0% found this document useful (0 votes)
51 views30 pages

IA2 General Revision Solutions 2020

This document provides worked solutions to problems involving complex numbers, trigonometry, vectors, and matrices. The first problem solves a system of equations to find the coordinates of a point P given the position vector and torque. The second problem finds the angle θ that satisfies an equation relating complex numbers. Subsequent problems prove trigonometric and algebraic identities, manipulate complex expressions, use mathematical induction to derive a pattern, and calculate the area of a triangle using vectors.

Uploaded by

Person Gainable
Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content, claim it here.
Available Formats
Download as PDF, TXT or read online on Scribd
0% found this document useful (0 votes)
51 views30 pages

IA2 General Revision Solutions 2020

This document provides worked solutions to problems involving complex numbers, trigonometry, vectors, and matrices. The first problem solves a system of equations to find the coordinates of a point P given the position vector and torque. The second problem finds the angle θ that satisfies an equation relating complex numbers. Subsequent problems prove trigonometric and algebraic identities, manipulate complex expressions, use mathematical induction to derive a pattern, and calculate the area of a triangle using vectors.

Uploaded by

Person Gainable
Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content, claim it here.
Available Formats
Download as PDF, TXT or read online on Scribd
You are on page 1/ 30

Brisbane School of Distance Education

IA2 general revision


Worked Solutions

1. A force acting on a particle at the point P, whose position vector, with respect to
an origin O, is . The torque of this force about O is calculated as: .
Given 3 5 2 and 7 3 3 and | | 2, determine the co‐ordinates of
the point P, assuming the force is measured in Newtons, is measured in metres and in
Nm.

Solution:

Let

| |
7 3
3 5
3 2
2 5 2 3 5 3
3 5 2

Requirements to be satisfied:

2 5 7… ∴ 1.5 1.5
2 3 3…....
5 3 3….. ∴ 3.5 2.5

and 4 | | 2

On substituting 1.5 1.5, 3.5 2.5 into 4

1.5 1.5 3.5 2.5 4, expand and solve quadratic 38 88 42 0

a =0.-0.495, b = -1.825, c= 0.67 OR

a = -0.9645, b=-0.6075, c=1.643

IA2 general revision ‐ 2020


Brisbane School of Distance Education
2. Given:

z1  12(cos120  i sin120)
z 2  15(cos 20  i sin 20)
z 3  20(cos 230  i sin 230)
z 4  r(cos   i sin )

Find and  if z 3  z 4 2  z1  z 2 where 90    180

Solution:

20cis230 (r 2cis2)  12cis120 15cis(20)


 180cis140
r 2  9cis(90)  9cis270  r  3 and   135

3. If  is the nth root of unity, prove that :


n


k 1
k 1
0

Present a clear and valid mathematical argument.

Solution:

n  1 i.e.  is the nth root of unity.


n


k 1
k 1
 0  1  2  3  .......n 1

 1  w  2  3  .......n 1
1( n  1)
  0 since n  1
 1

IA2 general revision ‐ 2020


Brisbane School of Distance Education
sin  (3 - tan 2 ) 
4. Remembering that tan  = , prove that tan 3 = tan   
cos  (1 - 3tan  ) 
2

Solution 2 methods

cos 3 + isin 3 = (cos  + isin )3 = cos3  + 3 cos2  isin  + 3 cos  i2sin2  + i3sin3 

cos 3 = cos3  ‐ 3 cos  sin2 , sin 3 = 3 cos2  sin  ‐ sin3 

Now tan3 = sin 3 / cos3

= (3 cos2  sin  ‐ sin3 ) / (cos3  ‐ 3 cos  sin2 )

= sin  (3 cos2  ‐ sin2 ) / cos  (cos2  ‐ 3 sin2 )

= tan  (3 ‐ sin2  / cos2 ) / (1‐ 3 sin2  / cos2 )

= tan  (3 ‐ tan2 ) / (1‐ 3 tan2 )

OR

LHE = (z3 – z -3)/2i (z3 + z -3)/2

 (z - z -1 ) 2   (z + z -1 )2 (z - z -1 )2 
 3 2  (z - z -1 )  3  
(z - z ) -1
i (z + z -1 )2   (z + z -1 )2 (z + z -1 )2  (z - z -1 )  3(z + z -1 )2  (z - z -1 )2 
RHE    
i(z + z -1 )  3(z - z -1 )2  i(z + z -1 )  (z + z )
-1 2
3(z - z -1 )2  i(z + z -1 )  (z + z -1 )2  3(z - z -1 )2 
1 
 i 2 (z + z -1 )2  
 (z + z -1 )2 (z + z -1 )2 
   
