Brisbane School of Distance Education
IA2 general revision
Worked Solutions
1. A force acting on a particle at the point P, whose position vector, with respect to
an origin O, is . The torque of this force about O is calculated as: .
Given 3 5 2 and 7 3 3 and | | 2, determine the co‐ordinates of
the point P, assuming the force is measured in Newtons, is measured in metres and in
Nm.
Solution:
Let
| |
7 3
3 5
3 2
2 5 2 3 5 3
3 5 2
Requirements to be satisfied:
2 5 7… ∴ 1.5 1.5
2 3 3…....
5 3 3….. ∴ 3.5 2.5
and 4 | | 2
On substituting 1.5 1.5, 3.5 2.5 into 4
1.5 1.5 3.5 2.5 4, expand and solve quadratic 38 88 42 0
a =0.-0.495, b = -1.825, c= 0.67 OR
a = -0.9645, b=-0.6075, c=1.643
IA2 general revision ‐ 2020
Brisbane School of Distance Education
2. Given:
z1 12(cos120 i sin120)
z 2 15(cos 20 i sin 20)
z 3 20(cos 230 i sin 230)
z 4 r(cos i sin )
Find and if z 3 z 4 2 z1 z 2 where 90 180
Solution:
20cis230 (r 2cis2) 12cis120 15cis(20)
180cis140
r 2 9cis(90) 9cis270 r 3 and 135
3. If is the nth root of unity, prove that :
n
k 1
k 1
0
Present a clear and valid mathematical argument.
Solution:
n 1 i.e. is the nth root of unity.
n
k 1
k 1
0 1 2 3 .......n 1
1 w 2 3 .......n 1
1( n 1)
0 since n 1
1
IA2 general revision ‐ 2020
Brisbane School of Distance Education
sin (3 - tan 2 )
4. Remembering that tan = , prove that tan 3 = tan
cos (1 - 3tan )
2
Solution 2 methods
cos 3 + isin 3 = (cos + isin )3 = cos3 + 3 cos2 isin + 3 cos i2sin2 + i3sin3
cos 3 = cos3 ‐ 3 cos sin2 , sin 3 = 3 cos2 sin ‐ sin3
Now tan3 = sin 3 / cos3
= (3 cos2 sin ‐ sin3 ) / (cos3 ‐ 3 cos sin2 )
= sin (3 cos2 ‐ sin2 ) / cos (cos2 ‐ 3 sin2 )
= tan (3 ‐ sin2 / cos2 ) / (1‐ 3 sin2 / cos2 )
= tan (3 ‐ tan2 ) / (1‐ 3 tan2 )
OR
LHE = (z3 – z -3)/2i (z3 + z -3)/2
(z - z -1 ) 2 (z + z -1 )2 (z - z -1 )2
3 2 (z - z -1 ) 3
(z - z ) -1
i (z + z -1 )2 (z + z -1 )2 (z + z -1 )2 (z - z -1 ) 3(z + z -1 )2 (z - z -1 )2
RHE
i(z + z -1 ) 3(z - z -1 )2 i(z + z -1 ) (z + z )
-1 2
3(z - z -1 )2 i(z + z -1 ) (z + z -1 )2 3(z - z -1 )2
1
i 2 (z + z -1 )2
(z + z -1 )2 (z + z -1 )2
(z - z ) 3(z + 2 + z ) (z - 2 + z ) (z - z ) 4z + 4 + 4z
-1 2 -2 2 -2 -1 2 -2
i(z + z -1 ) (z 2 + 2 + z -2 ) (z 2 - 2 + z -2 ) i(z + z -1 ) 4z 2 - 4 + 4z -2
(z - z -1 ) 4z 2 + 4 + 4z -2 (z - z -1 ) z 2 + 1 + z -2 z 3 + z + z -1 z z 1 z 3 z3 z 3
i(z + z -1 ) 4z 2 - 4 + 4z -2 i(z + z -1 ) z 2 - 1 + z -2 i(z3 z + z -1 z z 1 z 3 ) i(z3 z 3 )
LHE
5. When plotted on an Argand diagram and joined together the roots of a complex
7
equation form an equilateral triangle. One of the roots has an argument of and
12
a modulus of 2. Write the original complex equation.
