MA1301 Introductory Mathematics
Tutorial 3 Solution
                      TAN BAN PIN
                National University of Singapore
TAN BAN PIN       MA1301 Introductory Mathematics   1 / 23
Question 1
 Differentiate the following functions with respect to x. Simplify your
 answers.
               √                                   2
                                        (b) y = 2xx2+3x+15 ;
(a) y = tan5 ( x);                                   +x+5
                                                 √
(c) y = cos−1 (ln x);                   (d) y = x sin(ex );                                                      
(e) y = csc(ln x) − esec 2x ;           (f) y = cot5 √1x ;
          1+sin x
(g) y =   1−sin x ;                         (h) y =      e2x −e−2x
                                                                   .
                                                         e2x +e−2x
       TAN BAN PIN          MA1301 Introductory Mathematics               2 / 23
Question 1(a) Suggested Solution
                   dy           √ d         √
                      = 5 tan4 ( x) tan( x)
                   dx               dx
                             4 √          √ d√
                      = 5 tan ( x) sec2 ( x)      x
                                              dx
                                √         √    1
                      = 5 tan4 ( x) sec2 ( x) √
                                              2 x
     TAN BAN PIN         MA1301 Introductory Mathematics   3 / 23
Question 1(b) Suggested Solution
        d     2                                                d
dy           + 3x + 15)) · (x2 + x + 5) − (2x2 + 3x + 15) ·
       dx ((2x                                                dx (x
                                                                   2   + x + 5)
   =
dx                               (x2 + x + 5)2
     (4x + 3)(x2 + x + 5) − (2x2 + 3x + 15)(2x + 1)
   =
                     (x2 + x + 5)2
      −x2 − 10x
   = 2
     (x + x + 5)2
       TAN BAN PIN       MA1301 Introductory Mathematics                  4 / 23
Question 1(c) Suggested Solution
                   dy          1        d
                      = −p                ln x
                   dx      1 − (ln x)2 dx
                              1      1
                      = −p
                           1 − ln2 x x
                               1
                      =− p
                         x 1 − ln2 x
     TAN BAN PIN      MA1301 Introductory Mathematics   5 / 23
Question 1(d) Suggested Solution
                   dy    d√                √     d
                      =      x · sin(ex ) + x ·    sin(ex )
                   dx   dx                      dx
                          1              √            d
                      = √ sin(ex ) + x · cos(ex ) (ex )
                        2 x                          dx
                             x
                        sin(e )     √
                      = √ + xex cos(ex )
                         2 x
     TAN BAN PIN            MA1301 Introductory Mathematics   6 / 23
Question 1(e) Suggested Solution
        dy                         d                d
           = − csc(ln x) cot(ln x) ln x − esec 2x     sec 2x
        dx                        dx               dx
                                  1                         d
           = − csc(ln x) cot(ln x) − esec 2x sec 2x tan 2x 2x
                                  x                        dx
                                  1
           = − csc(ln x) cot(ln x) − 2esec 2x sec 2x tan 2x
                                  x
     TAN BAN PIN        MA1301 Introductory Mathematics         7 / 23
Question 1(f) Suggested Solution
                                                
            dy                  1     d         1
               = 5 cot4        √         cot √
            dx                   x dx            x
                                                           
                           4    1             2    1    d    1
                   = 5 cot     √     (−1) csc     √         √
                                 x                  x dx      x
                                                             
                           4    1             2    1      1 −3/2
                   = 5 cot √         (−1) csc √          − x
                                 x                  x     2
                                              
                     5          1             1      1
                   = cot4 √           csc2 √         √
                     2            x            x x x
                                                   
