0% found this document useful (0 votes)
35 views8 pages

Maths. Solutions

The document provides solutions to mathematical equations. In 3 sentences: Part 1 solves various equations for unknown variables, finding x=7 for part a, the remainder is 24 for part b, and (x,y,z)=(-1,3,-1) for part c. Part 2 involves solving equations derived from setting algebraic expressions equal to each other to find values for variables. This includes finding (A,B,C)=(3,2,-1) for part a and (A,B)=(-1,2) for part b. Part 3 calculates areas under curves, finding the area between the given curves and axes is 100 square units for part c.

Uploaded by

sabaa.shafeeq
Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content, claim it here.
Available Formats
Download as DOCX, PDF, TXT or read online on Scribd
0% found this document useful (0 votes)
35 views8 pages

Maths. Solutions

The document provides solutions to mathematical equations. In 3 sentences: Part 1 solves various equations for unknown variables, finding x=7 for part a, the remainder is 24 for part b, and (x,y,z)=(-1,3,-1) for part c. Part 2 involves solving equations derived from setting algebraic expressions equal to each other to find values for variables. This includes finding (A,B,C)=(3,2,-1) for part a and (A,B)=(-1,2) for part b. Part 3 calculates areas under curves, finding the area between the given curves and axes is 100 square units for part c.

Uploaded by

sabaa.shafeeq
Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content, claim it here.
Available Formats
Download as DOCX, PDF, TXT or read online on Scribd
You are on page 1/ 8

Solutions of Mathematical Equations.

( 1 ) a . 2x =128 x
⇒2 =
2
7
⇒ x=7 (Ans)

(b) x−2√ 5 x 3−4 x 2−3 x +6 = 5 x 2-6x+9

± 5 x 3 ∓ 10 x 2

6 x 2 - 3x

±6 x 2 ∓ 12 x

9x +6

±9x∓18
24
So, remainder is 24 Ans.

(c). 2x +y+3z= -2 ______ ( i)

x - y - z = -3 _______ (ii)

3x-2y+3z= - 12 _______ (iii)

eq. i+ eq. ii

2x +y+3Z= -2
x - y - z = -3
3x +2z= -5 _______ (iv)

eq. i multiply ✖ 2+ (iii) eq.

4x+2y+6z = -4

3x -2y+ 3z =-12

7x+9z =-16 __________ v


Eq. iv ✖ 7-eq. (v) ✖ 3

21x+14z=-35

±21x±27z=∓48

-13z= 13
⇒ -z =1
⇒ z=-1
Sub. z into (4) eq.

3x+2z=-5
⇒ 3x + 2(-1) =-5
⇒3x-2 =-5
⇒ 3x=-3
⇒ x =-1
Sub. x, z value into eq. (ii)

x-y-z=-3
⇒ -1-y-(-1) = -3 -
⇒ -1-y+1=-3 -
⇒ -y= -3
⇒ y =3
(x, y, z) = (-1, 3, -1) Ans

3. Section B

2
5 x + 7 x+ 8 A Bx+ c
a. 2 = + 2
( x +1)(x +2 x +3) x+1 x +2 x+ 3
2
5 x 2+ 7x+ 8=A ( x + 2 x +3 ¿+(Bx +c ) (x+1)

Expand. RHS and compare co. efficient

5 x 2+ 7x+ 8=A x 2+ 2 Ax+ 3 A+ B x 2+ Bx +cx +c


2
5 x 2+ 7x+ 8= x (A + B)+ x (2 A+ B+C )+3 A+ c

A+B=5 ________ i

2A+B+C=7 _________ii

3A+C=8 _________iii
Eq. ii – eq. i

2A+B+C=7

±A±B =±5

A+ C=2 __________ iv

Eq. iii – eq iv

3A+C=8

±A±C=±2

2A =6
⇒ A =3

Substitute A into Eq. iv

A+C= 2
⇒ 3+C =2
⇒ C = -1

Substitute A, C into Eq. ii

2A+B+C=7
⇒ 2 ✖ 3 +B-1 =7
⇒ 5+B=7
⇒ B =2

(A, B, C) = (3, 2, -1) Ans.

