0% found this document useful (0 votes)
377 views23 pages

MA1301 Math Tutorial Solutions

The document is a tutorial solution that provides answers to differentiation questions. It contains: 1) Suggested solutions to differentiate 8 functions with respect to x, simplifying the answers. 2) Suggested solutions to find the derivative dy/dx of 3 implicit functions using implicit differentiation. 3) Suggested solutions to differentiate 3 functions with respect to x using logarithmic differentiation.
Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content, claim it here.
Available Formats
Download as PDF, TXT or read online on Scribd
0% found this document useful (0 votes)
377 views23 pages

MA1301 Math Tutorial Solutions

The document is a tutorial solution that provides answers to differentiation questions. It contains: 1) Suggested solutions to differentiate 8 functions with respect to x, simplifying the answers. 2) Suggested solutions to find the derivative dy/dx of 3 implicit functions using implicit differentiation. 3) Suggested solutions to differentiate 3 functions with respect to x using logarithmic differentiation.
Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content, claim it here.
Available Formats
Download as PDF, TXT or read online on Scribd
You are on page 1/ 23

MA1301 Introductory Mathematics

Tutorial 3 Solution

TAN BAN PIN

National University of Singapore

TAN BAN PIN MA1301 Introductory Mathematics 1 / 23


Question 1

Differentiate the following functions with respect to x. Simplify your


answers.
√ 2
(b) y = 2xx2+3x+15 ;
(a) y = tan5 ( x); +x+5

(c) y = cos−1 (ln x); (d) y = x sin(ex );
 
(e) y = csc(ln x) − esec 2x ; (f) y = cot5 √1x ;
1+sin x
(g) y = 1−sin x ; (h) y = e2x −e−2x
.
e2x +e−2x

TAN BAN PIN MA1301 Introductory Mathematics 2 / 23


Question 1(a) Suggested Solution

dy √ d √
= 5 tan4 ( x) tan( x)
dx dx
4 √ √ d√
= 5 tan ( x) sec2 ( x) x
dx
√ √ 1
= 5 tan4 ( x) sec2 ( x) √
2 x

TAN BAN PIN MA1301 Introductory Mathematics 3 / 23


Question 1(b) Suggested Solution

d 2 d
dy + 3x + 15)) · (x2 + x + 5) − (2x2 + 3x + 15) ·
dx ((2x dx (x
2 + x + 5)
=
dx (x2 + x + 5)2
(4x + 3)(x2 + x + 5) − (2x2 + 3x + 15)(2x + 1)
=
(x2 + x + 5)2
−x2 − 10x
= 2
(x + x + 5)2

TAN BAN PIN MA1301 Introductory Mathematics 4 / 23


Question 1(c) Suggested Solution

dy 1 d
= −p ln x
dx 1 − (ln x)2 dx
1 1
= −p
1 − ln2 x x
1
=− p
x 1 − ln2 x

TAN BAN PIN MA1301 Introductory Mathematics 5 / 23


Question 1(d) Suggested Solution

dy d√ √ d
= x · sin(ex ) + x · sin(ex )
dx dx dx
1 √ d
= √ sin(ex ) + x · cos(ex ) (ex )
2 x dx
x
sin(e ) √
= √ + xex cos(ex )
2 x

TAN BAN PIN MA1301 Introductory Mathematics 6 / 23


Question 1(e) Suggested Solution

dy d d
= − csc(ln x) cot(ln x) ln x − esec 2x sec 2x
dx dx dx
1 d
= − csc(ln x) cot(ln x) − esec 2x sec 2x tan 2x 2x
x dx
1
= − csc(ln x) cot(ln x) − 2esec 2x sec 2x tan 2x
x

