Digital Electronics
Digital Electronics
i,cs
.,,,-,.,,
01`j
1 011
t,
0.
1
I
Decoder, Encoder and Code Corrverters 6.9
K-Map Sin.plificatiom
1+
01
3,1-2+111
11 110 00 01
3fiJ 11
2
10
00-0111,10
_1`10 _1J
5T1-i 7Tll
.`
4 61!I 5 7ili 6
'4!1 :
tx ix!
X .
X
11~- 11 011110
•1*.Lx-
„ix! 14__xJ 12fx EL_X
_xi15 txJ X
811 9LIL 8+111 1[x_ 'pEXT,,
--
10 X 9 1
_xJ11
I,
Expression for e
Expression for f
CD oo o| 11 10
>CDoo] o| 11 !10 18-00011110
01!_J 1I 3 2flll 1 3 2 \
00
4 5 7 6!1i
FT`i ii`, 7 6,1,
0111,10
!+
1213 15 `lxi `[x] 4i t5- 1+x`
X y\ X X
_J X
1
givll
-__ _ __ 119
1lrxJ qllJ 1- 9
_1_i___
10_xJ
X X-
1111111111111111111_
1!
Expression for g
C Doo 01 .11 10.
100011'110
0. 1 3L1 2[1]
7 6 11!
iri=i.'I `
f[x= fry t5lL-
X
_X, Tx'i
'[,(, -31:x-i
!91--
.
L|'1-
\
g = A + BC' + B'C + CD'
\
A,
AB CD
I
111111111111,1111111-111111
''--
c,D,
- I -- --L.
_->, I
-_}
\ a'
\
-
I_-
BC'
BD'
Solution:
We can implement BCD to 7 se,gment decoder for common anode as
follows.
Truth table for BCD.to seven s®grmeltt decoder
Digit \ A 8 C D a b C d e f 8
rlLJ(IIiiI-.E1E') `0 0 0 0 1
0 0 1 1I0 0 1 0 1 •0 010I010101 010 10 0 0 0 0 01I0 0 0 I0 0 0 0 010 10 I0 0101'i10I01 01 I0 010 1 0 0 10
TFuth Table
Binary code BCD Converter
D CBA 84 83 82 a, Bo
0 000 0 0 0 0 0 I
I1
0 0 0 1 0 0 0 0
0 0 1 0 0 0 0 1 0
0 oil 1 0 0 0 1 1.
0 1 0 0 0 0 1 0 0
0 1 0 1 0 0 1 0 1
•0 0
0 1 1 0 1. 1
\0.
0 i 1 •1
0 0 1 1 1,
1 0 0 0 0 1 0 0 0
1 0 0 1 0 1 0 0 1
1 •0 1 u 1 0 0 0 0
1 01 1]100 1 0 0 0 1
1 1 0 0 1 0
1 1 0 1 1 0. 0 1 1
0 0
1
I
1 1
1]1-,---
0
1-
1 0
0
I
I 0 1
C9
6.]8 Digital Electronif s
K-Map Simplification
Expression for Bo
ExpF`Sssion for a,
BA oo 01 11 10
4 5!1 7-=i! 6
tt`9 o1
4~ I_= 5i '}`Str
I.
il
6
I
1.I.
1_ _J
12 `lpl '§1i 14 12 13 15 14
1-1 =lj
8 91,_ 10 8 9 1 10
_1J1
0 1 3 2.
0 1 3 2
0001111C'
00011110
4 11 5i- 7I 6I 4 5 6
8 9 1 10
L1:;i` 10,
82 = D ` C+ CB 83 -DC , 8 '
Expression for. 84
BA
C00011110
0
4
oo
5
-1
o|
- 7
.i|
B6
10
12 -1-
13 15
8
11
9 ``11
I, =j 10JJLJ
84 = DC + DB
Decoder, Encoder and code converters 6.19
`.Logic Diagram
Binary code
D C a A.
C3)
Electron.ics
Decimal 83 82 a, Bo E3 E2 E, F`o
0, 0 0 0 0 0 0 1 1
1\ 0 0 0 1 0 i 0 0
2` 0 0 1 0 0 i 0 1
3, 0 0 1 I 0 1 1 0
'1
4 0 1 0 0 0 1 1
5 0 1 0 1 1 0 0 0
6 0 1 1 0 1 0 0 1
7 0 1 1 1 1 0 1 0
8 1 0 .0 0 1 0 I 1
9 1 0 1 1 1 0 0
10
The unused states are 1010,loll,1 I 00,1101,1110 and 1111. .So place
X (Don't Care C.ondition) for the corresponcli.iig . t>!!s.
K-Map Simplification
Expression for E3 E,xpression for E2
B,Bo oo 01 11 .1° B'Booo i ol 111 1o I
8200011110
0' \ 11 3 2
12000
lilt_ 3 2JJ®
11
`rx
I_1_+_
1:x]
0''1110
H
er ___ _1?x!`+J
13 15 14
tx_ X
9rl-
X X
`grxl
X
811_ 9 `1 `Lx'J`
- 1X a
x`l
11,ll,I,,,ll,,,I,,ii I
'E2 = 8,.a, ' Bo ' + P2 ' Bo+82 ' 8]
E3 = 83 + 82(Bo + 8,)
•=828, ' Bo ' +82 ' (Bo+B,)
E3=83+82Bo+82B,
Decoder, Encoder and Code Corrverters 6.21
--
BiBo oo 01 11 10.