(z - z )  3(z + 2 + z )  (z - 2 + z )  (z - z )  4z + 4 + 4z 
-1 2 -2 2 -2 -1 2 -2
    
i(z + z -1 )  (z 2 + 2 + z -2 )  (z 2 - 2 + z -2 )  i(z + z -1 )  4z 2 - 4 + 4z -2 

(z - z -1 )  4z 2 + 4 + 4z -2  (z - z -1 )  z 2 + 1 + z -2   z 3 + z + z -1  z  z 1  z 3   z3  z 3 
      
i(z + z -1 )  4z 2 - 4 + 4z -2  i(z + z -1 )  z 2 - 1 + z -2   i(z3  z + z -1  z  z 1  z 3 )   i(z3  z 3 ) 
 LHE

5. When plotted on an Argand diagram and joined together the roots of a complex
7
equation form an equilateral triangle. One of the roots has an argument of  and
12
a modulus of 2. Write the original complex equation.

Solution:
The roots form an equilateral triangle so the original equation has power 3 and since

IA2 general revision ‐ 2020


Brisbane School of Distance Education
7
z  2cis (  ) is one root
12
The original equation is

7 3
z 3  (2cis( )) = 4 2 (1  i )
12

3 2 
A 
6. Given 1 0  ,

 2n 1  1 2  2n 1 
Prove by mathematical induction that A n   n n 
, for n  1
 2 1 2  2 

Solution:

Step 1: Prove that the statement is true for n = 1.

 211  1 2  211  3 2


A  1
1
1 
  as required.
 2  1 2  2  1 0 
Step 2: Assume the statement is true for n = k

 2k 1  1 2  2k 1 
Ak   k k 
…………………………..(1)
 2  1 2  2 
Required to prove the statement is true for n = k +1

k 1  2k  2  1 2  2k  2 
A   k 1 k 1 
…………………………(2)
2 1 2  2 
Now

A k 1  A k  A
 2k 1  1 2  2k 1  3 2  3  2k 1  3  2  2k 1 2  2k 1  1(2) 
 k k    
 2  1 2  2  1 0   3 2  3  2  2 2  2k  2 
k k

 2  2k 1  1 2k  2  2 
 k 1 
 2  2  1 2  2 
k

 2k  2  1 2  2k  2 
  k 1 k 1 
as required
2 1 2  2 
The statement is therefore true for n = k+1

Step 3:

IA2 general revision ‐ 2020


Brisbane School of Distance Education
Therefore, by the principle of mathematical induction the result holds for positive integer values
of k when n = k and when n = k+1. The result therefore holds for all positive integer values of n
provided n  1.

7.

8.

Select an origin, O, to form a right‐hand system of co‐ordinate axes, say, the left‐back corner of
the sandpit. Relative to this origin, the co‐ordinates of the vertices are respectively:, , and.
0,5,2 , 10,10,4 5,0,3 The shade cloth has an area represented by the ∆ .
This area may be represented by | |.

Now to find .
5 5
5 10 5 5 1
1 1 5 10 1
5 10 5 5 50 25
15 75

1 1 2
152 75 38.2 2
2 2

15 26
The area of the shade cloth is or approximately 38.2 m2.
2

IA2 general revision ‐ 2020


Brisbane School of Distance Education
9.

(a) Assuming no air-resistance, the initial velocity r  0  is given by x iˆ  y ˆj m/s where



3
x  25cos  x  25   x  15
5
4
y  25sin   y  25   y  20
5

Hence, r  0   15iˆ  20 ˆj m/s


(b) At time t ,  r  t    g ˆj and selecting g  10 m / s 2 , leads to r  t     ˆj dt and hence



that r  t   10t ˆj  c .
 
Since r  0   15iˆ  20 ˆj then r  t   15iˆ   20  10t  ˆj m/s.
 

(c) (i) r  t   15iˆ   20  10t  ˆj implies that



r  t   15t iˆ   20t  5t 2  ˆj  c . The initial displacement of the
 
projectile may be expressed as r  0    ˆj and hence

the displacement at t time is given by
r  t   15t iˆ   5  20t  5t 2  ˆj . The time of flight of the

projectile can now be found by solving 5  20t  5t 2  0 .
The solutions being t  2  5 seconds. We reject t  2  5
because t  0 , hence t  2  5   4.236  seconds is the only
acceptable derived value of t. Hence the range is given by
 
15 2  5   63.541 metres from the foot of the launch platform.

