0 ratings0% found this document useful (0 votes) 107 views24 pagesMaths Unit 1
Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content,
claim it here.
Available Formats
Download as PDF or read online on Scribd
“Poesroo-Eh ofnonic —
WE Naikas Book
Esyoo = \ Vexacr ~ Vappeo ] >. ‘Absolute, fF tor
‘Ve - Vel Relative Exrox
ave 1
. foo 1255 - Cael Pescen tage shor
1. Sig Sigs Gul befae Decimals.) lex ‘3. 68
i Round off eatior > Above ‘S
; Melhals bo Solve —_bineou-
"© Bisection _Wlethod | tar Real ost: Only |
T
j > Take avg of wake
ii 3 Repest ath value
hide _conbain “cook
Gy ath o bw them .
Co = b '
| \ Se etas bo > (Stan) - $ Cor) 60]\.o&
ex wy? - a + 1O-—6 = 0 upto 3 Decimals
€ls) = tere \|.0f
¢(\) =O. 94
£Q) = B.06 eS
2) On laa eve) Ran MS | EF (an). fUon) | - Ont
6 { Oe error meso ts) |
2 oS ©.25 crea) On BS
Ol FO. O ©. 6%! o- < O |
O.25\) ©. 375) O. 3135 nt ©O-\s4 {
o-3\25] O. $75) o+ 34395 » QO. 07] ‘
Oe OHs| 98-39 | O22 " : {
O- 3y ©. 396] pn. e549 4 0.094 6
: ; ' 7 :
t ) ( 5 ‘
42 0.37035] bus 9.335 | 0.370312 |= 9. 0003
iL
v
QnsMoths |
Sta) = e% - B ‘ind poots > dy = \- FN FNB2S~
+ \-51
ee © ClO) EUs) = -o.o18
sy Wo, CSI LE) ONS
£ QQ)
) a!
y On \-ve) ‘ba Lve) Ln Fl&Xn+)
,
) 1S ac \. oS" ©. 06)
eS LSS L“S2s © . 020
, \.S yD —
» (rote: \ASHARISe OQ . ODOSE
2 wed \. F125 \_. S065] -©. 00836
9 Seas Ve SRC L.s0939 |-O, 0042
t WSS 37 Se le ee 9 See \. 7199375 |-O. 0018
Sy. sjoesr | oy. Sis W-sl¢sewl- 0 - 00063 5y Mow ress
@_Reguias Salsing method
T
nA ao L bo
J ao +he be
: a +h bo
tHE C 2
iyi? b—_@nthn ‘ba
Via
=> ns = On + hn
hore ax = |S Coto) fb tog = inf +
\ Elan) +1E onl
Re ee Th L
Mu C by bis Kon Methed)
l
O st=Gasf 3 €a,3) upto 8 dectme(s”
@® Tnx sy 2 U2, 2-9) aupto Oy) 37
Pa |‘ |‘ |ete ee
Mahe WW [wed
@ ete tl
So) = 1 f@) = =S §(2.4) + > 0.31
SU) = -7 Ge)
a t-ve) b (iw) "tos © Can)
En Q.9 2 2.95 Q-\224
X Qa. 9 SO 2-15 Que” - 6. Wut
¥ Q URS Q.49 Q. 2S E 3 USNs
dy Qe. PRS QR. 95° Q_-BBQa — \_. 7363 |
as Q. 32 Q.9F - 8906 =O. 3428
Ne QIGO6 2-95 22.920 > O +8735
xe 2 - 9203 9S RB. 3351 = Q- \30
ye 2-9 381 2.35 guass~ = 0.004
yg 2- SURES 3 2.9462} Q. 05392
)si0 - Gree” Q. 94bAzs -gyuyiar ©. O8F1
yyy Q2 IUQTS Q2 9444! 2 9U3U OQ» OvVrd
yi 2 - BUAST 2 4424S Q .9Ugo\s 0. 0033
yun 8. SUAS ~ 94 BO\ 2. 34Q722F - 0. 0006
) Ga) 2 - GURPB ae ©. 003
)
“Root is So ox 3-943 Gus)
=
eafi moriwire) ss ®
Page No. WV
i o
@ Tonn + y 7 Gar. as) upto x ‘decimals G
@
Gta) = - 0. Bro e
§ (2.$ 2 lL. 2530 e
&
a (-ve) lb Lave) ou Elan) ©
: s
Say 2.5 Qasr oyu ©
L pacts 2. \25- O- 5092. @
@ BAW RL 06S Oo. \4e4 @
: Q. Ofas- Ve OZ Os O17
» O3\25 2. OVER +6, 0922 8
\S6R ~ofns~ 2 DBR = 0-033).8
WD OQSY OS DLA? = 0. 0034@
la 2» OVP 2 OB\25S— 1 Oases OQ: 00236
O273 0293 » ORBz =O, 09023 a
A
he xock_ is 2. ORR» 00 2.03 @ a5 J
fMaths
@ Regular Falsing’ method
\ : \et SOx) = Soe log = z
ne tay 2 47?