                        5        4    1       2    1
                   = √ cot √               csc √
                     2x x              x            x
     TAN BAN PIN               MA1301 Introductory Mathematics        8 / 23
Question 1(g) Suggested Solution
               d                                              d
     dy           + sin x) · (1 − sin x) − (1 + sin x) ·
              dx (1                                          dx (1   − sin x)
        =
     dx                            (1 − sin x)2
            cos x(1 − sin x) − (1 + sin x)(− cos x)
          =
                          (1 − sin x)2
               2 cos x
          =
            (1 − sin x)2
     TAN BAN PIN           MA1301 Introductory Mathematics                      9 / 23
Question 1(h) Suggested Solution
  dy      d
         dx (e− e−2x ) · (e2x + e−2x ) − (e2x − e−2x ) · dx
              2x                                          d
                                                            (e2x + e−2x )
     =
  dx                            (e2x + e−2x )2
       (2e + 2e )(e + e ) − (e2x − e−2x )(2e2x − 2e−2x )
          2x     −2x     2x    −2x
     =
                              (e2x + e−2x )2
             8
     = 2x
       (e + e−2x )2
     TAN BAN PIN          MA1301 Introductory Mathematics                   10 / 23
Question 2
                                        dy
Using implicit differentiation, find    dx   in terms of x and y.
(a) x2 + 4xy + y 2 = 20;                     (b) sin(x2 y) + ex−2y = 7;
(c) ln x + ln y + xy = 3.
       TAN BAN PIN           MA1301 Introductory Mathematics              11 / 23
Question 2(a) Suggested Solution
Differentiate x2 + 4xy + y 2 = 20 with respect to x:
                                                                                        dy        dy
                   0 = 2x + 4 1 · y + x ·       + 2y
                                           dx        dx
                                              dy
                     = (2x + 4y) + (4x + 2y) .
                                              dx
Then
                      dy    2x + 4y    x + 2y
                         =−         =−        .
                      dx    4x + 2y    2x + y
       TAN BAN PIN        MA1301 Introductory Mathematics   12 / 23
Question 2(b) Suggested Solution
Differentiate sin(x2 y) + ex−2y = 7 with respect to x:
                      d 2               d
         0 = cos(x2 y)  (x y) + ex−2y (x − 2y)
                     dx
                                     dx               
                  2              2 dy      x−2y       dy
           = cos(x y) 2x · y + x        +e        1−2
                                   dx                 dx
                                                                   dy
           = (2xy cos(x2 y) + ex−2y ) + (x2 cos(x2 y) − 2ex−2y )      .
                                                                   dx
Then
                         dy   2xy cos(x2 y) + ex−2y
                            =− 2                    .
                         dx   x cos(x2 y) − 2ex−2y
       TAN BAN PIN           MA1301 Introductory Mathematics              13 / 23
Question 2(c) Suggested Solution
Differentiate ln x + ln y + xy = 3 with respect to x:
                                                                    1 1 dy                dy       1         1     dy
        0= +            +1·y+x·        =      +y +      +x     .
             x y dx                dx       x         y     dx
Then
                             1             1+xy                1
                     dy        +y                                    y
                        = − x1    =−         x
                                           1+xy      =−        x
                                                               1   =− .
                     dx     y +x             y                 y
                                                                     x
       TAN BAN PIN           MA1301 Introductory Mathematics              14 / 23
Question 3
Using logarithmic differentiation, differentiate the following with respect to
x.
(a) y = xln x ;                               (b) y = (sin x)tan x ;
          √
              e−2x sin 4x
(c) y =       (x2 +2)3
                          .
        TAN BAN PIN           MA1301 Introductory Mathematics             15 / 23
Question 3(a) Suggested Solution
Take logarithmic function to y = xln x :
                         ln y = ln(xln x ) = ln x · ln x = ln2 x.
Differentiate with respect to x:
                         1 dy          d                1
                              = 2 ln x (ln x) = 2 ln x · .
                         y dx         dx                x
Then
                     dy     2 ln x         2 ln x
                        =y·        = xln x        = 2xln x−1 ln x.
                     dx        x              x
       TAN BAN PIN               MA1301 Introductory Mathematics     16 / 23
Question 3(b) Suggested Solution
Take logarithmic function to y = (sin x)tan x :
                     ln y = ln[(sin x)tan x ] = tan x · ln(sin x).
Differentiate with respect to x:
   1 dy                                  1 d
        = sec2 x · ln(sin x) + tan x ·          (sin x)
   y dx                                sin x dx
                                         1
        = sec2 x · ln(sin x) + tan x ·       cos x = sec2 x · ln(sin x) + 1.
                                       sin x
Then
       dy
          = y[sec2 x ln(sin x) + 1] = (sin x)tan x [sec2 x ln(sin x) + 1].
       dx
       TAN BAN PIN              MA1301 Introductory Mathematics              17 / 23
Question 3(c) Suggested Solution
Take logarithmic function:
                  √
                    e−2x sin 4x   1
        ln y = ln               = ln(e−2x sin 4x) − 3 ln(x2 + 2)
                   (x2 + 2)3      2
               1
             = [ln(e−2x ) + ln(sin 4x)] − 3 ln(x2 + 2)
               2
                     1
             = −x + ln(sin 4x) − 3 ln(x2 + 2).
                     2
Differentiate with respect to x:
          1 dy        1 1 d                    3     d 2
               = −1 +             (sin 4x) − 2        (x + 2)
          y dx        2 sin 4x dx            x + 2 dx
                      1 1                    3
               = −1 +          4 cos 4x − 2      · 2x
                      2 sin 4x             x +2
                                    6x
               = −1 + 2 cot 4x − 2       .
                                  x +2
      TAN BAN PIN          MA1301 Introductory Mathematics         18 / 23
Question 3(c) Suggested Solution
Then
                                             
