Mic5219 1082354
Mic5219 1082354
MIC5219
MIC5219
500mA-Peak Output LDO Regulator
Typical Applications
MIC5219-5.0BMM
ENABLE 1 8
SH U TD OWN
2 7
MIC5219-3.3BM5
VIN 6V 1 5
3 6 VIN 4V VOUT3.3V
VOUT5V 2
4 5
2.2µF
ENABLE 3 4 tantalum
2.2µF SH U TD OWN
tantalum 470pF
470pF
3 4
3 4 R2
470pF
Ordering Information
Part Number Marking
Standard Pb-Free Standard Pb-Free* Volts Temp. Range Package
MIC5219-2.5BMM MIC5219-2.5YMM — — 2.5V –40°C to +125°C MSOP-8
MIC5219-2.85BMM MIC5219-2.85YMM — — 2.85V –40°C to +125°C MSOP-8
MIC5219-3.0BMM MIC5219-3.0YMM — — 3.0V –40°C to +125°C MSOP-8
MIC5219-3.3BMM MIC5219-3.3YMM — — 3.3V –40°C to +125°C MSOP-8
MIC5219-3.6BMM MIC5219-3.6YMM — — 3.6V –40°C to +125°C MSOP-8
MIC5219-5.0BMM MIC5219-5.0YMM — — 5.0V –40°C to +125°C MSOP-8
MIC5219BMM MIC5219YMM — — Adj. –40°C to +125°C MSOP-8
MIC5219-2.5BM5 MIC5219-2.5YM5 LG25 LG25 2.5V –40°C to +125°C SOT-23-5
MIC5219-2.6BM5 MIC5219-2.6YM5 LG26 LG26 2.6V –40°C to +125°C SOT-23-5
MIC5219-2.7BM5 MIC5219-2.7YM5 LG27 LG27 2.7V –40°C to +125°C SOT-23-5
MIC5219-2.8BM5 MIC5219-2.8YM5 LG28 LG28 2.8V –40°C to +125°C SOT-23-5
MIC5219-2.8BML MIC5219-2.8YML G28 G28 2.8V –40°C to +125°C 6-Pin 2×2 MLF®
MIC5219-2.85BM5 MIC5219-2.85YM5 LG2J LG2J 2.85V –40°C to +125°C SOT-23-5
MIC5219-2.9BM5 MIC5219-2.9YM5 LG29 LG29 2.9V –40°C to +125°C SOT-23-5
MIC5219-3.1BM5 MIC5219-3.1YM5 LG31 LG31 3.1V –40°C to +125°C SOT-23-5
MIC5219-3.0BM5 MIC5219-3.0YM5 LG30 LG30 3.0V –40°C to +125°C SOT-23-5
MIC5219-3.0BML MIC5219-3.0YML G30 G30 3.0V –40°C to +125°C 6-Pin 2×2 MLF®
MIC5219-3.3BM5 MIC5219-3.3YM5 LG33 LG33 3.3V –40°C to +125°C SOT-23-5
MIC5219-3.3BML MIC5219-3.3YML G33 G33 3.3V –40°C to +125°C 6-Pin 2×2 MLF®
MIC5219-3.6BM5 MIC5219-3.6YM5 LG36 LG36 3.6V –40°C to +125°C SOT-23-5
MIC5219-5.0BM5 MIC5219-5.0YM5 LG50 LG50 5.0V –40°C to +125°C SOT-23-5
MIC5219BM5 MIC5219YM5 LGAA LGAA Adj. –40°C to +125°C SOT-23-5
MIC5219YMT GAA Adj. –40°C to +125°C 6-Pin 2x2 Thin MLF®**
MIC5219-5.0YMT G50 5.0V –40°C to +125°C 6-Pin 2x2 Thin MLF®**
Other voltages available. Consult Micrel for details.
* Over/underbar may not be to scale. ** Pin 1 identifier = ▲.