\ Le f lol = 0.397
(aa
Qe bn $2) n= Letaal | Ubn- cn) Aon = Cn tte
\Slan)| + |¢Cb»))
S U2 we = 1 C= 9.7993 | gs 0-988
a 1.42 + OM \ 3 3072
: = 3.35
79 -00S%
33.99 KO us 1.48 (0.79) 2 oF > 3.339
7 {4B + ©. 00136
=0 - 00008 ea:
3-983 13.39] 40 | un = 9.90052 Land) 2 0.0009 > 3.729
© .on052 0. 001s 232
=-0 . 00090065
3.998443] 3.29 Lis = 0.009003 0+ 000228) 3.789
©. Ong + 0.0036 R2TERQY
= 9. O9900/ 2AMurwress
QQ a@sqgr-z, Flo)e-?R
(d= |
—ve ave
On bn -_ lan ; an Sn
oO Lo 2G) ~.0. 666 0.6 | -o. 3702
al :
Q- 667 \ 0. 3702 (-06667]_ = o.ap 0.1572 | 0: 0533
3. SAR le 5 : te
9.2062 | 9.0523( 0.2433) = 0- 01239 2490 | - 0 -o7720
2 9.0533 +4 a
A
A
9..9072Y (9.231) = 0.001662 0-3206| - 0. Olly
: a
(
©. 0072% +1
‘0.2706 | 5 0N9 (9.3294) = 0-00029-20.703)-0- 0000 |
o.003 + | GUS
Yo > Sina + Com =| - eae
i dsree
maths H. by
Sinn & Coon -| = (iy) -» SU) = O-3813
. (2) +o
§ (Q) =-0. 5069
ele) bb ave) day SSE nw et an __F Cota)
Co [DEMO 6» 23966 9 09908 G-228M9 OO, Ooo BD.
: 2 O-5 7033 SPOS =|. 30082
1.57033 _ \ \. 239) 3. FRUW =e 39a
'
13, FB ) - Yor 6.18640. ~ O-\ol3
'
ig. \9¢yo" | 1.0236 | 3.2240) O. 8344
; P24h0}- \
YZ. (B64 F.QBUol _—O- AWS 6.uBbe 0 .\2\A3
, Z
16, \3440 6-WR2_ a. 1032s 6.23486 0.00eu4r
j ;
’
'
“GjaGuo 6. 2934a 0 -\0RGS 6 ABY3E oO. 006\6
6.19440 6.29036 b.09}06 4.29 SUb OQ. 000 B27
“2. (964o* 6 -328344 0.0968 6 ieee G6 eo
C1340 6.29820 90-0962 6-22 380 9.900 =
Rol ke 8320 O au cep 16,233)eae ew 4
Page No. 4
Moshe 7 4
a ‘
Soran _ oettnsd ‘
‘
‘3 = On — (on=otna) Fol] ‘
€ (an) -© in) [ ¢
|
Q Stoy.= Coser - mn e% 4
<
jo) = 1 ysl to SO 4
CU) = -2.1F9) rae 1 = Ug (21292) 4
23.1323 - ) §
= 0-S19% 7 eae = 0. Bb) ‘
Se aa NUYS al orca OMY a
weg (ERE 4
O-51836 f
(
i {
Ta3- owas > Fs) = O- 20854 (
i ; —— d
[das Oo. wubts = (0.4433 = © ae), 0-2o3m
i 9.29384 — 0-519 26 !
[ eo Sats 2 F(Gu) = = 0;0URZ0 =
ic : | x
(“ae = _o.sa3 — loses = 0-33) [0-08
= 0-O4%30'- 0-203
ac = 0-51 632
Smal, ae = O.S15 38 ——>
emt
Clas = 0-009 64Maths
—Jain__and_Tyenger ; zi
Newton — Sophos Method
Staats “Oln = tial
S' Wn)
i Stay = gf - Ba -u $¢s) -1
y Su) = 28
) : $ 2
bE Gy): Bx? - 2 S' sle1s
) E* taj = UO Cheer |
, . : i aa -
) Oi = to - £ (xe)
' ; Fi Wo)
,
' Ke U_> 2g == 313
, Yo
i Ff QW) = 5.537 St (ai) s 24-672
aS 5 - $53? 2 3.055¢
Q4. 62
Flag) > 0. 43% 2 (te) = 20. 378
as ¢ 3.905)
€ (as) = 0. on% S' tas) = 19.939
ie gS. 05)) £Olu) = 9.0005)
1 NY goot $' Ga) = 19. 933 |oe. hl rrlrrh rl Cz — 2, Fe gs= -0-m1
Faye 2 3
‘ta) = a \ogs + a
Ss QB
o'.§ = 4. gr
Se i DWePPRE .