               dy                        6x
                  = y −1 + 2 cot 4x − 2
               dx                       x +2
                    √
                        −2x
                                                        
                      e     sin 4x                    6x
                  =                · −1 + 2 cot 4x − 2     .
                     (x2 + 2)3                      x +2
       TAN BAN PIN         MA1301 Introductory Mathematics     19 / 23
Question 4
Find the first and second derivatives of y with respect to x. Simplify your
answers.
(a) x = et + 1, y = tet ,     t is the parameter.
(b) x = sin θ, y = 1 − 2 cos θ,      θ is the parameter.
(c) x = t − sin t, y = 1 − cos t,      t is the parameter.
      TAN BAN PIN          MA1301 Introductory Mathematics              20 / 23
Question 4(a) Suggested Solution
dx              dy
dt   = et and   dt   = 1 · et + t · et = (1 + t)et . Then
                          dy   dy/dt   (1 + t)et
                             =       =           = 1 + t,
                          dx   dx/dt      et
and
         d2 y
                                        
                  1    d            dy           1 d
              =      ·                       =     · (1 + t) = e−t · 1 = e−t .
         dx2    dx/dt dt            dx           et dt
       TAN BAN PIN              MA1301 Introductory Mathematics                  21 / 23
Question 4(b) Suggested Solution
dx                    dy
dθ   = cos θ and      dθ   = −2(− sin θ) = 2 sin θ. Then
                               dy   dy/dθ   2 sin θ
                                  =       =         = 2 tan θ,
                               dx   dx/dθ    cos θ
and
d2 y
                                   
         1    d                dy             1   d
   2
     =      ·                           =        · (2 tan θ) = sec θ · 2 sec2 θ = 2 sec3 θ.
dx     dx/dθ dθ                dx           cos θ dθ
        TAN BAN PIN                     MA1301 Introductory Mathematics                22 / 23
Question 4(c) Suggested Solution
dx                     dy
dt   = 1 − cos t and   dt   = sin t. Then
                              dy   dy/dt     sin t
                                 =       =           ,
                              dx   dx/dt   1 − cos t
and
         d2 y                                                                                
                  1    d             dy            1       d             sin t
            2
              =      ·                        =          ·
         dx     dx/dt dt             dx         1 − cos t dt           1 − cos t
                                  d                              d
                    1             sin t · (1 − cos t) − sin t · dx
                                 dx                                (1 − cos t)
               =             ·                               2
                 1 − cos t                      (1 − cos t)
                    1          cos t · (1 − cos t) − sin t · sin t
               =             ·
                 1 − cos t                (1 − cos t)2
                    1          cos t − cos2 t − sin2 t
               =             ·
                 1 − cos t           (1 − cos t)2
                    1           cos t − 1               1
               =             ·              2
                                              =−                 .
                 1 − cos t     (1 − cos t)         (1 − cos t)2
        TAN BAN PIN              MA1301 Introductory Mathematics                       23 / 23