Pin Configuration
EN 1 8 GND E N GND IN
3 2 1
IN 2 EN 1 6 BYP
7 GND
OUT 3 6 GND GND 2 5 NC L Gx x
BYP 4 5 GND IN 3 4 OUT 4 5
BYP OUT
EN 1 8 GND E N GND IN
3 2 1
IN 2 7 GND EN 1 6 NC Part
Identification
OUT 3 6 GND GND 2 5 ADJ
LGAA
BYP 4 5 GND 4 5
IN 3 4 OUT
ADJ OUT
Electrical Characteristics(3)
VIN = VOUT + 1.0V; COUT = 4.7µF, IOUT = 100µA; TJ = 25°C, bold values indicate –40°C ≤ TJ ≤ +125°C; unless noted.
Symbol Parameter Conditions Min Typical Max Units
VOUT Output Voltage Accuracy variation from nominal VOUT –1 1 %
–2 2 %
ΔVOUT/ΔT Output Voltage Note 4 40
ppm/°C
Temperature Coefficient
ΔVOUT/VOUT Line Regulation VIN = VOUT + 1V to 12V 0.009 0.05 %/V
0.1
ΔVOUT/VOUT Load Regulation IOUT = 100µA to 500mA, Note 5 0.05 0.5 %
0.7
VIN – VOUT Dropout Voltage(6) IOUT = 100µA 10 60 mV
80
IOUT = 50mA 115 175 mV
250
IOUT = 150mA 175 300 mV
400
IOUT = 500mA 350 500 mV
600
IGND Ground Pin Current(7, 8) VEN ≥ 3.0V, IOUT = 100µA 80 130 µA
170
VEN ≥ 3.0V, IOUT = 50mA 350 650 µA
900
VEN ≥ 3.0V, IOUT = 150mA 1.8 2.5 mA
3.0
VEN ≥ 3.0V, IOUT = 500mA 12 20 mA
25
Ground Pin Quiescent Current(8) VEN ≤ 0.4V 0.05 3 µA
VEN ≤ 0.18V 0.10 8 µA
PSRR Ripple Rejection f = 120Hz 75 dB
ILIMIT Current Limit VOUT = 0V 700 1000 mA
ΔVOUT/ΔPD Thermal Regulation Note 9 0.05 %/W
eno Output Noise(10) IOUT = 50mA, COUT = 2.2µF, CBYP = 0 500 nV/ Hz
IOUT = 50mA, COUT = 2.2µF, CBYP = 470pF 300 nV/ Hz
ENABLE Input
VENL Enable Input Logic-Low Voltage VEN = logic low (regulator shutdown) 0.4 V
0.18
VEN = logic high (regulator enabled) 2.0 V
IENL Enable Input Current VENL ≤ 0.4V 0.01 –1 µA
VENL ≤ 0.18V 0.01 –2 µA
IENH VENH ≥ 2.0V 2 5 20 µA
25
Typical Characteristics
10 2.5
20
8 2.0
15
6 1.5
10 IL =100 mA
4 1.0
2 5 0.5
IL =100µA
IL =500mA
0 0 0
0 100 200 300 400 500 0 1 2 3 4 5 6 7 8 9 0 2 4 6 8
OUTPUT CURRENT (mA) INPUT VOLTAGE (V) INPUT VOLTAGE (V)
Block Diagrams
IN OUT
VIN VOU T
COU T
BYP
CB Y P
(optional)
Bandgap
VRef.
REF
EN
Current Limit
Thermal Shutdown
MIC5219-x.xBM5/M/YMT
GND
IN OUT
VIN VOU T
R1 COU T
R2 CB Y P
Bandgap (optional)
VRef.
