Self Organizing Maps         Unsupervised learning Classification
Input
x1               1            0           0          1
x2               0            1           1          0                                     w1   w2                  clusters
x3               0            1           1          1
x4               1            0           1          1
                                                                            x1             x2   x3          x4
Weights w1            w2
       1       0.2          0.3
       2       0.3         0.25
       3      0.15          0.2
       4       0.3          0.2
X1= [1,0,0,1]
D(1)       1.114675
D(2)        1.11018
D(2)<D(1) T=2                     Update W2
                                  Wj(new) = Wj(Old) + 0.5(X(i)- W(j)old))
                                  w2new=w2old+0.5(xi-wjold)
         Update W2
                                                       xi=[1001]            w2old               xi-w2old
         W2new              0.3                               1                      0.3              0.7
                           0.25 +                  0.5        0                     0.25            -0.25
                            0.2                               0-                     0.2             -0.2
                            0.2                               1                      0.2              0.8
                             0.3                                  0.7                       0.35
                            0.25 +                  0.5         -0.25                     -0.125 (o.5*(xi-wjold)
                             0.2                                 -0.2                        -0.1
                             0.2                                  0.8                         0.4
                      w2old                   (o.5*(xi-wjold)
                             0.3                   0.35
                            0.25 +               -0.125
                             0.2                    -0.1
                             0.2                     0.4
                                      0.65
                                     0.125
         W2new                          0.1                             the input x1 is in w2
                                        0.6
Weights w1            w2
       1       0.2          0.65
       2       0.3         0.125              epoch1(one sample is done)
       3      0.15            0.1
       4       0.3            0.6
X2=[0,1,1,0)
D(1)       1.158663
D(2)       1.535619
D(1)<D(2) T=1
                  Wj(new) = Wj(Old) + 0.5(X(i)- W(j)old))
W1new    W1old+0.5(Xi-W1old)
                               x2           w1old                    x2-w1old
     0.2                               0          0.2                    -0.2
     0.3                               1          0.3                     0.7
    0.15 +                 0.5         1-        0.15                    0.85
     0.3                               0          0.3                    -0.3
                               x2-w1old
     0.2                            -0.2
     0.3                             0.7
    0.15 +                 0.5     0.85
     0.3                            -0.3
w1old                 0.5*(x2-w1old)
     0.2                    -0.1
     0.3                   0.35
    0.15 +                0.425
     0.3                  -0.15
                0.1
              0.65
W1new        0.575
              0.15
                                            x2 is in cluster 1
        w1        w2
              0.1      0.65                             w1           w2
W            0.65     0.125                                       0.2      0.65
           0.575         0.1                                      0.3    0.125
             0.15        0.6                                     0.15       0.1
        newly adjusted weights                                    0.3       0.6
                                                        previous weightd for the input x2
x3=[0111]
                          w1            w2
                                0.1      0.65
                      W        0.65     0.125
                             0.575         0.1
                               0.15        0.6
                          newly adjusted weights
d1          1.01891
d2          1.46906
d1<d2                     w1 is to be updated
                          w1new=w1old+learningrate(xi-w1old)
                                                       0                0.1        -0.1
                                             0.5       1              0.65        0.35
                                                       1             0.575       0.425
                                                       1              0.15        0.85
                                                     -0.1             -0.5
                                             0.5    0.35              1.75
                                                   0.425               2.2
                                                    0.85       4,2
                                  0.1               -0.5               -0.4   x3 is in cluster c1
                                0.65                1.75                2.4
                               0.575                 2.2             2.775
0.15   4.2   4.35
ing Classification
                     2
c1   c2
x2   x1
x3