ¢xpa = of “tmage indensilye value | . | whexe , | Ys tp | 6 Gnstant u n lain dg Constant velue c=! & by substituliny the 4/p image intensity value cn and ‘Kk’ values. we get ofp sntensilys value ts! | 12) = nth vot nth pocwea’ | image X71 , 06 ix foy ¢& x21 , then »we get | x= 0.04 i | X=a.l0 X= 0-20 X= 067 al Yebs Yrs x25 ¥=lo 1295 |B Pom the figure swe can conclude that ‘x value 15 less than 4 [ver]. Lransformation curves jrdlicates nih soot Plt sc, where ‘> values ave shown above | 1) 3Yy [X se-04 , 0:10 » 0-20 040 » 0-64] (®t these nth scot powex low taansformation in the nowace.: | vange of vp image inlensilys values ate mapped into wide | yange of ofp tmage imtensily, value.’ i* For 'y’ value is guectey than 4 [xl] Boy | swe get nth uo | Power jaw fxansformation cuxves by, substituting, diffexent | values of ‘for a pasticulay Wp tmage infensityr value | ane likewise for different values ef tip image imlensily, | values & for diflerent volues cf x are y=h5,2515,10% /*By observing, that nth ook power q.¢ .we can conclude | that wider vange of itp ‘tmage intensily values ane Mapped into raxvow vange of of image antensilys value. onik-2) 6/4) | HTL HS % M552 \ 0 11 ol Vert ty? : \ y' value 48 equal Lo 4 fx21]. then swe get "Ideal" | anstormalion cave fo diffeyent values of ‘lp image { intensity, value. |ece: wise Ineo tansfermation feoetons | yon 19 pieeee | | ore of the simplest faansfowmalion funct | wise fineay transfoxmation function- |2)Conbsast gtyelching (change in background) -- wees \ | ert js a paccess in which the contsast can be spread tn entize xange of intensities device - | let us Consider kwo byancfoxrnation Cuave- TF y=$1 & ¥Q=52 then »we can get curve. Due to this there 19 No change then , the corsesponciny’ # porte. (49S: & (aga) alony’ the |ineay byarsfow’ mn output: yansformatio! curve a5 shown below. — My of an image: $0 thet | Spans in an enliye jmoge of vecoadiy cor) displaying? mation| | (484, ¥e550) p's inkensitd» + Tha order to ovevcome the indensily aréifacks we Can Consider (+1) aaa 10) Ww (a$0) 2 wax stt) “oni t=) ae 7 _—y # By using» the abeve franstormedion auave on to the lex Gnbrast image we Can get the sesulling 15 a5 4 binayy? tmage. b)intensity> level slicing: Ree aaah cas ¥ Indensily > level slremg, ell highlights certain portions of an wage. * for this intensity level shoing?. we Gan use two themes of tyansmation — functions # these indensity level skcingy 48 used for identifying water shades in a salelile smage & fo find flows in an X-ray mages . # Fem the above faanstormation cuyve we Can conclude that the ofp image intensityr coes not change fom cto ONt- By Ae lo tt + the Of image le, ae } inlensdy, value sudelenly increases whe tip Image indensit i s¢§ when holds sity» Value wseaches to A-pomls £ 6 Same Ie, same Irghe » indensilyy values upto Lhe b-Foinl thot net » hat’ yneans , in Yesalling, amage —bftw the a and B Portion of intensity» value of s/ y fc of i/p Ghicd at Hs op. sage Gan be bighk- Ll | / | Mo | | 400) ° sr ‘ % iy >LI | # By absexving the paevious Lyansfoymation cuxve Wwe can i Gonclude that the Wp image inlensily» wale oto A & |p to t-l- | * we can get the Isneay ofp [linear oly dhexe is no