0% found this document useful (0 votes)
26 views14 pages

Operaciones

1. The document provides instructions for solving several linear programming problems using different methods. It includes 5 problems to maximize an objective function subject to constraints. 2. For each problem, it provides the objective function and constraints, finds the feasible region by graphing or setting constraints equal, and solves using the Simplex Method. 3. The problems cover a range of linear programming techniques including graphical solution, Simplex Method, maximization, and multiple constraints.
Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content, claim it here.
Available Formats
Download as DOCX, PDF, TXT or read online on Scribd
0% found this document useful (0 votes)
26 views14 pages

Operaciones

1. The document provides instructions for solving several linear programming problems using different methods. It includes 5 problems to maximize an objective function subject to constraints. 2. For each problem, it provides the objective function and constraints, finds the feasible region by graphing or setting constraints equal, and solves using the Simplex Method. 3. The problems cover a range of linear programming techniques including graphical solution, Simplex Method, maximization, and multiple constraints.
Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content, claim it here.
Available Formats
Download as DOCX, PDF, TXT or read online on Scribd
You are on page 1/ 14

Universidad Técnica de Machala

Facultad de Ciencias
Empresariales Carrera de
Comercio Exterior Taller #1
Nombre: Melany Mabel Gómez Fernández.
Curso: Cuarto Semestre – Diurna.
Fecha: 17/12/2022.
Docente: Ing. Adriano Ramírez Galeano.
Tema: Programación Lineal.
Resolver los siguientes ejercicios
-Hallar el MODELO MATEMÁTICO.
-Hallar la solución por el método gráfico, usando GEOGEBRA.
-Hallar la solución por el MÉTODO SIMPLEX.
1.- Maximizar
Z = x1 + 2x2
Sujeta a
2x1 + x2 ≤ 8 2x1 + x2 + S1 = 8
2x1 + 3x2 ≤ 12 2x1 + 3x2 + S2 = 12
x1, x2 ≥ 0
2x1 + x2 = 8 2x1 + x2 = 8
x1 = 0 x2 = 0
x2 =8 2x1 =8 x1 = 8/2 x1 = 4
A(0,8) B(4,0)
2x1 + 3x2 = 12 2x1 + 3x2 = 8
x1 = 0 x2 = 0
3x2 =12 2x1 = 12
x2 =12/3= 4 x1 = 12/2 x1 = 6
C(0,4) D(6,0)
X1 + 2X2 F(x1, x2) = x1 + 2x2
2) F(0,0) = 0 + 2(0) = 0
0 + 2(4)= 8
F(0,4) = 0 + 2(4) = 8
3)
2X1 + X2 = 8 F(3,2) = 3 + 2(2) = 7
X2 = 8 - 2X1
2X1 + 3X2 =12 2X1+X2=8 F(4,0) = 4 + 2(0) = 4
2X1+3(8-2X1) =12 2(3)+X2=8
2X1+24-6X1 =12 X2= 8-6
4X1= 24-12 X2= 2 I= 0
X1 = 12/4
X1 =3 II=8
III=7
X1 + 2X2
3+2(2)=7 IV=4
4)
4+2(0)=4

Z = x1 + 2x2
2x1 + x2 + S1 = 8
2x1 + 3x2 + S2 = 12
Coeficiente Variable 1 2 0 0
Básico Básica X1 X2 S1 S2 Valor
0 S1 2 1 1 0 8
0 S2 2 3 0 1 12
Zj 0 0 0 0
Cj - Zj 1 2 0 0 0

Coeficiente Variable 1 2 0 0
Básico Básica X1 X2 S1 S2 Valor
0 S1 1.333 0 1 -0.333 4
2 X2 0.666 1 0 0.333 4
Zj 1.333 2 0 0.666
Cj - Zj -0.333 0 0 -0.666 8