TAN BAN PIN MA1301 Introductory Mathematics 7 / 23


Question 1(f) Suggested Solution

   
dy 1 d 1
= 5 cot4 √ cot √
dx x dx x
     
4 1 2 1 d 1
= 5 cot √ (−1) csc √ √
x x dx x
    
4 1 2 1 1 −3/2
= 5 cot √ (−1) csc √ − x
x x 2
   
5 1 1 1
= cot4 √ csc2 √ √
2 x x x x
   
5 4 1 2 1
= √ cot √ csc √
2x x x x

TAN BAN PIN MA1301 Introductory Mathematics 8 / 23


Question 1(g) Suggested Solution

d d
dy + sin x) · (1 − sin x) − (1 + sin x) ·
dx (1 dx (1 − sin x)
=
dx (1 − sin x)2
cos x(1 − sin x) − (1 + sin x)(− cos x)
=
(1 − sin x)2
2 cos x
=
(1 − sin x)2

TAN BAN PIN MA1301 Introductory Mathematics 9 / 23


Question 1(h) Suggested Solution

dy d
dx (e− e−2x ) · (e2x + e−2x ) − (e2x − e−2x ) · dx
2x d
(e2x + e−2x )
=
dx (e2x + e−2x )2
(2e + 2e )(e + e ) − (e2x − e−2x )(2e2x − 2e−2x )
2x −2x 2x −2x
=
(e2x + e−2x )2
8
= 2x
(e + e−2x )2

TAN BAN PIN MA1301 Introductory Mathematics 10 / 23


Question 2

dy
Using implicit differentiation, find dx in terms of x and y.

(a) x2 + 4xy + y 2 = 20; (b) sin(x2 y) + ex−2y = 7;

(c) ln x + ln y + xy = 3.

TAN BAN PIN MA1301 Introductory Mathematics 11 / 23


Question 2(a) Suggested Solution

Differentiate x2 + 4xy + y 2 = 20 with respect to x:


 
dy dy
0 = 2x + 4 1 · y + x · + 2y
dx dx
dy
= (2x + 4y) + (4x + 2y) .
dx
Then
dy 2x + 4y x + 2y
=− =− .
dx 4x + 2y 2x + y

TAN BAN PIN MA1301 Introductory Mathematics 12 / 23


Question 2(b) Suggested Solution

Differentiate sin(x2 y) + ex−2y = 7 with respect to x:

d 2 d
0 = cos(x2 y) (x y) + ex−2y (x − 2y)
dx
 dx  
2 2 dy x−2y dy
= cos(x y) 2x · y + x +e 1−2
dx dx
dy
= (2xy cos(x2 y) + ex−2y ) + (x2 cos(x2 y) − 2ex−2y ) .
dx
Then
dy 2xy cos(x2 y) + ex−2y
=− 2 .
dx x cos(x2 y) − 2ex−2y

TAN BAN PIN MA1301 Introductory Mathematics 13 / 23


Question 2(c) Suggested Solution

Differentiate ln x + ln y + xy = 3 with respect to x:


   
1 1 dy dy 1 1 dy
0= + +1·y+x· = +y + +x .
x y dx dx x y dx

Then
1 1+xy 1
dy +y y
= − x1 =− x
1+xy =− x
1 =− .
dx y +x y y
x

TAN BAN PIN MA1301 Introductory Mathematics 14 / 23


Question 3

Using logarithmic differentiation, differentiate the following with respect to


x.
(a) y = xln x ; (b) y = (sin x)tan x ;

e−2x sin 4x
(c) y = (x2 +2)3
.

TAN BAN PIN MA1301 Introductory Mathematics 15 / 23


Question 3(a) Suggested Solution

Take logarithmic function to y = xln x :

ln y = ln(xln x ) = ln x · ln x = ln2 x.

Differentiate with respect to x:


1 dy d 1
= 2 ln x (ln x) = 2 ln x · .
y dx dx x
Then
dy 2 ln x 2 ln x
=y· = xln x = 2xln x−1 ln x.
dx x x

TAN BAN PIN MA1301 Introductory Mathematics 16 / 23


Question 3(b) Suggested Solution

Take logarithmic function to y = (sin x)tan x :

ln y = ln[(sin x)tan x ] = tan x · ln(sin x).