charge)| # Beleween the points A xB the oulput trae intensity) | value can be highlighted. [et plone seme | # pels ave digital numbers composed of bils. Fox example Lhe intensi iby of cach ptvel ina 256 level gzay} gcale image 15 Composed of ‘8° bils. £ Instead of highlighting” intensity level xanges we could | highlight the Contajbution made to total appeasance by | bik ay Sh SPeeitic — byictge Fan 5- bit wage may be Consideacd a5 being, Pee of ‘Sone bed Planes , with Plane 4 Cordaing sng, the fevest order bik of all prrels in the image and len, ‘8° 35 all highest cxcler bils. lég ¥An "158" bit plane csnlains very lower detalls of the fmage in order fo incacasing, planes fom 158 to Msp we can ghsexve details of a image. + the 'msB’ bit plane contains higher details of an image # this smesthing» spatial filless are used fer gettingy only. Smooth the detail of an frmage- This Smeother details of an irrage is known aS Blinedl image. je, @ Streething Spatial filer is used fox makings a qyay> leve/ image ints Blurted image . *® Averaging» filler can be classified as two types . Smreckhing, fineast 5) weighted Avexaging» Filley } SPotial f;Mey i) onwerghled on n * Meclian fille y ©) ardey 5 ftatic (ron-lineax ) ONT gl oy |" Amrmang” ft of ~ qhis averaging. fillers are a lypes. they ane weighled averaging» Gllexs Wun -weighled ” " gq averaging’ fillex xesponsa can be xepsesented tm lasing, way: ——, ait 4 Ze Ji a, Wi2! Pfoy 3x3 Mask] | Smoothing. filleys ave used for blowing: and fos nots yeduclion . Th ts Used in pye- psocessingy tasks »such as yemoval of Small defatls fam an image (large) Paix dgings of small gaps in hres | fo object extraction , and bat (oy) Fustves - ‘ fineay |% Noise Yeclu clion can ‘be accomplished by bling 4 flley ancl also by nan- linea filley Linegn sreothingy spatiol Bile filles av the examples of linear Smoothing, — Average | gpatial tillers re 5 of two types - | weighted averaging? “Aller | VY onweighted averaging fltex . lek us Gonsidey 3x9 avenaginy fillex , then the Micient volues of ag filter 1 98 shown below Co-e _ fig. Unwerghted Averaa' 02? filled bME-2) \ uw Fig. weighted ave xooseny fille? In umeighted avezoginy’” filer , we ave egual weight age fo the co-efficient values of mask » Fxom the weighle filler we ane Coneludingy fhak some co-efficient avexaginy values of mask aye given by weightage - By using avesagng? filler » we can get the yesultant blued = jrrage gt) Bf weet cuss oyre 96) = 29 eb 2k wot ssa bob aticulor where 1 WG-4) fs a o-efficient value ot fa | position (4) | wheae » the range of 418 Ob 9-00 NI | the " ny $6 O12 vee Ne Tn oxdey $0 incvease in dhe dimension of moe, | from 3x3 to 35x35 by obseavinyy those two yesultant | images, we axe gelling, only Hovimam bluaved details in n of smothing, spatial filler | Qse of Maximum dimensio |G 35x35- | non-linear Joadlew slalic. filleas |* ovdeystati 7 7 ic fillers ave fillexs whose espanse tx based on ovdey of pixels Contain in an image encompassed by a filers then the viddle piel value con be reprexined x ae pute value , when we ove using fillea Such | éype filler 5 called a3 median oy orderstolic Giller ix This oxcerstalic filler aie used for ¢leminaling salt and peppery