 
(ii) Impact velocity is then determined from r 2  5  15iˆ  10 5 ˆj .

3 5
 
Hence r 2  5  5 29   26.926  m/s acting at tan 1   to
  10 
the downwards vertical ( i.e., at  3351 ).

(iii) Find the time when displacement is 25m.


r  t   15t iˆ   5  20t  5t 2  ˆj

| r (t ) ||15t iˆ   5  20t  5t 2  ˆj |

25  (15t ) 2   5  20t  5t 2 
2

252  (15t )2   5  20t  5t 2 


2

Using “solve” on GC gives 1

IA2 general revision ‐ 2020


Brisbane School of Distance Education

v  t   15iˆ   20  10t  ˆj

Now v(1) = 15i + 10j
| v(1) |= 152  100  325  18.03m / s
Angle = tan 33.7 .

10.

(a) p1  t    a  2b  t iˆ + 2bt ˆj and p 2  t    2a  b  iˆ  b ˆj


 
p2  t     2a  b  iˆ  b ˆj.dt

p2  t    2a  b  t iˆ  bt ˆj + c
 
As p2  0   a ˆj , then p2  0   c and hence c  a ˆj
   
p2  t    2 a  b  t iˆ  bt ˆj + a ˆj

 p2  t    2a  b  t iˆ   a - bt  ˆj

(b) The particles collide when p1  t   p2  t 
 
That is, when  a  2b  t iˆ + 2bt ˆj   2 a  b  t iˆ   a - bt  ˆj
  a  2b  t   2a  b  t  A
and 2bt  a - bt  B

From equation A a  3b provided t  0 and from B 3bt  3b


provided that b  0 , produces t  1 second.
Therefore the particles collide after one second.

(c) The co-Ordinates of the point of intersection are found by evaluating either p1 1 or

p2 1 . In either case, the collision point is given by  a  2b  iˆ + 2b ˆj which reduces to

 5a 2a 
5b iˆ + 2b ˆj . Hence the point of intersection is  5b, 2b  provided b  0 or  , 
 3 3 
provided that a  0 .

11.

Locate the origin, O, at the foot of the altitude of the aircraft’s position at time t and in the
horizontal plane containing the stranded pilot. Assume that the canister is released at time t=0
seconds relative to O.

IA2 general revision ‐ 2020


Brisbane School of Distance Education
The displacement of the canister at time t seconds after it is released is given by r  t  where the

unit vectors iˆ and ĵ are taken in the sense of + ĵ being vertically upwards and + iˆ horizontally
in the direction of motion relative to the origin, O.

From the given data, relative to the origin, O, r  0   120 ˆj and r  0   60 iˆ . We require the
 
displacement of the canister at time t i.e. at the point indicated by A in the above diagram.

Assuming there are no external forces acting on the motion of the canister, other than gravity,
then  r   g ˆj m / sec 2 and r  t    gt ˆj  c . Hence, r  t   60 iˆ  gt ˆj and from which
  
r  t   60t iˆ  21 gt 2 ˆj + c .
 

Applying the initial conditions, then we may say that r  t   60t iˆ    21 gt 2  ˆj represents

the location of the canister at time t. The canister lands in the water when r vert  t   0 , i.e.,
 
when 120  21 gt 2  0 .

Therefore, t  2 6 seconds ( if g is selected as 10 m / sec 2 ) and rejecting the negative value


of t since t  0 , then the range of the canister on impact with the water is given by 60t . From
which the range is determined as 120 6 metres.

The pilot is drifting at 1 m / sec because of the current. In 2 6 seconds, the pilot will have
drifted 2 6 metres.

Given that the range of the canister from the plane to the pilot is D metres, then
D  2 6  50  120 6 metres. Hence, D  118 6  50 metres and an acceptable range of
values for D is given by

118 6  50  D  118 6  50 metres.

However, the value D  118 6 metres should be excluded, as the canister will land on the
pilot !

12.

IA2 general revision ‐ 2020


Brisbane School of Distance Education

IA2 general revision ‐ 2020


Brisbane School of Distance Education

13.

IA2 general revision ‐ 2020


Brisbane School of Distance Education

IA2 general revision ‐ 2020


Brisbane School of Distance Education
14.

IA2 general revision ‐ 2020


Brisbane School of Distance Education
15.