Solution:
The roots form an equilateral triangle so the original equation has power 3 and since
IA2 general revision ‐ 2020
Brisbane School of Distance Education
7
z 2cis ( ) is one root
12
The original equation is
7 3
z 3 (2cis( )) = 4 2 (1 i )
12
3 2
A
6. Given 1 0 ,
2n 1 1 2 2n 1
Prove by mathematical induction that A n n n
, for n 1
2 1 2 2
Solution:
Step 1: Prove that the statement is true for n = 1.
211 1 2 211 3 2
A 1
1
1
as required.
2 1 2 2 1 0
Step 2: Assume the statement is true for n = k
2k 1 1 2 2k 1
Ak k k
…………………………..(1)
2 1 2 2
Required to prove the statement is true for n = k +1
k 1 2k 2 1 2 2k 2
A k 1 k 1
…………………………(2)
2 1 2 2
Now
A k 1 A k A
2k 1 1 2 2k 1 3 2 3 2k 1 3 2 2k 1 2 2k 1 1(2)
k k
2 1 2 2 1 0 3 2 3 2 2 2 2k 2
k k
2 2k 1 1 2k 2 2
k 1
2 2 1 2 2
k
2k 2 1 2 2k 2
k 1 k 1
as required
2 1 2 2
The statement is therefore true for n = k+1
Step 3:
IA2 general revision ‐ 2020
Brisbane School of Distance Education
Therefore, by the principle of mathematical induction the result holds for positive integer values
of k when n = k and when n = k+1. The result therefore holds for all positive integer values of n
provided n 1.
7.
8.
Select an origin, O, to form a right‐hand system of co‐ordinate axes, say, the left‐back corner of
the sandpit. Relative to this origin, the co‐ordinates of the vertices are respectively:, , and.
0,5,2 , 10,10,4 5,0,3 The shade cloth has an area represented by the ∆ .
This area may be represented by | |.
Now to find .
5 5
5 10 5 5 1
1 1 5 10 1
5 10 5 5 50 25
15 75
1 1 2
152 75 38.2 2
2 2
15 26
The area of the shade cloth is or approximately 38.2 m2.
2
IA2 general revision ‐ 2020
Brisbane School of Distance Education
9.
(a) Assuming no air-resistance, the initial velocity r 0 is given by x iˆ y ˆj m/s where
3
x 25cos x 25 x 15
5
4
y 25sin y 25 y 20
5
Hence, r 0 15iˆ 20 ˆj m/s
(b) At time t , r t g ˆj and selecting g 10 m / s 2 , leads to r t ˆj dt and hence
that r t 10t ˆj c .
Since r 0 15iˆ 20 ˆj then r t 15iˆ 20 10t ˆj m/s.
(c) (i) r t 15iˆ 20 10t ˆj implies that
r t 15t iˆ 20t 5t 2 ˆj c . The initial displacement of the
projectile may be expressed as r 0 ˆj and hence
the displacement at t time is given by
r t 15t iˆ 5 20t 5t 2 ˆj . The time of flight of the
projectile can now be found by solving 5 20t 5t 2 0 .
The solutions being t 2 5 seconds. We reject t 2 5
because t 0 , hence t 2 5 4.236 seconds is the only
acceptable derived value of t. Hence the range is given by
15 2 5 63.541 metres from the foot of the launch platform.
(ii) Impact velocity is then determined from r 2 5 15iˆ 10 5 ˆj .
3 5
Hence r 2 5 5 29 26.926 m/s acting at tan 1 to
10
the downwards vertical ( i.e., at 3351 ).
(iii) Find the time when displacement is 25m.
r t 15t iˆ 5 20t 5t 2 ˆj
| r (t ) ||15t iˆ 5 20t 5t 2 ˆj |
25 (15t ) 2 5 20t 5t 2
2
252 (15t )2 5 20t 5t 2
2
Using “solve” on GC gives 1
IA2 general revision ‐ 2020
Brisbane School of Distance Education
v t 15iˆ 20 10t ˆj
Now v(1) = 15i + 10j
| v(1) |= 152 100 325 18.03m / s
Angle = tan 33.7 .