wroise in anys tage ive, this ovderstat ic filley aye Suitable for elem inating, galt and pepper | noise in Qn jmage. [k lel. us. Consider 3xa Mask in dhis Mask -In_ the Pixel Position is 's'. Consider piel values [10120 +201 20,15, 20, 20 1 25,100] ‘paccording, fo the orderstatic filler . the widdle value Can veplaced with newex value by aaxanging, pive! values in ascending oxdex =o | To 15 20 20 % Bo 2 2 toa] i* when we ae considers ts. the middle pixel: shenpersoge ood flea “xshaypening, _spotial filler one used for getiny th » delaile in ndensity valve of details Jn this »we iation (next pirel -P diffeaent dffeyential o¥ different op dong y- dixection yepresented by z. Peete vvit-a 1] middle pryel Ihat 1s obtained ngy 5xs Mask 1 la pic) position Sharpes Gan U9 wesent pitel = one diménsierel fan be re My | (* ay = fOr) = fla) fast adler, clevivative +e fern) 446-0 ~2f0) 34-D 34 order devivalie je a- -D fissk over devivalive along? y-direction > fly an -Fly> 2 flyer 4 Fly —af(y) wd onde | . dexivative ¥ 2-D fixst oxder dexivalive (along x~ ditvection Neclizection) | 3 + =f Gey) ef Go ye - FOOY) ® ’ ; ve, ve yy oF FO- yy) +4 doy RA stespening spatial filleys ave based on dex “1 4400 y4D + sats) 4 $0) va tive let- us Gnsidex a scan line alonz, x-disection. lele |e |e Js ‘4 | ape rLefele fel e| 66) 6G, | Above Scan line shows sntensity, values he “intens: silty profile of abeve Scan line. Gnst == | der i *In i jer lo get the first axder devivative for the above Sean line we should Consider the follower Graltfions grist oxcley devivalive ofp ts rex for crolant value of gnlensily + x Fast orcle’ devivalive ofp be won -zewo for on-sel values of xamp and slep. 4 Musk be non -2ex0 at Lhe end of amp Ga)ster: 6 ih iii le ele 66 k Je|¢lels] of slab} #d- DP 00 © -I-t -1-1-l00000 50000 # The Conditions for getking- oxder dexivalive for given San line. “gyMust be zeso ot Constant intensity values. #1) nf Non zero at on-set values of Yamp (ow) Step om) mast be zeve at the end of yamp (ox) step. =9 | (ele fe fe [s[ al af al TT [Tek lei elels 16 090.5 75000 o ol ooo 8 x 2 fom-t&® % : of = foiy 4 fon) y- fd) dvace the qvaph of first and second orcley x led us phon below: devivalive ofps a omit 2 / ts] Ky | ‘1 exjvalive “Teage shaanening» by wsiny seeel geley AALS ‘ A lesivalive of lev ) LY . US BHeLP) ‘ me, +s #! ouler devivalive ' FIs 24 oxdew devivalive 5 « 6 | Clapbeiard:— ry of ot vFs ae tay of ye = $04) af Gey) Ha day) tdireclion i ) aye = POH YD AF COND ~ Af OOY) Ye diver! Sovp o Ly oy | | % ax oy | ® efGeH yy p FOEN yy apy FE GE ya) ACY 1D 2¢Cea) PFs Fey) EF OY) FPO YI AFG -—D “Mflny> | : # mow [ets us place the w-cfficients value of above CXPYCSSION tn 3x3 Mas oY cindow : ol o 4 foul) oO t 9 I 5x3 i onl L lol qt bove sk * In above Mask swe Consideatngs anly ly’ netghbou x = above Mask 15 alse dapwn following 04 ee ilo fe | 4 ' ¢ |0 “1 o| # Gimilonly » by considering the diagonals we qet Mask to-esticien!s values in the following, “a4 | t I ' | L' | 8] 5 a ' roo #]In above Mask , 7s also dsown the tve middle Co-effici- énts — values. ; a shay peningy ‘image can be obtained by adding Sharpe rings details 40 the evigiral image. = | [pee = Hog) seven) t3 based on (WE 0? -ve) where , the ‘¢? yalue | Mask riddle co-efficrent value of Shaepening” spatia nit -2) ALLY ~ eerrre ’ TUS? Maskings and Iegh Boel Henny * hh dhs eis Masking» and high Boast filleaing, without usings ghaapening, filley diveclly we yan cl shaapened ;mage. Sh order fo gellingr that shaspened trnage without using, shaspening? filler pwe should use the falling, Prccecke steps Take Blunred tmage $0.4) ‘i)Substaack blusvedl image Flu) fom oviginal image fimy) 2 19 . Fa, Suase 0 =f (oy) -Fary) - Kwhen ket, then obeve xesultanl tmage 15 Said fo be on -shaap Masking» tmage. *Tf kor, then the vesultant tage 9004) 15 Said be be high boost Fieri, ymage. * where $0.4) =oai ginal tmage FON) = Blusved 0 Fos 04) = un -shaxp Masking, filles using gh exder deantives fox tion -lnear) image Shaxpening» (gradient operatons) .~ # A 4 order devivalive of image Can be yepaesented by. oe B-[F] x wheae, vf = a oadex derivative op of an ‘mage. x = gyadlené along x - direction fy = gradient alongr y - cltvection wnt - Ly is]qy ae yNagnitude of 4! oxdexr dexivalive is wepresente ordey n d by, Moogs IFT = J9%49,* Ene y Jn oxdey Jo make the above Magnitude of ot the above ¢#'n | wale ib as, MOOD 2 [gal 419y) devivative fo won -[meay 2 [3 +25) wher » Igy! indicates Magnitude of qyadcent alony x-divection Con be Igy) inclicales Magnitude of gradient along 4 - divection # A gradient opexatoxs ave +) Robext opezator ii) poewitt opezator 1) Sobel operator Gackent by using Rover of 's) types. A pobeat opexator Consisl 1s usecl fox getting gradient ° another Hask 16 used for _ getting 9% pe] . Lets T | ?| ta 4 0 | ow, lek us Corsider an image wn texms of 3x3 dimension alony -X~ UXQ best opeoles of “kes Hask,-one Mask dizection and | adtent_ oly Yate intensity, voles z,] 28 | Zq] tar on to the image. *noce, let us place the above mask diyection ~ ¢ Now , let us place the above mask (b)on fo the tmage. We will get qyadtent values along 9-divection. dy = 297% ; “Therefore , Magnitude ef qyadiené ts xepreserded by gx MOog) © Igy) tly] | Moy) & 2q-%1 4 [zg-%) " 5 = (t-1) [ecards | a whexe , w= Dummy. variable by using lejbriz's wule. we | @n get the gol’n fox the above eg'n. jLeibyizes mules the desivative of diffexent integral with yespect 0 its 19 jnteqzal evaluoted at the limit , from the | upper limst basic caleulas, . 5-ry) & od ae > Gy | = ang [fi peordw) | LS $= = = (- PPG) i = wrik-2y aay _ dion 4% l “asibulion “hi y . | =o uniform probability , dista;bution Sunction Gntincously lel us nsider a 3-bil image whose dimension i5 64xéyz a Given 3-bit image , M=6u , Nzéy Perey Mi, [k= PORIXHW] > Gaxey = von, ea nk POx) ° 7138 019 | ! to24 O85 | 2 860 O21 3 | 655 | ole 4 327 | 00g oy 245 9-06 | P2200) 0.63 lo Sal 9-02 ~onik-8) aq) 5k = TO) = ay & Pol) $20: ee So = 4 Z Pray) io 51 = 7 [Pyle )+ Psa) = 7 (019+0-25) $1 = 164y) = 72 Fos) J=0 Sy 21 [Py (1) + Pon) +Pr@dd 21 font 095 +021) =1(0-65) 3 53 27 Pyl%) ja 53 = 1 CPr(ae) + pytnd + Paez) 4fy(33)) = 76-19 0-25 4020 20A6I unit a) aay). ne ee ea = 3 CRG0) eR s HDI TOI) HOW = Tong + 025+ oh rote +005] = 710-89) 95 = 7 a FQ) 350 = 1 [Prevsd + pyloi) 4 preva) + Py(73)> Pay) + Fors)] 7019+ 0-25 40-81 40-16 40-09 40-06] = 70-95) é Se = 7 E Py lo) J=0 =T[Polmyepecnds — ~~~ Pras] = 10-194 6Q5+ 0°) F6U6 40:03 40:06 40-03) Se = 6.96 5} uv 4 Tz Py) jzo =H [Pelo) e Pe Oi* ~~ = Fy cr] A . 