Differentiate with respect to x:


1 dy 1 d
= sec2 x · ln(sin x) + tan x · (sin x)
y dx sin x dx
1
= sec2 x · ln(sin x) + tan x · cos x = sec2 x · ln(sin x) + 1.
sin x
Then
dy
= y[sec2 x ln(sin x) + 1] = (sin x)tan x [sec2 x ln(sin x) + 1].
dx

TAN BAN PIN MA1301 Introductory Mathematics 17 / 23


Question 3(c) Suggested Solution
Take logarithmic function:

e−2x sin 4x 1
ln y = ln = ln(e−2x sin 4x) − 3 ln(x2 + 2)
(x2 + 2)3 2
1
= [ln(e−2x ) + ln(sin 4x)] − 3 ln(x2 + 2)
2
1
= −x + ln(sin 4x) − 3 ln(x2 + 2).
2
Differentiate with respect to x:
1 dy 1 1 d 3 d 2
= −1 + (sin 4x) − 2 (x + 2)
y dx 2 sin 4x dx x + 2 dx
1 1 3
= −1 + 4 cos 4x − 2 · 2x
2 sin 4x x +2
6x
= −1 + 2 cot 4x − 2 .
x +2
TAN BAN PIN MA1301 Introductory Mathematics 18 / 23
Question 3(c) Suggested Solution

Then
 
dy 6x
= y −1 + 2 cot 4x − 2
dx x +2

−2x
 
e sin 4x 6x
= · −1 + 2 cot 4x − 2 .
(x2 + 2)3 x +2

TAN BAN PIN MA1301 Introductory Mathematics 19 / 23


Question 4

Find the first and second derivatives of y with respect to x. Simplify your
answers.
(a) x = et + 1, y = tet , t is the parameter.
(b) x = sin θ, y = 1 − 2 cos θ, θ is the parameter.
(c) x = t − sin t, y = 1 − cos t, t is the parameter.

TAN BAN PIN MA1301 Introductory Mathematics 20 / 23


Question 4(a) Suggested Solution

dx dy
dt = et and dt = 1 · et + t · et = (1 + t)et . Then

dy dy/dt (1 + t)et
= = = 1 + t,
dx dx/dt et

and
d2 y
 
1 d dy 1 d
= · = · (1 + t) = e−t · 1 = e−t .
dx2 dx/dt dt dx et dt

TAN BAN PIN MA1301 Introductory Mathematics 21 / 23


Question 4(b) Suggested Solution

dx dy
dθ = cos θ and dθ = −2(− sin θ) = 2 sin θ. Then

dy dy/dθ 2 sin θ
= = = 2 tan θ,
dx dx/dθ cos θ

and
d2 y
 
1 d dy 1 d
2
= · = · (2 tan θ) = sec θ · 2 sec2 θ = 2 sec3 θ.
dx dx/dθ dθ dx cos θ dθ

TAN BAN PIN MA1301 Introductory Mathematics 22 / 23


Question 4(c) Suggested Solution
dx dy
dt = 1 − cos t and dt = sin t. Then
dy dy/dt sin t
= = ,
dx dx/dt 1 − cos t
and
d2 y
   
1 d dy 1 d sin t
2
= · = ·
dx dx/dt dt dx 1 − cos t dt 1 − cos t
d d
1 sin t · (1 − cos t) − sin t · dx
dx (1 − cos t)
= · 2
1 − cos t (1 − cos t)
1 cos t · (1 − cos t) − sin t · sin t
= ·
1 − cos t (1 − cos t)2
1 cos t − cos2 t − sin2 t
= ·
1 − cos t (1 − cos t)2
1 cos t − 1 1
= · 2
=− .
1 − cos t (1 − cos t) (1 − cos t)2
TAN BAN PIN MA1301 Introductory Mathematics 23 / 23

You might also like