Solutions of Mathematical Equations.
( 1 ) a . 2x =128                                                              x
                                                                             ⇒2 =
2
  7
                                                                      ⇒ x=7 (Ans)
(b) x−2√ 5 x 3−4 x 2−3 x +6 = 5 x 2-6x+9
      ± 5 x 3 ∓ 10 x 2
                6 x 2 - 3x
               ±6 x 2 ∓ 12 x
                      9x +6
                     ±9x∓18
                         24
So, remainder is 24 Ans.
(c). 2x +y+3z= -2      ______ ( i)
    x - y - z = -3 _______ (ii)
    3x-2y+3z= - 12 _______ (iii)
    eq. i+ eq. ii
   2x +y+3Z= -2
    x - y - z = -3
   3x      +2z= -5     _______ (iv)
eq. i multiply ✖ 2+ (iii) eq.
4x+2y+6z = -4
3x -2y+ 3z =-12
7x+9z =-16           __________ v
Eq. iv ✖ 7-eq. (v) ✖ 3
  21x+14z=-35
±21x±27z=∓48
      -13z= 13
        ⇒ -z =1
        ⇒ z=-1
Sub. z into (4) eq.
3x+2z=-5
⇒ 3x + 2(-1) =-5
⇒3x-2 =-5
⇒ 3x=-3
⇒ x =-1
Sub. x, z value into eq. (ii)
x-y-z=-3
⇒ -1-y-(-1) = -3                                   -
⇒ -1-y+1=-3                                       -
⇒ -y= -3
⇒ y =3
(x, y, z) = (-1, 3, -1) Ans
3. Section B
           2
        5 x + 7 x+ 8   A     Bx+ c
a.           2       =   + 2
   ( x +1)(x +2 x +3) x+1 x +2 x+ 3
                      2
5 x 2+ 7x+ 8=A ( x + 2 x +3 ¿+(Bx +c ) (x+1)
Expand. RHS and compare co. efficient
5 x 2+ 7x+ 8=A x 2+ 2 Ax+ 3 A+ B x 2+ Bx +cx +c
                  2
5 x 2+ 7x+ 8= x (A + B)+ x (2 A+ B+C )+3 A+ c
A+B=5          ________ i
2A+B+C=7 _________ii
3A+C=8         _________iii
Eq. ii – eq. i
2A+B+C=7
±A±B      =±5
A+      C=2 __________ iv
Eq. iii – eq iv
3A+C=8
±A±C=±2
2A     =6
                  ⇒ A =3
Substitute A into Eq. iv
A+C= 2
⇒ 3+C =2
⇒ C = -1
Substitute A, C into Eq. ii
2A+B+C=7
⇒ 2 ✖ 3 +B-1 =7
⇒ 5+B=7
⇒ B =2
(A, B, C) = (3, 2, -1) Ans.
                  7 x−1
(b). f(x) =
              ( 1+ 3 x ) ( 3−x )
     7 x−1             A        B
                   =       +
 ( 1+ 3 x ) ( 3−x ) 1+ 3 x 3−x
                  ⇒ 7x-1 = A (3-x) + B (1 +3x)
Expand RHS and compare co. efficient
     7x-1 = A (3-x) + B (1 +3x)
⇒ 7x-1 = 3A -Ax + B + 3Bx
⇒ 7x-1 = x(-A+3B) + 3A + B
-A + 3B =7 _______ i
3A + B =-1 ________ ii
Eq. i multiply ✖ 3 + eq. ii
-3A + 9B =21
3A + B = -1
     10B= 20
⇒B =2
Subt. B into eq. i
  -A + 3B =7
⇒-A + 6 =7
⇒-A =7 -6
⇒ A = -1
(A, B) = ( -1, 10) Ans.
2(a). Let f(x) = x 3+c x 2+7x+d
x+2=0
⇒ x = -2
f(-2) =0
⇒ (−2)3 +c (−2)2+7(-2) +d =0      -
⇒8+2c-14+d=0
⇒2c+d-22=0
⇒2c+d=22 ________ i
x-1 = 0
⇒x=1
F(1) = 3
⇒ (1)3+ c(1)2 +7 (1)+ d =3
⇒ 1 +c         +7 +d =3
⇒ c+ d =3-8
⇒ c+ d =-5 __________ ii
Eq. i – eq. ii
2c+ d=22
±c± d =∓5
C            =27
Subs. c into eq. ii
c+ d =-5
⇒ 27+d =-5
⇒ d =-32
(c, d) = ( 27, -32) Ans.
(ii) f(x) = x 3+c x 2+7x+d =0
By puting value of c and d
f(x) = x 3+27 x 2+7x -32 =0
              y         x+ 4             y        x
(b) 5lo g a -2 lo g a           = 2 lo g a + lo g a
⇒5lo g ay -2 lo g ay = lo g xa +2 lo g x+
                                       a
                                          4
       y5        y2       x        ( x +4 ) 2
⇒ lo g a -2 lo g a = lo g a + lo g a
         y5                 x
⇒ lo g   y2   = lo g (x+ 4)2
         a           a
         3              x
⇒ lo g ay = lo g (x+ 4)2
                    a
              x
⇒ y 3=
         ( x+ 4 ) 2
⇒ y =3
            √3 x
                      Ans.
        √( x + 4 ) 2
    i.            2.7 =10 x
5 (a).       y=6- x 2
For y intercept x =0
y=6-¿
y=6
Thus (0,6)
For x intercept y =0
0=6- x 2
⇒ x 2= 6
⇒ x=√ 6
X= 2.44
Thus (2.44,0)
y=6- x 2
here a<0
In this case it has a maximum point
All the points are (0,0), (0,6), (2.44,0)
Hence the graph is:
(b)
y=6- x 2
y=2
area for x intercept y= 0
6- x 2 =2
⇒- x 2 =2-6
⇒- x 2 =-4
⇒ x = ±2
X = (2, -2)
for y intercept x= 0
y = 6- x 2
y=6-0
y =6
y= (0,6)
when x=2                when x = -2
y = 6- x 2              y = 6- x 2
                                     2
y=6-4                   y = 6-(−2)
y=2                     y=2
(2,2)                   (-2,2)
∫ (6−x 2 ¿ )¿ dx
−2
     [            ]
                   2
             x3
= 6 x−
             3     −2
    [            ]                        [        ]
             3
      2                                          8
= 6.2−   - ¿                             = 12−     -
       3                                         3
[−12−
      −8
       3           ]                          =   [ ]
                                                  36−8
                                                    3
-   [
  −36 +8
    3             ]
    28 −28
=      -
     3   3
  28 28
=     +
   3    3
  28+28
=
     3
    56
=      square units.
     3
(c)
                                                       3
                                                      ∫ 3 x 3 +6 x+ 8
                                                       1
            =    ∫ ¿ ¿) dx
                    1
                [               ]
                                    3
              3 x4 6 x2
            =     +     +8 x
               4    2               1
                [              ]
                                3
              3 x4
            =          2
                   +3 x +8 x
               4                1
            =¿ - ¿
            =[   243
                  4           ][
                               3
                     +27+ 24 - +3+8
                               4        ]
            =[   243+108 +96
                      4
                             -][
                               3+12+32
                                  4         ]
                                                    447 47
                                                =      -
                                                     4   4
                447−47
            =
                   4
                400
            =
                 4
            =100 Ans.
                        3
                    x
      (1)   ∫            dx
                 √ 1−x 4