27 [0-19 +0-95+ O- WHOM + 0:09 FOGG 40-034 0-02] nit hy Sal 4] Here , So 213351 Sy = 6-236 $1 =30853 55 = 6-657 o S2=U-55 5 56 = 6-86 37 532567 >6 5 = t SF oie-21 34] ONIT-IL_4 paRT-B IMAGE ENHANCEMENT IN FREQUENCY DOMAIN Man ARN A ARR i 1 DFT Drow > IOFT L a L ‘ we. peecessor | / $004) ay) Gd) = Flv) Huw) Where , F(yy - Fre9. domain yepyesentation of firy) H(wv) = Filley txansfer function * let us Gensidey a one dimensional filler dvansfer function = Ieleal [ow pass filler nono 2) BLPF —> Bublexwoxth 3) GlpF > Gruassian ="! " n 1) Ideal Joc» pass filtea - she transfer fee fuenelion of an by, 1 th DUN? €Do = = | Hav) = o tf Dtv?>Do | | | whexe , Deuvd =distance fo the point from ommm ideal LPF 15 ue presere. Do = Racius of cixcle. ane concluding that an ideal distance, and Re Pem the above egn , we the fweguencp G@mpone nts - when the lpr allows piv? is [ess than o¥ egual to Po CDlusv? ¢Do) otherwise, | h doesn'é allows any frequency Components through ore —_—_ * the pexceplaal view of Tipp daansfer fanclion and 2p Mask is as shown im below AHN) Hey) | WA 5 vx Dotuw? ie : TIPF foansfex {'n peaceplual view of ne aera MEE we to Diwy) IPF byansfea #'n \ Dewy) = [cu Pare (v- ogy] a the ola Poe of an image 15 sepaesented by [r= é Plu) U=0 vro Disadlvantoges:- RILPF is havingy one Main disadvantage that is yinging’ attfacts ane ocean when we ane using ILPF . we need only blurted details. but by using of Fipe we ane get Buaved details and vingingy axtifacds. Q we Can veduce this vingingy anctifacts by incacasing vedius | of ciacle ond also by using other type of fillers lke | Buttereworth low poss fille and gaussian low pass fille. ln Butte xeaosth low pass flex CBLPF).- the bansker furclon of BUFF 38 wepucslentod by, } _ H [odv) /p da | | H(wv) = Tonge 1 24] Dwhee » Dewy. Do n= oxdex of filler jew the help this BUPF we can deduce the winging artifacts by, inc¥easing, the gydex ‘mn! becaure weee the do dhe pint intensity, transition 15 Slow , whereas comporte to ILPF, sntensity’ Lyansition ~ ay tron? eos’ 2 Hat) : Sy W a vi tuo dtmensicrad +r o9e “e Mt quossian kes pass files [eutprl :- (® the transfer function of a GiLPF pean = eevee" Percept “8 ye puesented by, => : wheal, ¢ = 7b indicates spseotings function of guassian the pomnk of ovigin- luv = distance $0 son te? ig sodius of Pa, tb Qnsidesingy spreading funct then the fansfey fn 6 woditied 95, H(uw) = oO) | 200% FRY qnczeasings the vadkus of Guacle upto cextain limit , SE Gm yeduce te singmg oxtkificates which axe | alenay with blusxed mage. Occuss Ont D | 3] / ow u“ NY ope nage Pewcep live “Hol LPF: - Haw = ' if DlWv) <2, ° if DCU >Do J Ht) = ————___. I H [Dtav/eJ?” I) . | Hiawy = 62 WY RDQ* || Hpe:- I i) Hiv) = f' GF Dewy) >05 | © if Dtwv< p, | Huy) = a a I+ [D0 /paw] Heuva = p62 er Roo | function Huw) = -umutev) The laplacian filley is used for gefting~ edges of an | mose that is higher details of an image, the transfer of laplacian Siltes is %epresented by Hlww. Where, Wv one the feq. domain vasiables by Considesin @ wectangulay Centex of an image the above laplacian