10.
(a) p1 t a 2b t iˆ + 2bt ˆj and p 2 t 2a b iˆ b ˆj
p2 t 2a b iˆ b ˆj.dt
p2 t 2a b t iˆ bt ˆj + c
As p2 0 a ˆj , then p2 0 c and hence c a ˆj
p2 t 2 a b t iˆ bt ˆj + a ˆj
p2 t 2a b t iˆ a - bt ˆj
(b) The particles collide when p1 t p2 t
That is, when a 2b t iˆ + 2bt ˆj 2 a b t iˆ a - bt ˆj
a 2b t 2a b t A
and 2bt a - bt B
From equation A a 3b provided t 0 and from B 3bt 3b
provided that b 0 , produces t 1 second.
Therefore the particles collide after one second.
(c) The co-Ordinates of the point of intersection are found by evaluating either p1 1 or
p2 1 . In either case, the collision point is given by a 2b iˆ + 2b ˆj which reduces to
5a 2a
5b iˆ + 2b ˆj . Hence the point of intersection is 5b, 2b provided b 0 or ,
3 3
provided that a 0 .
11.
Locate the origin, O, at the foot of the altitude of the aircraft’s position at time t and in the
horizontal plane containing the stranded pilot. Assume that the canister is released at time t=0
seconds relative to O.
IA2 general revision ‐ 2020
Brisbane School of Distance Education
The displacement of the canister at time t seconds after it is released is given by r t where the
unit vectors iˆ and ĵ are taken in the sense of + ĵ being vertically upwards and + iˆ horizontally
in the direction of motion relative to the origin, O.
From the given data, relative to the origin, O, r 0 120 ˆj and r 0 60 iˆ . We require the
displacement of the canister at time t i.e. at the point indicated by A in the above diagram.
Assuming there are no external forces acting on the motion of the canister, other than gravity,
then r g ˆj m / sec 2 and r t gt ˆj c . Hence, r t 60 iˆ gt ˆj and from which
r t 60t iˆ 21 gt 2 ˆj + c .
Applying the initial conditions, then we may say that r t 60t iˆ 21 gt 2 ˆj represents
the location of the canister at time t. The canister lands in the water when r vert t 0 , i.e.,
when 120 21 gt 2 0 .
Therefore, t 2 6 seconds ( if g is selected as 10 m / sec 2 ) and rejecting the negative value
of t since t 0 , then the range of the canister on impact with the water is given by 60t . From
which the range is determined as 120 6 metres.
The pilot is drifting at 1 m / sec because of the current. In 2 6 seconds, the pilot will have
drifted 2 6 metres.
Given that the range of the canister from the plane to the pilot is D metres, then
D 2 6 50 120 6 metres. Hence, D 118 6 50 metres and an acceptable range of
values for D is given by
118 6 50 D 118 6 50 metres.
However, the value D 118 6 metres should be excluded, as the canister will land on the
pilot !
12.
IA2 general revision ‐ 2020
Brisbane School of Distance Education
IA2 general revision ‐ 2020
Brisbane School of Distance Education
13.
IA2 general revision ‐ 2020
Brisbane School of Distance Education
IA2 general revision ‐ 2020
Brisbane School of Distance Education
14.
IA2 general revision ‐ 2020
Brisbane School of Distance Education
15.
IA2 general revision ‐ 2020
Brisbane School of Distance Education
16.
17.
18.
Write l1 in parametric form:
x 3 2k , y 2 3k , z 5 4k
Substitute the parametric equation into the equation for the plane.
2 3 2k 7 2 3k 3 5 4k 125
6 4k 14 21k 15 12k 125
23 37k 125
125 23
k
37
k 4
Determine the location on the line when k 4 .
x 3 2 4 11
y 2 3 4 10
z 5 4 4 11
The plane is intersected by the line at the point Q 11,10, 11 .