REF
EN
Current Limit
Thermal Shutdown
MIC5219BM5/MM/YMT
GND
P D (max ) =
(125 °C − 25°C )
% DC
220 °C / W Avg.P D = ( )
V – V OUT I OUT + V IN I GND
100 IN
PD(max) = 455mW % DC
Then we can determine the maximum input voltage for a 455mW = (8V – 5V ) 500mA + 8V × 20mA
100
5-volt regulator operating at 500mA, using worst case ground
current. % Duty Cycle
455mW = 1.66W
PD(max) = 455mW = (VIN – VOUT) IOUT + VIN IGND 100
IOUT = 500mA % Duty Cycle
0.274 =
VOUT = 5V 100
IGND = 20mA % Duty Cycle Max = 27.4%
455mW = (VIN – 5V) 500mA + VIN × 20mA With an output current of 500mA and a three-volt drop across
2.995W = 520mA × VIN the MIC5219-xxBMM, the maximum duty cycle is 27.4%.
2.955W Applications also call for a set nominal current output with a
VIN (max ) = = 5.683V greater amount of current needed for short durations. This is a
520mA tricky situation, but it is easily remedied. Calculate the average
Therefore, to be able to obtain a constant 500mA output cur- power dissipation for each current section, then add the two
rent from the 5219-5.0BM5 at room temperature, you need numbers giving the total power dissipation for the regulator.
extremely tight input-output voltage differential, barely above For example, if the regulator is operating normally at 50mA,
the maximum dropout voltage for that current rating. but for 12.5% of the time it operates at 500mA output, the
You can run the part from larger supply voltages if the proper total power dissipation of the part can be easily determined.
precautions are taken. Varying the duty cycle using the en- First, calculate the power dissipation of the device at 50mA.
able pin can increase the power dissipation of the device by We will use the MIC5219-3.3BM5 with 5V input voltage as
maintaining a lower average power figure. This is ideal for our example.
applications where high current is only needed in short bursts. PD × 50mA = (5V – 3.3V) × 50mA + 5V × 650µA
Figure 1 shows the safe operating regions for the MIC5219-x. PD × 50mA = 173mW
xBM5 at three different ambient temperatures and at differ-
However, this is continuous power dissipation, the actual
ent output currents. The data used to determine this figure
on‑time for the device at 50mA is (100%-12.5%) or 87.5%
assumed a minimum footprint PCB design for minimum heat
of the time, or 87.5% duty cycle. Therefore, PD must be mul-
sinking. Figure 2 incorporates the same factors as the first
tiplied by the duty cycle to obtain the actual average power
figure, but assumes a much better heat sink. A 1" square cop-
dissipation at 50mA.
per trace on the PC board reduces the thermal resistance of
the device. This improved thermal resistance improves power
dissipation and allows for a larger safe operating region.
Figures 3 and 4 show safe operating regions for the MIC5219-x.
10 10 10
100mA
8 8 100mA 8 100mA
6 200mA 6 6
200mA
4 300mA 4 4 200mA
300mA
400mA 300mA
2 2 2 500mA
400mA
500mA 500mA 400mA
0 0 0
0 20 40 60 80 100 0 20 40 60 80 100 0 20 40 60 80 100