2.- Maximizar
Z = 2x1 + x2
Sujeta a:
-x1 + x2 ≤ 4 -x1 + x2 + S1 = 4
x1 + x2 ≤ 6 x1 + x2 + S2 = 6
x1, x2 ≥ 0
-x1 + x2 = 4 -x1 + x2 = 4
x1 = 0 x2 =0
x2 = 4 -x1 = 4 x1 = -4
A(0,4) B(-4,0)
x1 + x2 = 6 x1 + x2 = 6
x1 = 0 x2 =0
x2 = 6 x1 = 6
C(0,6) D(6,0)
F(x2X
1,1x+
2)X=
2 2x1 + x2 F(0,0) = 2(0) + 0 = 0
2) = 2(0) + 4 = 4
F(0,4)
0 + 4= 4
F(1,5) = 2(1) + 5 = 7
3)
X1 + X2 = 6 F(6,0) = 2(6) + 0 = 12
X2 = 6 - X1
-X1 + X2 =4 I= 0
-X1+6-X1 =4 X1+X2=6 II=4
-X1 - X1= 4-6 1+X2=6
-2X1 = -2 X2= 6-1 III=7
X1 =-2/-2 X2= 5
X1= 1 IV=12
2X1 + X2
2(1)+5=7
4)
2(6)+0=12

Coeficiente Variable 2 1 0 0
Básico Básica X1 X2 S1 S2 Valor
0 S1 -1 1 1 0 4
0 S2 1 1 0 1 6
Zj 0 0 0 0
Cj - Zj 2 1 0 0 0
Coeficiente Variable 2 1 0 0
Básico Básica X1 X2 S1 S2 Valor
0 S1 0 2 1 1 10
2 X1 1 1 0 1 6
Zj 2 2 0 2
Cj - Zj 0 -1 0 -2 12

3.- Maximizar
Z = -x1 + 3x2
Sujeta a
x1 + x2 ≤ 6 x1 + x2 + S1 = 6
-x1 + x2 ≤ 4 -x1 + x2 + S2 = 4
x1, x2 ≥ 0

x1 + x2 = 6 x1 + x2 = 6
x1 =0 x2 = 0
x2 = 6 x1 = 6
A(0,6) B(6,0)
-x1 + x2 = 4 -x1 + x2 = 4
x1 =0 x2 = 0
x2 = 4 -x1 = 4
x1 = -4
C(0, 4) D(-4,0)
F(x2X
1,1x+
2)3X
=2-x1 + 3x2 F(0,0) = -0 + 3(0) = 0
2) = -0 + 3(4) = 12
F(0,4)
0 + 3(4)= 12
F(1,5) = -1 +3(5) = 14
3)
X1 + X2 = 6 F(6,0) = -6 + 3(0) = -6
X1 = 6 - X2
-X1 + X2 =4 I= 0
-6-X2+X2=4 X1+X2=6 II=12
2X2= 4+6 X1+5= 6
X2 = 10/2 X1= 6-5 III=14
X2 =5 X1= 1
IV=-6
-X1 + 3X2
-1+3(5)=14
4)
-6+3(0)=-6
Coeficiente Variable -1 3 0 0
Básico Básica X1 X2 S1 S2 Valor
0 S1 1 1 1 0 6
0 S2 -1 1 0 1 4
Zj 0 0 0 0
Cj - Zj -1 3 0 0 0

Coeficiente Variable -1 3 0 0
Básico Básica X1 X2 S1 S2 Valor
0 S1 2 0 1 -1 2
3 X2 -1 1 0 1 4
Zj -3 3 0 3
Cj - Zj 2 0 0 -3 12

Coeficiente Variable -1 3 0 0
Básico Básica X1 X2 S1 S2 Valor
-1 X1 1 0 0.5 -0.5 1
3 X2 0 1 0.5 0.5 5
Zj -1 3 1 2
Cj - Zj 0 0 -1 -2 14
4.- Maximizar
Z = 3x1 + 8x2
Sujeta a
x1 + 2x2 ≤ 8 x1 + 2x2 + S1 = 8
x1 + 6x2 ≤ 12 x1 + 6x2 + S2 = 12
x1, x2 ≥ 0
x1 + 2x2 = 8 x1 + 2x2 = 8
x1 = 0 x2 = 0
x2 = 8/2 x1 = 8
x2 = 4
A(0,4) B(8,0)
x1 + 6x2 = 12 x1 + 6x2 = 12
x1 = 0 x2 = 0
6x2 = 12 x1 = 12
x2 = 12/6= 2
C(0,2) D(12,0)
F(x3X
1,1x+
2)8X
=23x1 + 8x2 F(0,0) = 3(0) + 8(0) = 0
2) = 3(0) + 8(2) = 16
F(0,2)
3(0) + 8(2)= 16
F(6,1) = 3(6) +8(1) = 26
3)
X1 + 2X2 = 8 F(8,0) = 3(8) + 8(0) = 24
X1 = 8 - 2X2
X1 + 6X2 =12 I= 0
8-2X2+6X2 X1+2X2=8 II=16
=12 4X2= X1+2(1)= 8
12-8 X2= 8-2 III=26
X2 = 4/4 X2= 6
X2 =1 IV=24