IA2 general revision ‐ 2020
Brisbane School of Distance Education
The second particle travels through P 4, 6, 9 and Q 11,10, 11 .
d q p
d 11iˆ 10 ˆj 11kˆ 4iˆ 6 ˆj 9kˆ
d 15iˆ 16 ˆj 2kˆ
r akd
The path of the second particle is given by the vector equation,
r 4iˆ 6 ˆj 9kˆ k 15iˆ 16 ˆj 2kˆ
or
r 11iˆ 10 ˆj 11kˆ k 15iˆ 16 ˆj 2kˆ
19.
The system has infinitely many solutions. The solution can be described by the parametric equations of a line.
For this to be true;
nˆ1 nˆ2 nˆ3 0 and
nˆ1 nˆ2 nˆ2 nˆ3 and 0 nˆ2 nˆ3
iˆ ˆj kˆ
nˆ1 nˆ2 7 5 1
6 4 24
5 1 7 1
iˆ ˆj
4 24 6 24
7 5
kˆ
6 4
116iˆ 174 ˆj 58kˆ
The directional vector of the line of intersection of the three planes is given by,
116iˆ 174 ˆj 58 kˆ . As there are infinitely many solutions the free variable z will be defined as z t .
IA2 general revision ‐ 2020
Brisbane School of Distance Education
7 5 1 21
A | B 6 4 24 156
0 0 0 0
ref A | B :
1 0 2 12
A | B 0 1 3 21
0 0 0 0
let z t
From R 2 : y 3t 21
y 21 3t
From R1 : x 2t 12
x 12 2t
The line is defined by the parametric equations:
x 12 2t , y 21 3t , z t
This solution must satisfy the third plane:
p3 : 2 x b3 y 8 z d3
Sub in x 12 2t , y 21 3t , z t
2 12 2t b3 21 3t 8t d3
24 4t 21b3 3tb3 8t d3
24 21b3 3tb3 12t d3
For this to satisfy the equation
the terms containing the parameter
t must equal zero.
3tb3 12t 0
12t
b3 4
3t
Rewrite
24 21b3 3tb3 12t d3
24 21 4 3t 4 12t d3
60 d3
d3 60
p3 : 2 x 4 y 8 z 60
IA2 general revision ‐ 2020
Brisbane School of Distance Education
20.
5 1
x t t [1]
2 t
1
y t 4 t [2]
t
Rewrite [1]:
2x 1
t
5 t
Squaring this gives,
4 x2 1
t 2 2 2 [3]
25 t
Rewrite [2]:
y 1
t
4 t
Squaring this gives,
y2 1
t 2 2 2 [4]
16 t
[3] [4] :
4 x2 y 2
4
25 16
x2 y 2
1
25 64
IA2 general revision ‐ 2020
Brisbane School of Distance Education
21.
a)
a 9.8
v a dt
9.8 dt
v 9.8t c1
When t 0, v 0 :
c1 0
v 9.8t
x v dt
9.8t dt
x 4.9t 2 c2
When t 0, x 0 :
c2 0
x 4.9t 2
or
x lt 2 mt n
v 2lt m
a 2l
It is known,
t 0 , v 0 m 0
a 9.8
2l 9.8
l 4.9
v 9.8t m
v 9.8t
x 4.9t 2
Assume the well is at ground level, n 0
t 6 , x 4.9 6
2
176.4
The bottom of the well is 176.4 metres below ground level.