IA2 general revision ‐ 2020


Brisbane School of Distance Education

16.

17.

18.

Write l1 in parametric form:

x  3  2k , y  2  3k , z  5  4k

Substitute the parametric equation into the equation for the plane.

2  3  2k   7  2  3k   3  5  4k   125
6  4k  14  21k  15  12k  125
23  37k  125
125  23
k
37
k 4
Determine the location on the line when k  4 .
x  3  2  4  11
y  2  3  4  10
z  5  4  4  11

The plane is intersected by the line at the point Q 11,10, 11 .

IA2 general revision ‐ 2020


Brisbane School of Distance Education
The second particle travels through P  4, 6, 9 and Q 11,10, 11 .
d q p
  
  
d  11iˆ  10 ˆj  11kˆ  4iˆ  6 ˆj  9kˆ


d  15iˆ  16 ˆj  2kˆ

r akd
  
The path of the second particle is given by the vector equation,

  
r  4iˆ  6 ˆj  9kˆ  k 15iˆ  16 ˆj  2kˆ


or

  
r  11iˆ  10 ˆj  11kˆ  k 15iˆ  16 ˆj  2kˆ

19.
The system has infinitely many solutions. The solution can be described by the parametric equations of a line.

For this to be true;

nˆ1  nˆ2  nˆ3  0 and

nˆ1  nˆ2  nˆ2  nˆ3 and 0  nˆ2  nˆ3

iˆ ˆj kˆ
nˆ1  nˆ2  7 5 1
6 4 24
5 1 7 1
 iˆ  ˆj
4 24 6 24
7 5
 kˆ
6 4
 116iˆ  174 ˆj  58kˆ
The directional vector of the line of intersection of the three planes is given by,

116iˆ  174 ˆj  58 kˆ . As there are infinitely many solutions the free variable z will be defined as z  t .

IA2 general revision ‐ 2020


Brisbane School of Distance Education
7 5 1 21 
 
A | B   6 4 24 156 
 0 0 0 0 
ref  A | B  :
1 0 2 12 
 
A | B  0 1 3 21 
0 0 0 0 

let z  t
From R 2 : y  3t  21
 y  21  3t
From R1 : x  2t  12
 x  12  2t
The line is defined by the parametric equations:

x  12  2t , y  21  3t , z  t
This solution must satisfy the third plane:

p3 : 2 x  b3 y  8 z  d3
Sub in x  12  2t , y  21  3t , z  t
2  12  2t   b3  21  3t   8t  d3
24  4t  21b3  3tb3  8t  d3
24  21b3  3tb3  12t  d3
For this to satisfy the equation
the terms containing the parameter
t must equal zero.
3tb3  12t  0
12t
b3   4
3t
Rewrite
24  21b3  3tb3  12t  d3
24  21  4  3t  4  12t  d3
60  d3
 d3  60
 p3 :  2 x  4 y  8 z  60

IA2 general revision ‐ 2020


Brisbane School of Distance Education

20.

5  1
x  t    t   [1]
2 t 
 1
y  t   4  t   [2]
 t
Rewrite [1]:
2x 1
t
5 t
Squaring this gives,
4 x2 1
 t 2  2  2 [3]
25 t
Rewrite [2]:
y 1
t
4 t
Squaring this gives,
y2 1
 t 2  2  2 [4]
16 t
[3]  [4] :
4 x2 y 2
 4
25 16
x2 y 2
 1
25 64

IA2 general revision ‐ 2020


Brisbane School of Distance Education
21.

a)

a  9.8

v   a dt
 
  9.8 dt
v  9.8t  c1
 
When t  0, v  0 :

 c1  0

 v  9.8t

x   v dt
 
  9.8t dt
x  4.9t 2  c2
 
When t  0, x  0 :

 c2  0

 x  4.9t 2

or

x  lt 2  mt  n
v  2lt  m
a  2l
It is known,
t  0 , v  0 m  0
a  9.8

2l  9.8
l  4.9
v  9.8t  m
v  9.8t
x  4.9t 2
Assume the well is at ground level,  n  0
t  6 , x  4.9  6
2

 176.4

The bottom of the well is 176.4 metres below ground level.