3X1 + 8X2
3(6)+8(1)=26
4)
3(8)+8(0)=24
Coeficiente Variable 3 8 0 0
Básico Básica X1 X2 S1 S2 Valor
0 S1 1 2 1 0 8
0 S2 1 6 0 1 12
Zj 0 0 0 0
Cj - Zj 3 8 0 0 0

Coeficiente Variable 3 8 0 0
Básico Básica X1 X2 S1 S2 Valor
0 S1 0.666 0 1 -0.3333 4
0 S2 0.1666 1 0 0.1666 2
Zj 0 0 0 0 0
Cj - Zj 3 8 0 0 0

Coeficiente Variable 3 8 0 0
Básico Básica X1 X2 S1 S2 Valor
0 S1 0.666 0 1 -0.3333 4
8 X2 0.1666 1 0 0.1666 2
Zj 1.3328 8 0 1.3328
Cj - Zj 1.6672 0 0 -1.3328 16
Coeficiente Variable 3 8 0 0
Básico Básica X1 X2 S1 S2 Valor
3 X1 1 0 1.5 -0.5 6
8 X2 0 1 -0.25 0.25 1
Zj 3 8 2.5 0.5
Cj - Zj 0 0 -2.5 -0.5 26

5.- Maximizar
Z = 8x1 + 2x2
Sujeta a
x1 - x2 ≤ 1 x1 - x2 + S1 = 1
x1 + 2x2 ≤ 8 x1 + 2x2 + S2 = 8
x1 + x2 ≤ 5 x1 + x2 + S3 = 5

x1, x2 ≥ 0
x1 - x2 = 1 x1 - x2 = 1
x1 = 0 x2 = 0
-x2 =1 x1 =1
X2 = -1
A(0,-1) B(1,0)
x1 + 2x2 = 8 x1 + 2x2 = 8
x1 = 0 x2 = 0
2x2 =8 x1 =8
x2 = 8/2
x2 = 4
C(0,4) D(8,0)
x1 + x2 = 5 x1 + x2 = 5
x1 = 0 x2 = 0
x2 =5 x1 =5
E(0,5) F(5,0)
8X1 + 2X2 F(x1, x2) = 8x1 + 2x2
2) = 8(0) + 2(0) = 0
F(0,0)
8(0) + 2(4)= 8
F(0,4)
3) = 8(0) + 2(4) = 8
X1 + 2X2 = 8 F(2,3) = 8(2) + 2(3) = 22
X1 = 8 - 2X2
F(3,2) = 8(3) +2(2) = 28
8 - 2x2 + X2 =5 X1+2(3)=8
-X2 = 5-8 X1= 8-6 F(1,0) = 8(1) + 2(0) = 8
X2 = 3 X1=2
I= 0
8X1 + 2X2
8(2)+2(3)=22 II=8
III=22

4) X1= 1+X2 IV=28


1+X2+X2=5 X1-2=1 V=8
2X2=5-1 X1=1+2
X2= 4/2 X1= 3
X2= 2
8(3) + 2(2) = 28

5)
8X1+2X2
8(1)+2(0)=8
Coeficiente Variable 8 2 0 0 0
Básico Básica X1 X2 S1 S2 S3 Valor
0 S1 1 -1 1 0 0 1
0 S2 1 2 0 1 0 8
0 S3 1 1 0 0 1 5
Zj 0 0 0 0 0
Cj - Zj 8 2 0 0 0 0

