Trigonometry
Trigonometry
The word trigonometry is originated from the Greek words “tri” means three, “gonia” means angle and
“metron” means measure. Hence, the word trigonometry means three angle measure i.e. it is the study of
geometrical figures, which have three angles i.e triangles.
2. Radian Measure : A radian is the angle subtended at the centre of a circle by an arc of length equal
to the radius of the circle. It is the written as 1c.
Note : *If an arc of length l subtends an angle 𝜃 radians at the centre of circle of radius r,
𝑙
then 𝜃 = 𝑟. This system is also called circular system.
1
* The area of the sector of a circle having a central angle 𝜃 radians is 2 𝑟 2 𝜃.
Remember :
𝜋
• 1°=180 radians = 0.0175 radians (approximately)
180
• 1c = radians = 57° 171 4411 (approximately)
𝜋
Trigonometric Functions
Definitions of trigonometric functions
𝑜𝑝𝑝𝑜𝑠𝑖𝑡𝑒 𝑠𝑖𝑑𝑒 𝑦
sin𝜃 = =𝑟
𝐻𝑦𝑝𝑜𝑡𝑒𝑛𝑢𝑠𝑒
𝑎𝑑𝑗𝑎𝑐𝑒𝑛𝑡 𝑠𝑖𝑑𝑒 𝑥
cos𝜃 = =𝑟
𝐻𝑦𝑝𝑜𝑡𝑒𝑛𝑢𝑠𝑒
𝑜𝑝𝑝𝑜𝑠𝑖𝑡𝑒 𝑠𝑖𝑑𝑒 𝑦
tan𝜃 = 𝑎𝑑𝑗𝑎𝑐𝑒𝑛𝑡 𝑠𝑖𝑑𝑒 = 𝑥
1 1 1
Note : cosec𝜃 = 𝑠𝑖𝑛𝜃; sec𝜃 = 𝑐𝑜𝑠𝜃 ; cot𝜃 = 𝑡𝑎𝑛𝜃
Signs of the trigonometric functions
• In the I-quadrant, all the trigonometric functions are +ve.
• In the II-quadrant, sin𝜃 and cosec𝜃 are +ve and the remaining trigonometric functions are –ve.
• In the III quadrant, tan𝜃 and cot𝜃 are +ve and the remaining trigonometric functions are –ve.
• In the IV-quadrant, cos𝜃 and sec𝜃 are +ve and the remaining trigonometric functions are –ve.
1⁄ 1⁄ √3⁄
Sin𝜃 0 2 1 0 -1 0
√2 2
√3⁄ 1⁄ 1⁄
Cos𝜃 1 2 0 -1 0 1
2 √2
1⁄ Not Not
Tan𝜃 0 1 √3 0 0
√3 defined defined
2⁄ Not Not
Sec𝜃 1 √2 2 -1 1
√3 defined defined
Trigonometric identities
• cos2𝜃+sin2 𝜃 =1 ⟹ sin𝜃 = √1 − 𝑐𝑜𝑠 2 𝜃
• 1+ cot2𝜃 = cosec2𝜃 ⟹ cot𝜃 = √𝑐𝑜𝑠𝑒𝑐 2 𝜃 − 1
• 1+tan2𝜃= sec2𝜃 ⟹ tan𝜃 = √𝑠𝑒𝑐 2 𝜃 − 1
3
1.If sin x = , x lies in second quadrant. Then tan x=__________
5
4 5 3 4
A) − 3 B) − 4 C) − 4 D) − 5
1 3𝜋
2.If cos x = - , 𝜋<x< then cot x=_______________
2 2
1 2 1 2
A) B) - C) - D)
√3 √3 √3 √3
𝜋 𝜋 𝜋 𝜋 𝜋
3.The values of x, if x2(sin2 4 + 2 sin2 3 ) + x(sin 6 + cos2 4 ) – cot2 6 = 0 are
3 3 3 3
A) -1 or - 2 B) 1 or - 2 C) -1 or D) 1 or
2 2
3 𝜋 5𝑐𝑜𝑠𝜃+8 𝑡𝑎𝑛𝜃
4. If tan𝜃 = - , <𝜃 <𝜋, then the value of is,
4 2 8 𝑠𝑒𝑐𝜃−3𝑐𝑜𝑠𝑒𝑐𝜃
2 5 8
A) 3 B) 8 C) 3 D) none of these
13 2𝑠𝑖𝑛∝−3𝑐𝑜𝑠∝
5.If Sec∝ = , ∝ is acute. Then the value of is
5 4𝑠𝑖𝑛∝−9𝑐𝑜𝑠∝
2 4
A)2 B)3 C)9 D) 3
6.The elevation of a tower 100 meters away is 30° then, the height of the tower is
100 50 1
A) meters B)100 meters C) meters D) meters
√3 √3 √3
7.From a point 100 meters above the ground, the angles of depression of two objects due south
on the ground are 60° and 45° then the distance between the objects is
100(√2−1) 100(√3−1) 100(√3−1) 100(√2−1)
A) mts B) mts C) mts D) mts
√3 √2 √3 √3
8.From a point on the line joining the feet of two poles of equal heights the angles of elevation of the
are observed to be 30° and 60°. If the distance between the poles is 32 feet. Find the heights of the poles and
the position of the point of observation.