IA2 general revision ‐ 2020


Brisbane School of Distance Education

b)

t  6,
v  9.8  6
v  58.8 m/s
Speed  v  58.8
 58.8 m/s

22.

a)
  360 revolutions per minute (rpm)
360  2
=
60
 12 rad s 1

b)
v  r
 12  12
 144 m sec 1  v  452.389 m sec 
1

23.

a)

v  23m/s   19
r  t   9.8 ˆj


r  t    9.8 ˆj dt

 9.8t  c1

r  0   23cos 19  iˆ  23sin 19  ˆj

 
r  t   23cos 19  iˆ  23sin 19   9.8t ˆj

r  0   1.7 ˆj

r  t   23t cos 19  iˆ

 
 1.7  23t sin 19   4.9t 2 ˆj

IA2 general revision ‐ 2020


Brisbane School of Distance Education
Let the vertical component equal zero:
0  1.7  23t sin 19   4.9t 2
Solve for t using graphics calculator:
t  1.7289s (ignoring the negative solution)
r 1.7289   23 1.7289  cos 19  iˆ


 1.7  23 1.7289  sin 19   4.9 1.7289  ˆj
2

r 1.7289   37.5983iˆ

The ball travelled a horizontal distance of 40.6211 metres. The time of flight was 1.8679 seconds.

b) The ball will rise and reach maximum height when the vertical component of its velocity is zero.

 
r  t   23cos 19  iˆ  23sin 19   9.8t ˆj

23sin 19   9.8t  0
23sin 19 
t
9.8
t  0.7641s

r  0.7641  23  0.7641 cos 19  iˆ




 1.7  23  0.7641 sin 19   4.9  0.7641 ˆj
2

r  0.7641  16.6166iˆ  4.5608 ˆj

IA2 general revision ‐ 2020


Brisbane School of Distance Education

24.

IA2 general revision ‐ 2020


Brisbane School of Distance Education
i)
4rev  4s
1 rev  1s
2
T

2
1

  2 rads 1
ii )
Velocity of particle
v  r
v  0.75  2
v  1.5 ms 1
When water escapes the umbrella:
v H  1.5 ms 1 , vV  0 ms 1
Determine when water hits the
ground level.
x  lt 2  mt  n
v  2lt  m
a  2l
Gravity, a  9.8m/s 2
 l  4.9, m  0, n  1.8
x  4.9t 2  1.8
Let x  0
Solve for x:
1.8
x
4.9
x  0.6061s
The droplet travels 0.6061s at1.5 ms 1.
Distance =0.6061  1.5
 2.856 m
The radius of the circle:
r  
0.752  2.856 2 m
r  2.953 m
The diameter of the circle:
D  (2  r ) m
D  (2  2.953) m
D  5.906 m

IA2 general revision ‐ 2020


Brisbane School of Distance Education
25.
5
     
 2cis  6   25 cis  5  
    6

   
3
 
4cis  43cis  3   
    3
  3 
32  5 
 cis    
64  6 
1  11 
 cis  
2  6 
1  
 cis   
2  6

26.

 z : z  2  3i  9
Substitute z  x  yi
x  yi  2  3i  9
 x  2    y  3 i 9

 x  2    y  3  9
2 2

 x  2    y  3  81
2 2

The equation represents a circle with a centre at C = (2, –3) and radius, r = 9.

27.

z4  1

IA2 general revision ‐ 2020


Brisbane School of Distance Education
1  cis(0)

z 4  cis(0)
 0 2 k 
z  4 1cis   
4 4 

 2 0 
Let k  0, z1  cis  
 4 
 2k 
z  1cis    cis  0 
 4 
1

 2 1  
Let k  1, z2  cis  
 4 
 
 cis  
2

 2 2 
Let k  2, z3  cis  
 4 
 cis  

 2  3 
Let k  3, z4  cis  
 4 
 3 
 cis  
 2 

   3 
z1  1, z2 = cis   , z3 = cis   , z4 = cis  
2  2 

28.

IA2 general revision ‐ 2020


Brisbane School of Distance Education
Solve 0  z  z  31z  111,
3 2

given z1  3 is a solution for P  z  .


z 2  2 z  37
z  3 z 3  z 2  31z  111
 ( z 3  3z 2   )
2 z 2  31z  111
( 2z2  6z  )
37 z  111
( 37 z  111)
0

0  z 2  2 z  37
0  z  2 z  1  1  37
0   z  1  36
2

0   z  1   36i 2 
2

0   z  1   6i 
2 2

0   z  1  6i  z  1  6i 
Using the Null factor law
z2  1  6i, z3  1  6i
The three roots to P  z  are given by
z1  3, z2  1  6i, z3  1  6i

29.