Coeficiente Variable 8 2 0 0 0
Básico Básica X1 X2 S1 S2 S3 Valor
8 X1 1 -1 1 0 0 1
0 S2 0 3 -1 1 0 7
0 S3 0 2 -1 0 1 4
Zj 8 -8 8 0 0
Cj - Zj 0 10 -8 0 0 8

Coeficiente Variable 8 2 0 0 0
Básico Básica X1 X2 S1 S2 S3 Valor
8 X1 1 0 0.5 0 0.5 3
0 S2 0 0 0.5 1 -1.5 1
2 X2 0 1 -0.5 0 0.5 2
Zj 8 2 3 0 5
Cj - Zj 0 0 -3 0 -5 28

6.- Maximizar
Z = 2x1 – 6x2
Sujeta a
x1 - x2 ≤ 4 x1 - x2 + S1 = 4
-x1 + x2 ≤ 4 -x1 + x2 + S2 = 4
x1 + x2 ≤ 6 x1 + x2 + S3 = 6
x1, x2 ≥ 0

x1 - x2 = 4 x1 - x2 = 4
x1 = 0 x2 = 0
-x2 =4 x1 =4
X2 = -4
A(0,-4) B(4,0)
-x1 + x2 = 4 -x1 + x2 = 4
x1 = 0 x2 = 0
x2 = 4 -x1 = 4
x1 = -4
C(0,4) D(-4,0)
x1 + x2 = 6 x1 + x2 = 6
x1 = 0 x2 = 0
x2 =6 x1 =6
E(0,6) F(6,0)
F(x2X
1,1x-26X
) =2=0
2x1 - 6x2 F(0,0) = 2(0) - 6(0) = 0
2) = 2(0) - 6(4) = -24
F(0,4)
2(0)-6(4) = -24
F(1,5) = 2(1) - 6(5) = -28
3)
-X1 + X2 = 4 F(5,1) = 2(5) - 6(1) = 4
X2 = 4+X1
F(4,0) = 2(4) - 6(0) = 8
x1 + X2 =6
X1+(4+x1)=6 (1)+x2=6 I= 0
2x1 = 6-4 X2=6-1
X1= 2/2 X2=5 II=-24
X2 = 1
III=-28
2X1-6X2 IV=4
2(1)-6(5)= -28
V=8
4)
X1-X2=4
X1=4+X2

X1+X2=6

X1+1=6
(4+X2)+X2=6 X1=6-1
2X2=6-4 X1=5
X2= 2/2
X2= 1
2X1-6X2
2(5)-6(1)= 4

5)
Z= 2X1-6X2
2(4-6(0)= 8
Coeficiente Variable 2 -6 0 0 0
Básico Básica X1 X2 S1 S2 S3 Valor
0 S1 1 -1 1 0 0 4
0 S2 -1 1 0 1 0 4
0 S3 1 1 0 0 1 6
Zj 0 0 0 0 0
Cj - Zj 2 -6 0 0 0 0
Coeficiente Variable 2 -6 0 0 0
Básico Básica X1 X2 S1 S2 S3 Valor
2 X1 1 -1 1 0 0 4
0 S2 0 0 1 1 0 8
0 S3 0 2 -1 0 1 2
Zj 2 -2 2 0 0
Cj - Zj 0 -4 -2 0 0 8

7.- Maximizar
Z = 2x1 – x2 + x3
Sujeta a
2x1 + x2 – x3 ≤ 4 2x1 + x2 - x3 + S1 = 8
x1 + x2 + x3 ≤ 2 x1 + x2 + x3 + S2 =
2 x1, x2, x3 ≥ 0

Coeficiente Variable 2 -1 1 0 0
Básico Básica X1 X2 X3 S1 S2 Valor
0 S1 2 1 -1 1 0 4
0 S2 1 1 1 0 1 2
Zj 0 0 0 0 0
Cj - Zj 2 -1 1 0 0 0

Coeficiente Variable 2 -1 1 0 0
Básico Básica X1 X2 X3 S1 S2 Valor
0 S1 0 -1 -3 1 -2 0
2 X1 1 1 1 0 1 2
Zj 2 2 2 0 2
Cj - Zj 0 -3 -1 0 -2 4

You might also like