IA2 general revision ‐ 2020
Brisbane School of Distance Education
b)
t 6,
v 9.8 6
v 58.8 m/s
Speed v 58.8
58.8 m/s
22.
a)
360 revolutions per minute (rpm)
360 2
=
60
12 rad s 1
b)
v r
12 12
144 m sec 1 v 452.389 m sec
1
23.
a)
v 23m/s 19
r t 9.8 ˆj
r t 9.8 ˆj dt
9.8t c1
r 0 23cos 19 iˆ 23sin 19 ˆj
r t 23cos 19 iˆ 23sin 19 9.8t ˆj
r 0 1.7 ˆj
r t 23t cos 19 iˆ
1.7 23t sin 19 4.9t 2 ˆj
IA2 general revision ‐ 2020
Brisbane School of Distance Education
Let the vertical component equal zero:
0 1.7 23t sin 19 4.9t 2
Solve for t using graphics calculator:
t 1.7289s (ignoring the negative solution)
r 1.7289 23 1.7289 cos 19 iˆ
1.7 23 1.7289 sin 19 4.9 1.7289 ˆj
2
r 1.7289 37.5983iˆ
The ball travelled a horizontal distance of 40.6211 metres. The time of flight was 1.8679 seconds.
b) The ball will rise and reach maximum height when the vertical component of its velocity is zero.
r t 23cos 19 iˆ 23sin 19 9.8t ˆj
23sin 19 9.8t 0
23sin 19
t
9.8
t 0.7641s
r 0.7641 23 0.7641 cos 19 iˆ
1.7 23 0.7641 sin 19 4.9 0.7641 ˆj
2
r 0.7641 16.6166iˆ 4.5608 ˆj
IA2 general revision ‐ 2020
Brisbane School of Distance Education
24.
IA2 general revision ‐ 2020
Brisbane School of Distance Education
i)
4rev 4s
1 rev 1s
2
T
2
1
2 rads 1
ii )
Velocity of particle
v r
v 0.75 2
v 1.5 ms 1
When water escapes the umbrella:
v H 1.5 ms 1 , vV 0 ms 1
Determine when water hits the
ground level.
x lt 2 mt n
v 2lt m
a 2l
Gravity, a 9.8m/s 2
l 4.9, m 0, n 1.8
x 4.9t 2 1.8
Let x 0
Solve for x:
1.8
x
4.9
x 0.6061s
The droplet travels 0.6061s at1.5 ms 1.
Distance =0.6061 1.5
2.856 m
The radius of the circle:
r
0.752 2.856 2 m
r 2.953 m
The diameter of the circle:
D (2 r ) m
D (2 2.953) m
D 5.906 m
IA2 general revision ‐ 2020
Brisbane School of Distance Education
25.
5
2cis 6 25 cis 5
6
3
4cis 43cis 3
3
3
32 5
cis
64 6
1 11
cis
2 6
1
cis
2 6
26.
z : z 2 3i 9
Substitute z x yi
x yi 2 3i 9
x 2 y 3 i 9
x 2 y 3 9
2 2
x 2 y 3 81
2 2
The equation represents a circle with a centre at C = (2, –3) and radius, r = 9.
27.
z4 1
IA2 general revision ‐ 2020
Brisbane School of Distance Education
1 cis(0)
z 4 cis(0)
0 2 k
z 4 1cis
4 4
2 0
Let k 0, z1 cis
4
2k
z 1cis cis 0
4
1
2 1
Let k 1, z2 cis
4
cis
2
2 2
Let k 2, z3 cis
4
cis
2 3
Let k 3, z4 cis
4
3
cis
2
3
z1 1, z2 = cis , z3 = cis , z4 = cis
2 2
28.
IA2 general revision ‐ 2020
Brisbane School of Distance Education
Solve 0 z z 31z 111,
3 2
given z1 3 is a solution for P z .
z 2 2 z 37
z 3 z 3 z 2 31z 111
( z 3 3z 2 )
2 z 2 31z 111
( 2z2 6z )
37 z 111
( 37 z 111)
0
0 z 2 2 z 37
0 z 2 z 1 1 37
0 z 1 36
2
0 z 1 36i 2
2
0 z 1 6i
2 2
0 z 1 6i z 1 6i
Using the Null factor law
z2 1 6i, z3 1 6i
The three roots to P z are given by
z1 3, z2 1 6i, z3 1 6i
29.