IA2 general revision ‐ 2020


Brisbane School of Distance Education
a  11
za  z 3 
z
z  az  11  a  0
4 2

Let P  z   z 4  az 2  11  a
Determine a, given P  z   0


If  3i is a root of P  z  , then P  3i  0 
     a   3i 
4 2
P  3i   3i  11  a

P   3i   9  3a  11  a
9  3a  11  a  0
 4a  20  0
a5

P  z   z 4  5 z 2  11  5
 z 4  5z 2  6
P  a   a 2  5a  6 , where a  z 2
  a  3 a  2 
Let P  a   0
0   a  3 a  2 
a1  3 , a2  2
z 2  3 , z 2  2
z  3 , z  2
 z   3i,  2i,

30.

IA2 general revision ‐ 2020


Brisbane School of Distance Education
Rearrange
d
z 2  5 z  9 
z
d
z 2  5z  9 
z
z  5z  9z  d  0
3 2

Substitute the first solution


z  2i
2  i  52  i  92  i  d  0
3 2

1  2   i   3  2   i   3  2   i   1 2   i 
3 0 2 1 1 2 0 3

 5  4  4i  i 2   18  9i  d  0
8  12i  6  i  20  20i  5  18  9i  d  0
5d  0
d 5
z 3  5z 2  9 z  5  0
z1  2  i, z2  z1  2  i
P  z    z  a  z  2  i  z  2  i  , a  R
  z  a   z 2  4 z  5
z 3  5 z 2  9 z  5   z  a   z 2  4 z  5
Hence,
 5  5a
5
a
5
a 1
P  z    z  1 z  2  i  z  2  i 
The solutions to P  z   0 are,
z1  2  i, z2  2  i, z3  1

31.

IA2 general revision ‐ 2020


Brisbane School of Distance Education
3 1
n 1,  1 . Therefore true for n  1
2
Assume true for n  k

3k  1
1  3  9    3k 1 
2
Consider n  k  1

3k  1 k
1  3  9    3k 1  3k  3
2
3k  1 2  3k
 
2 2
3 1  2   1
k


2
k 1
3 1

2

Therefore true for n  k  1 if true for n  k . True for n  1 therefore true  n  N .

32.
If n  1

LHS = 2

RHS  2  1  2 Therefore true for n  1 .

Assume true for n  k


k

  4r  2   2k
r 1
2

Consider n  k  1
k 1 k

  4r  2     4r  2   4  k  1  2
r 1 r 1

 2 k 2  4k  2
 2  k 2  2k  1

 2  k  1
2

Therefore true for n  k  1 if true for n  k . True for n  1 therefore true n  1 .

33.

IA2 general revision ‐ 2020


Brisbane School of Distance Education
Consider n  1

 2 n  1
2
 1  8 Therefore true for n  1

Assume true for n  k

 2k  1
2
 1  8m
4k 2  4k  8m
Consider n  k  1

 2  k  1  1  1  4  k  1  4  k  1  1  1
2 2

 4  k 2  2k  1  4k  4
 4k 2  8k  4  4k  4
 4k 2  4k  8k  8
 8m  8k  8
 8  m  k  1
Therefore true for n  k  1 if true for n  k . True for n  1 , therefore true for all n  N ..

34.

Consider n  1

13  4  9 Therefore true for n  1

Assume true for n  k

13k  4k  9m
Consider n  k  1

13k 1  4k 1  13 13k  4  4k
  9  4  13k  4  4k
 9 13k  4  13k  4  4k
 9 13k  4 13k  4k 
 9 13k  4  9m 
 9 13k  4m 
Therefore true for n  k  1 if true for n  k . True for n  1 , therefore true for all n  1 .

35.

IA2 general revision ‐ 2020


Brisbane School of Distance Education
Consider n  0 :

3n2  32  9

103  1  101  1  9
n

Therefore true for n  0

Assume true for n  k

103  1  3k  2 m
k

103  3k  2 m  1
k

Consider n  k  1
k 1
103  1  103 3  1
k

  1
3
 103
k

  3k  2 m  1  1
3

  3k  2  m3  3  3k  2  m 2  3  3k  2  m  1  1
3 2

 33k  6 m3  32 k 5 m 2  3k 3 m
 3k 332 k 3 m3  3k 33k  2 m 2  3k 3 m
 3k 3  32 k 3 m3  3k  2 m 2  m 
k 1
k3 k 2
Therefore 103  1 is divisible by 3 if 103  1 is divisible by k
k
. The statement is true for
n  0 , therefore true  n  0 .

IA2 general revision ‐ 2020

You might also like