filter | init 14] % tui? 1 — _ | oD Cx055 SECLION image |} with an Order > | Lhroveh 40 | | faansfer furclion is waile if as, 1 | , Lo ty 2. | | Haw = -4n? [(u-Peyy (v- ef) ] | i Haw) = -aND’cuv) | wheae, Dew) = distance from — oagin gethe Enhanced image 94) 15 yepresented 1 spacial dorain 5 as follows Gary) = Flos) + C* FOOLY wherxe, $004) = axigin image V'Fo04) = laplacian +node ~ othe .. . yepaesented in Fu? laplacian ‘rnage W4CLY) 7S | domain ds , Weng) = PTS Hew FONDS nm by | | Jee know that an Enhanced ‘*naqe gcuy) 18 ave | gouy) = foyo + c* v7 FO) = f00y)-P*$O0y) Coc s-1 because how) 1% -¥e) Finally , by applying jnvease discaete Fourier toansfor » fecquency domain values we we get 1a spacial | enhanced vou - > -R(YF (av) 5 | | | =a L | domain eer i pew] Fu ws gous =F! Pft- | | guy) = F! cau] Fu) | | mien) 1 S414) | | | | Sure oy OTT AS —— ny ad High Pregueney Unshaxp Masking High boost fi Emphasis fillexing .- In dhis stead of using HPF'S dineclly we Car 0% Hpr's in toms of LPF S Lethe spacial domain vask 79 yepresentcd be | Fmoste (up)? = I fap CP | whee , fyp (oy) = TE sncicakes lower details of A image d value 94) 19 obtained by- |*A spacial domain enhance addings a spacial domain ask 9003) fo the ovigin image $0454) with a 'k’ Value. pee 9O4) = £009) + K* Sprache C4? © S.qouy) = Ff pau 4 Cy- Hap (rv PO? x the above expression defines urshayp maskin if defines high boost Glkesrng when k7! eT foe k* a HLpCuv) 7 F(a) vit y when ke) and g(~Hy) " M gay) = FTF Ce k* Hp fan] rams whatever the lexm is pyesent freg. emphasis filter * Tn the above expxession in Suane bracket Hal indicates high g4(uy) = Fi J okie KeHyp uw] reat > @ntaols the offset values and cy! ky #In the above en. | Gntwls high freq. Values. 7 ~ Unik 38ly Homomomphic fillers- Ne NR ee \ FA jfhammalion and yefleedemree Product is ‘mibvadacedt in) Tih oxees do implermyoving | Simantaneously- intensity» remge — @mpnesion and Grtrool tnhancement - fey. domain procedure * We Kroes Fhat an tage f0oy) = 4 ey) YOO) SS FOOY) = F009) xouy) where» Pony) < illumination component YGOY) = yeflectance component “3 ¥In ovdey to sepanating lamination Gmponent gacflector Component we qo fox nataval logosithum 2004) 2A) Sees stay) SCO : Pee he eseed| J ace | S@y fy) = joy) vey) ZY) = In [Foy] ease ei fap sin [iooyreny)] 20yy) = dni Goy) tin xO? LF (20) BF Gow) + FC) A DET 2oy) i sepaeserted by 20) Zu) 2 Fi (un? + Fy (uv) Suv) = zen) HWW = [Rw thr (uv JH 3 sly) = [Rewv) Kw? + Fr(wv) Hv) d =e ay q of ahh ae tsansform to | By applying’ inverse powtio piscocte Ista we geb $00 -6C0y) = F'Goy) Fx"? Trikially sed oxsgiral aduaa] — fogexithm in order to sepayate | ‘Gmponent — and yeflectané @mponent | K Gemilarly » SCY) 19 applied 40 exponential f'n ot the olp “ | exponential » we gk g004)- 1 4 | Goey) 42°09) | e { gage $0 ath we have allie! s|lumination 2 90D) = | all " 2 ets), XO | | 9009) = joy) YOON? | J ‘ 1 where > jQny) = ello % OY) = eX OY? the Homemomphic filker’ hansfey #7 by Hea) = ky Xe 11-€° (vita r/o] + Xe Ham) i e eThe above figure shows | cxoss - sectional view of | hornomoaphic f | Grains Components % &%p iter which BUND kd ual uy Tends to altenuale + ferds fe g where %

You might also like