IA2 general revision ‐ 2020
Brisbane School of Distance Education
a 11
za z 3
z
z az 11 a 0
4 2
Let P z z 4 az 2 11 a
Determine a, given P z 0
If 3i is a root of P z , then P 3i 0
a 3i
4 2
P 3i 3i 11 a
P 3i 9 3a 11 a
9 3a 11 a 0
4a 20 0
a5
P z z 4 5 z 2 11 5
z 4 5z 2 6
P a a 2 5a 6 , where a z 2
a 3 a 2
Let P a 0
0 a 3 a 2
a1 3 , a2 2
z 2 3 , z 2 2
z 3 , z 2
z 3i, 2i,
30.
IA2 general revision ‐ 2020
Brisbane School of Distance Education
Rearrange
d
z 2 5 z 9
z
d
z 2 5z 9
z
z 5z 9z d 0
3 2
Substitute the first solution
z 2i
2 i 52 i 92 i d 0
3 2
1 2 i 3 2 i 3 2 i 1 2 i
3 0 2 1 1 2 0 3
5 4 4i i 2 18 9i d 0
8 12i 6 i 20 20i 5 18 9i d 0
5d 0
d 5
z 3 5z 2 9 z 5 0
z1 2 i, z2 z1 2 i
P z z a z 2 i z 2 i , a R
z a z 2 4 z 5
z 3 5 z 2 9 z 5 z a z 2 4 z 5
Hence,
5 5a
5
a
5
a 1
P z z 1 z 2 i z 2 i
The solutions to P z 0 are,
z1 2 i, z2 2 i, z3 1
31.
IA2 general revision ‐ 2020
Brisbane School of Distance Education
3 1
n 1, 1 . Therefore true for n 1
2
Assume true for n k
3k 1
1 3 9 3k 1
2
Consider n k 1
3k 1 k
1 3 9 3k 1 3k 3
2
3k 1 2 3k
2 2
3 1 2 1
k
2
k 1
3 1
2
Therefore true for n k 1 if true for n k . True for n 1 therefore true n N .
32.
If n 1
LHS = 2
RHS 2 1 2 Therefore true for n 1 .
Assume true for n k
k
4r 2 2k
r 1
2
Consider n k 1
k 1 k
4r 2 4r 2 4 k 1 2
r 1 r 1
2 k 2 4k 2
2 k 2 2k 1
2 k 1
2
Therefore true for n k 1 if true for n k . True for n 1 therefore true n 1 .
33.
IA2 general revision ‐ 2020
Brisbane School of Distance Education
Consider n 1
2 n 1
2
1 8 Therefore true for n 1
Assume true for n k
2k 1
2
1 8m
4k 2 4k 8m
Consider n k 1
2 k 1 1 1 4 k 1 4 k 1 1 1
2 2
4 k 2 2k 1 4k 4
4k 2 8k 4 4k 4
4k 2 4k 8k 8
8m 8k 8
8 m k 1
Therefore true for n k 1 if true for n k . True for n 1 , therefore true for all n N ..
34.
Consider n 1
13 4 9 Therefore true for n 1
Assume true for n k
13k 4k 9m
Consider n k 1
13k 1 4k 1 13 13k 4 4k
9 4 13k 4 4k
9 13k 4 13k 4 4k
9 13k 4 13k 4k
9 13k 4 9m
9 13k 4m
Therefore true for n k 1 if true for n k . True for n 1 , therefore true for all n 1 .
35.
IA2 general revision ‐ 2020
Brisbane School of Distance Education
Consider n 0 :
3n2 32 9
103 1 101 1 9
n
Therefore true for n 0
Assume true for n k
103 1 3k 2 m
k
103 3k 2 m 1
k
Consider n k 1
k 1
103 1 103 3 1
k
1
3
103
k
3k 2 m 1 1
3
3k 2 m3 3 3k 2 m 2 3 3k 2 m 1 1
3 2
33k 6 m3 32 k 5 m 2 3k 3 m
3k 332 k 3 m3 3k 33k 2 m 2 3k 3 m
3k 3 32 k 3 m3 3k 2 m 2 m
k 1
k3 k 2
Therefore 103 1 is divisible by 3 if 103 1 is divisible by k
k
. The statement is true for
n 0 , therefore true n 0 .
IA2 general revision ‐ 2020