3=00011110
0 fll •1 3,rll 2 a2-00011110-
+i.___, 1 3 \
irl-_\,
4!1i 5 , . 4111 5 6`i\__I,
ill
13 14 12 13 15 14__
X X XI X X
ix; ix! `10Li_ IX`I
8L1,I 9 81i_J 9 1 1X 1lx_
lxJ
Et = 8] ' Bo ' + B]Bo = Bp Bo Eo - Bo ,
Logic Diagram
83 82
-
81 8o
Eo
-11. '\E1
t
+
' \ 2,.
I
E3
Fig 6.16 Logic diagram cjf BCD tct Excess-3 code converter
`C5) \
-tlu-j|--ramp->+.t-Ld.---\
\
6.22 Digital Electronics
0 0 1 1 0 0 0 0
0 1 0 0 0 0 0 1
0 1 0 1 0 0 1 0
0 1 1 0 0 .0 1 i
1 1 I o. 1 0 0,
\01
0, 0 0 0 1 0 1
\1
0 0 1 0 1 1 0
1, 0 1 0 0 1 1 1
1 0 1 1 I 0 0 0
1 1 0 0 1 0 0 1
The unused states are 0000, 0001, 0010,1101,1110 and 1111. So place
X (Don't Care Condition) for the corresponding above cells.
K-Map Simplification
-xl,
EtEo oo 01 11 10
:3E2-00011110-
1 X 2rx-1 3E}oOoO+x 1rl!Xl 2rxl
ill
_i 5_ _
rl-`!
`qlx,liTxl 'fl=
iF___. 13 X
x-- :x= ELxl_J
LilI 1 .X `',1J 8 9
'11|J
10
;ri-I
82 = E2.' Ei ' + E2EiEo + E3E,Eo ' 83 = E3E2 + E3E,Eo
ELogic Diagram
E3 E2 Ei i:o
\Bo
--
I.81
I
82
'!II_,
~ -i--- I +
L 83
I II
0 0 0 0 0 0
0 0 0 1 0 0 0 1
0 0 1 0 0 0 ] 1
0 0 1 1 0 0 1 0
0 1 0 0 0 1 1 0
~1
0 1 0 1 0 1^ 1^
0 1 1 0 0 1 0 1
0 1 1 1 0 1 0 0
'1 0 0 0 1 1 0 0
0 0 1 1 i 0 1
\1
1 0 1 0 1 1 1 1
`1`
0 1 1 1 1 I 0
1 1 0 0 1 0 1 0
•1
I 0 1 1 0 1 1
1 1 1 0 1 icf 0 1
'J,0 0
1 1 1 1
11
K-Map Simplification
Expression for.Go Expression for G4
BA oo o| 11 10 *8'\ oo -1 01 , 11 10
C00011110
0 'rll 3 2'T1`l
C00011110
0 311_ 2_1J
11!
_i_2 _
`il! 15 14,1 i 13_1J 15 14
8, 9'|1J 11 `O'JJ
!`11-
9 ``r trll
iF
'1
6_ 2
00011110
1
13--- 00011110
0 1 3 2
4 r:i 5- 7- --~,6I_1r\ 4 5 7 6
1_ - 1
-- ,-,~_J
|r5__ 1514i
1
8f a_-1 L=1 I
:.11_ 9 1-
- -- :,) - -- _1J
11
1
101
Go = B'A + BA' = 8 ® A
G{ =Lij +C'B=C®B
.f:`
____=±==±SEfi-JE±±===c=+==__:-±---F±_:_------
E=
a
»,
tiBo
G3 G2 G, Go 83, 8?, 8,
0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 1
0 0 1 1 0 0 1 0
0 0 1 0 0 0 1 1
0 1 1 0 0 1 0 0
0 I 1 1 0 1 0 1
'0 1 0 1 0 1 1 , 0
\o 1 0 0 0 I 1 1
\I
1 0 0 1 0 0 0
1 1 0 i 1 0 0 1
I1
1 1 1 1 0 1 0
1 I 1 0 1 0 1 1
1 0 1 0 1 I 0 0
1 0 1 1 1 1 0 1
1 0 0 I 1 1 1 0
1 0 0 0 1I 1]iI---, 1 1
1
-+I
1_ _J
12 `rlr` 15 1?~11 12 .
1rl`-1_
83 9
|J 1[)
|.J
8[1ItlJ, E3
1 , 10'
illI
= (G3®G2)(Gi®Go)`+(G3®G2)' (Gi®Go) `
-G3 ® G2 ® a,
C9
\'?`.
G,Gooo
'300011110
0 1
ol
3I
11
-2i
10
12 13 15 14
82 = G3'G2 + G3G2' 83 - G3
-G3© G2
Logic D`iagrarm
G3 G2 Gi G;
i
I-i-_ ==::===.:;)L=\
i+'I
!ELi
i ji=
`+I+`.-..--.`. -`\
-~`\
.-=i;i-~.-~,,/I--,.-.--------.--------82
-.---1-.-~-.*-~`
` t` A ir ` \IHqE[dHit[H