A) 8√3 feet B) 7√3 feet C) 5√3 feet D) none of these
𝑠𝑖𝑛65°
9.The value of is
𝑐𝑜𝑠25°
A) 1 B)-1 C)0 D)not defined
10.If tan2A= cot (A-18°), where 2A is an acute angle then the value of A is,
A) 18° B)36° C)60° D)90°
11.If √3 tan𝜃=1 and 𝜃 is acute, then the values of sin3𝜃 and cos2𝜃 are,
1 1
A) 1, 2 B) 2 , 1 C)0,1 D) 3,2
sin (90°−𝜃) 𝑐𝑜𝑠𝜃
12. + 1−cos(90°−𝜃) is equal to
1+𝑠𝑖𝑛𝜃
A) 2cos𝜃 B) 2sin𝜃 C)-2tan𝜃 D) 2sec𝜃
2 2 2
13.The value of sin 60°+ cos 30°- sin 45° is _________
1
A) 1 B) sin90° C) D) Both (1) and (2)
2
2𝑠𝑖𝑛 𝐴−7𝑐𝑜𝑠𝐴
14.If 3tan A=4, then find the value of 3𝑐𝑜𝑠𝐴+4
−13 −13 29
A) B) C) ∞ D)
29 11 13
√3 𝑡𝑎𝑛𝐴−𝑐𝑜𝑡𝐴
15.If sin A= and A is an acute angle, then find the value of is
2 √3+ 𝑐𝑜𝑠𝑒𝑐𝐴
−2 2 2
A) B) C) D)-2
5 5 3+2√3
𝑎
16.If sin 𝜃 = 𝑏 , then cos𝜃 and tan𝜃 interms of a and b are
√𝑏2 −𝑎2 𝑏 𝑏 𝑎
A) and B) and
𝑏 √𝑏2 −𝑎2 √𝑏2 −𝑎2 √𝑏 2 −𝑎2
1 1
A) - 2 B) -2 C)2 D) 2
3𝑡𝑎𝑛30°−𝑡𝑎𝑛3 30°
19.The value of is _________
1−3𝑡𝑎𝑛230°
A)tan 90° B)tan60° C)tan45° D)tan30°
20.If sin 3𝜃 = 1 then 2𝜃 equal to
A) 30° B) 60° C)45° D)90°
3 𝑠𝑖𝑛𝜃+𝑐𝑜𝑠𝜃−𝑡𝑎𝑛𝜃
21.If cos𝜃=5, 270°<𝜃 < 360°, then 𝑠𝑒𝑐𝜃+𝑐𝑜𝑠𝑒𝑐𝜃−𝑐𝑜𝑡𝜃 =
33 34 37
A)35 B) 35 C) 35 D)none of these
𝑐𝑜𝑡 2 30° 𝑠𝑒𝑐60° 𝑡𝑎𝑛45°
22.The value of x, if x.sin30°cos245° = 𝑐𝑜𝑠𝑒𝑐 2 45° 𝑐𝑜𝑠𝑒𝑐30°
A)6 B)3 C)-3 D) -6
𝑥 𝑠𝑒𝑐 2 45° 𝑐𝑜𝑠𝑒𝑐 2 45°
23.If = 𝑐𝑜𝑡 2 30° 𝑐𝑜𝑡 2 60° , then x=
8 𝑠𝑖𝑛2 30° 𝑐𝑜𝑠2 45°
1 1 1
A) 8 B) C) D)
2 4 8
24.A man from the top of a 100 metres high tower sees a car moving towards the tower at an angle of
depression of 30°. After some time, the angle of depression becomes 60°. Find the distance travelled by the
car during the time.
200 100 150
A) m B) m C) m D)60m
√3 √3 √3
25.From the top of chiff 300m high the angles of depression of the top and bottom of a tower are observed
to be 30° and 60°respectively, then the height of the tower is________
A) 100√2 m B)200m C)150 m D)90m
nd
26. If A lies in the 2 quadrant and 3 tan A+4=0 then the value of 2cotA-5cosA+sinA is equal to
−53 37 23 7
A) 10 B) 10 C) 10 D) 10
27.The value of cos1° cos2° cos3° ………. cos179°
A)179 B)90 C)0 D)not defined
28.The angle of depression from the top of a tower of a point 70mts from the base is 45°. Then the height
of the tower is
70
A) 70 mts B)70√2 mts C) mts D) 35mts
√2
11
29.If cos ecA + cot A = , then tan A is
2
21 15 44 117
A) B) C) D)
22 16 117 43
30.If 𝑥 = 𝑟 sin 𝜃 and 𝑦 = 𝑟 cos 𝜃 then , the value of 𝑥 + 𝑦 2 is
2
1
A) 𝑟 B) 𝑟 2 C) D) 1
𝑟
31. The value of cosec 70° − sec 20° is
A) 0 B) 1 C)90° D) 50°
TOPIC: TRIGONOMETRY
1.C 2.A 3.B 4.A 5.B 6.A 7.C 8.A 9.A 10.B
11.A 12.D 13.D 14.A 15.B 16.D 17.D 18.B 19.A 20.B
21.B 22.A 23.C 24.A 25.B 26.C 27.C 28.A 29.C 30.B
31.A 32.C 33.A 34.D 35.A 36.D 37.D 38.A 39.A 40.B
41.D 42.B 43.D 44.B 45.B 46.D 47.B 48.C 49.A 50.C