7 x−1
(b). f(x) =
( 1+ 3 x ) ( 3−x )
7 x−1 A B
= +
( 1+ 3 x ) ( 3−x ) 1+ 3 x 3−x
⇒ 7x-1 = A (3-x) + B (1 +3x)

Expand RHS and compare co. efficient

7x-1 = A (3-x) + B (1 +3x)

⇒ 7x-1 = 3A -Ax + B + 3Bx


⇒ 7x-1 = x(-A+3B) + 3A + B
-A + 3B =7 _______ i

3A + B =-1 ________ ii

Eq. i multiply ✖ 3 + eq. ii

-3A + 9B =21

3A + B = -1

10B= 20

⇒B =2

Subt. B into eq. i

-A + 3B =7

⇒-A + 6 =7
⇒-A =7 -6
⇒ A = -1

(A, B) = ( -1, 10) Ans.

2(a). Let f(x) = x 3+c x 2+7x+d

x+2=0
⇒ x = -2

f(-2) =0
⇒ (−2)3 +c (−2)2+7(-2) +d =0 -
⇒8+2c-14+d=0
⇒2c+d-22=0
⇒2c+d=22 ________ i

x-1 = 0

⇒x=1

F(1) = 3
⇒ (1)3+ c(1)2 +7 (1)+ d =3
⇒ 1 +c +7 +d =3

⇒ c+ d =3-8
⇒ c+ d =-5 __________ ii

Eq. i – eq. ii
2c+ d=22

±c± d =∓5

C =27

Subs. c into eq. ii

c+ d =-5

⇒ 27+d =-5
⇒ d =-32

(c, d) = ( 27, -32) Ans.

(ii) f(x) = x 3+c x 2+7x+d =0

By puting value of c and d

f(x) = x 3+27 x 2+7x -32 =0


y x+ 4 y x
(b) 5lo g a -2 lo g a = 2 lo g a + lo g a

⇒5lo g ay -2 lo g ay = lo g xa +2 lo g x+
a
4

y5 y2 x ( x +4 ) 2
⇒ lo g a -2 lo g a = lo g a + lo g a
y5 x
⇒ lo g y2 = lo g (x+ 4)2
a a

3 x
⇒ lo g ay = lo g (x+ 4)2
a
x
⇒ y 3=
( x+ 4 ) 2

⇒ y =3
√3 x
Ans.
√( x + 4 ) 2

i. 2.7 =10 x

5 (a). y=6- x 2

For y intercept x =0

y=6-¿

y=6
Thus (0,6)

For x intercept y =0

0=6- x 2
⇒ x 2= 6
⇒ x=√ 6

X= 2.44

Thus (2.44,0)

y=6- x 2

here a<0

In this case it has a maximum point

All the points are (0,0), (0,6), (2.44,0)

Hence the graph is:

(b)

y=6- x 2

y=2

area for x intercept y= 0


6- x 2 =2
⇒- x 2 =2-6

⇒- x 2 =-4
⇒ x = ±2

X = (2, -2)

for y intercept x= 0

y = 6- x 2

y=6-0

y =6

y= (0,6)

when x=2 when x = -2

y = 6- x 2 y = 6- x 2
2
y=6-4 y = 6-(−2)

y=2 y=2

(2,2) (-2,2)

∫ (6−x 2 ¿ )¿ dx
−2

[ ]
2
x3
= 6 x−
3 −2

[ ] [ ]
3
2 8
= 6.2− - ¿ = 12− -
3 3

[−12−
−8
3 ] = [ ]
36−8
3

- [
−36 +8
3 ]
28 −28
= -
3 3
28 28
= +
3 3
28+28
=
3
56
= square units.
3
(c)
3

∫ 3 x 3 +6 x+ 8
1

= ∫ ¿ ¿) dx
1

[ ]
3
3 x4 6 x2
= + +8 x
4 2 1

[ ]
3
3 x4
= 2
+3 x +8 x
4 1

=¿ - ¿

=[ 243
4 ][
3
+27+ 24 - +3+8
4 ]
=[ 243+108 +96
4
-][
3+12+32
4 ]
447 47
= -
4 4
447−47
=
4
400
=
4
=100 Ans.
3
x
(1) ∫ dx
√ 1−x 4

You might also like