DUTY CYCLE (%) DUTY CYCLE (%) DUTY CYCLE (%)
a. 25°C Ambient b. 50°C Ambient c. 85°C Ambient
Figure 1. MIC5219-x.xBM5 (SOT-23-5) on Minimum Recommended Footprint
10 10 10
100mA
8 8 100mA 8
100mA
6 200mA 6 6
200mA
200mA
4 300mA 4 4
300mA
400mA
2 2 400mA 2 400mA 300mA
500mA
500mA 500mA
0 0 0
0 20 40 60 80 100 0 20 40 60 80 100 0 20 40 60 80 100
DUTY CYCLE (%) DUTY CYCLE (%) DUTY CYCLE (%)
a. 25°C Ambient b. 50°C Ambient c. 85°C Ambient
Figure 2. MIC5219-x.xBM5 (SOT-23-5) on 1-inch2 Copper Cladding
10 10 10
100mA 100mA
8 8 8 100mA
200mA
6 6 200mA 6
200mA
300mA
4 4 300mA 4 300mA
400mA
2 2 400mA 2
500mA 400mA
500mA
500mA
0 0 0
0 20 40 60 80 100 0 20 40 60 80 100 0 20 40 60 80 100
DUTY CYCLE (%) DUTY CYCLE (%) DUTY CYCLE (%)
a. 25°C Ambient b. 50°C Ambient c. 85°C Ambient
Figure 3. MIC5219-x.xBMM (MSOP-8) on Minimum Recommended Footprint
10 10 10
200mA
100mA
200mA
8 8 8
300mA 200mA
6 6 6
300mA
400mA 400mA 300mA
4 4 4
500mA 400mA
2 2 500mA 2
500mA
0 0 0
0 20 40 60 80 100 0 20 40 60 80 100 0 20 40 60 80 100
DUTY CYCLE (%) DUTY CYCLE (%) DUTY CYCLE (%)
a. 25°C Ambient b. 50°C Ambient c. 85°C Ambient
Figure 4. MIC5219-x.xBMM (MSOP-8) on 1-inch2 Copper Cladding
Package Information
SOT-23-5 (M5)
Micrel Products are not designed or authorized for use as components in life support appliances, devices or systems where malfunction of a product can
reasonably be expected to result in personal injury. Life support devices or systems are devices or systems that (a) are intended for surgical implant into
the body or (b) support or sustain life, and whose failure to perform can be reasonably expected to result in a significant injury to the user. A Purchaser’s
use or sale of Micrel Products for use in life support appliances, devices or systems is at Purchaser’s own risk and Purchaser agrees to fully indemnify
Micrel for any damages resulting from such use or sale.
© 2005 Micrel, Incorporated.
Authorized Distributor
Microchip:
MIC5219-3.6YML TR MIC5219-3.3YMM MIC5219-5.0YMM MIC5219-3.0YMM MIC5219YMM MIC5219-2.5YMM
MIC5219-3.3YM5 TR MIC5219-5.0YM5 TR MIC5219YM5 TR MIC5219YMM TR MIC5219-2.5YMM TR MIC5219-
3.6YMM TR MIC5219-3.1YM5 TR MIC5219-2.85YM5 TR MIC5219-2.6YM5 TR MIC5219-3.3YMM TR MIC5219-
5.0YMT TR MIC5219-2.85YMM MIC5219-3.6YM5 TR MIC5219-3.6YMM MIC5219-2.7YM5 TR MIC5219-2.5YM5 TR
MIC5219-3.0YMM TR MIC5219-3.0YML TR MIC5219-2.9YM5 TR MIC5219-2.8YML TR MIC5219-5.0YMM TR
MIC5219-2.85YMM TR MIC5219-3.3YML TR MIC5219YMT TR MIC5219-2.8YM5 TR MIC5219-3.0YM5 TR
MIC5219-3.6YML-TR MIC5219-3.6YMM-TR MIC5219YM5-TR MIC5219-3.0YML-TR MIC5219YMM-TR MIC5219-
2.9YM5-TR MIC5219-3.1YM5-TR MIC5219-2.5YM5-TR MIC5219-2.6YM5-TR MIC5219-5.0YM5-TR MIC5219-
3.3YML-TR MIC5219-3.6YM5-TR MIC5219-2.7YM5-TR MIC5219-3.3YMM-TR MIC5219-2.5YMM-TR MIC5219-
2.8YM5-TR MIC5219-3.3YM5-TR MIC5219-5.0YMM-TR MIC5219-5.0YMT-TR MIC5219-3.0YM5-TR MIC5219YMT-
TR MIC5219-3.0YMM-TR MIC5219-2.85YMM-TR MIC5219-2.85YM5-TR MIC5219-2.8YML-TR MIC5219YM5-T5