Sites en) eet 2 ae 2uU22
43-2224
7 ul = 0. 295: * (i) EWE Sano)
, Ja = €b90_, Flea] + 0.0201 S(aa)> 4.8555
a ecg ees) ator conte) Cae mano
Ti \. 66U2) Siui=-0.0016 5
|Maths
Gauss Elimination Method
uw) 4) Q) ()
Oud + Oi dote += + Gdn = bi
Qa ay + Gr2dat oS o-* + Gay ty = be
Gu ts $ Q@glga 42. - Soy y= bu
cavda+ = ---+ Ga, 9a > _b:
QagSee) +--+ Ga AR > loa
Q Gays Bas + 2 - 3 | 5 >
ae ner 2
Zo + ge + 23 =8 | Ru2 2
= Quy 3: BAL
Ray +t -Bsg.t Ds+ 9 =
(g-3\a. (3 -\\as > 6- 3”
Ean ary) nod 7
fe o\p.. fa- sh an% +g) - 29.
7 2)
La, + Stat da= 9
Vo xa + Sarre 2/2
c= Haga + 12 as = U1
eG .
Qu 7 ae FS
Ts ayy a lStabtss = 3/2
G_\t = ari ban = a - Fai
[a8 eT} 2 Le
fist, = x
=3 29 wri
\ \' 1B = 7D “Bay + Baa - Qa ell
Ua ao +1393 = QU ee]
May = 2x2 + 23 t= -3 ls
Step © ty t cepa i
+(9- d4ia. , [\S3 eg) = ay = AU
NO PD tone A Fa) 3,
5 fs. Ta | ie 3) ~Q -uy
Me Abasiihes 3) Behe
, 5 5 &.
Hy a th ES
ee
Step Boys tta hen aa = ih x 710
~\999_ eUl a3» 23 x
_— 3 3
=1U9 WW d3.2 = 6B =\4
3 5 g ly
‘ ; tx
See © ak Gyn — gas = We ie
(a) 20 \ds= 28 4 WO
{3 A393] 3 9
(up aelaa = po 4 ee
737) cs)
(\93 \ & = 94. 1.890
{gs ) g
wee VU. sts
3 . (c\as = je=ton\
: AS f Lg /
4 ce) xa only. US =26.929Qa = b a
Ars VE .
[aos [OaROMIo mone
yweloteoc L=|. 4-0 0
2 o 1. ¢« \ . 8-0
oo O41 \ os
Ui» = b ~
LUX = b
y
Ly = b
Q Qo, o 3az + Uda 8
ees ee eal Se
By, + “Mag - a3 = 9
C ces)
| ow
2
Ta
3 w 7
Vet ve Us) \ iy oa}
© \_ Vas \ Jar Jas
oo | Vag dss dss|
3S U-=-l
Java + dy = 1
Qe Ue + by vas =4
12 + (5) - ag = YR
\
We
Aer Ug +s Nea =
VS -3 Qn =U
Q é
Ta 12
Vas + dss |
+ ds9 =\
Qa Us + Sse
4 3-2 + VQ +E
LY ce bs
Uy 28
[Cy =2)
iemene [ey
30
nN Ts Jl J
\_Ya=5.2
| 93- 3-24Maths =
Gray, Jacobi \esation vas 1 =n leis)
a 3
An + Gs da +. -:, = bi wal
Qo A + Ory doa - = bas
Oni %1 + Ane de eas amd = bn
mw ¥
Clheaitsmeen teen a Soe ay gat --- Ginn
» OW J we
at a a K
ou = ecls Lb cecicon! Cas BCs = aan dn
Gre 5
oe 2 ON Libg = Og ana anna |
' Quon
_@ yy Ante to Ugg O
I Be, = Spa + 2s = 2O
Ut, + Wag 52 = B>
Qo - Ape BWe=Q0
Ya \ja - 3 =SB
yeh Mag = 9Po ge
tn Maths
Q Sp, 4 Sd, = ae ell
Yar 4 Axo + 13x32 24
Ud. 7 Qe 443 2-8
Uo, oa Qya « a - -38
ty App — aaa el
_—— Mais 202 + (33 = QU = - =
+ geet % =r
Male
ewer | Ll-gi/ =k
: Ww
5 a een
3
iti a= ~_Q2.A%
Sy
j
I x 2 =\-60 poet
7 =
(ae = [2 — (ava) —Ux«taq)> 1372
I a
wee P= 4 1) = [4+ x7) 3
gq
ya? = 2. OS66 Ay pgp
A bt
ar = \ [-g tala wa) = Q-9¢%)
\
Bey |\Sai + Ty, - Sy + du = IB
Qa «\Qya tds —UDU= |
Ba. — Yags \Oas AUS 2
a + ta ~Bd, + Boy = SIMaths
—Re\axcition Method
O Av a Uy 4 = UY Satyr 2
| Rat waz = 8 Qxs Uytr2 = Y
! Q4 yaBSr=e S HA By+ Sz = G
v
Qi, ssa Sar Yee
) R= = aa = Uy =
p Re = FG -~o- 24-5
)
»_\sk appioximation ___ ag =o, y=O, 2=0
)
) R= Te R [| R
> R= 4 _ Jaa | +8 =2 =)
) Ra = & dy call = = 3
» az | =) =\ ERS
P Max is Ry = 8B
Peso Talo! _
Pty Xe dy = B =) | R\
) 3 ae)
>
y 2Qod adpsoximation a2 da, 50 =O
)
KR = 9 - 30) =O 2 Prey Values get
Ra = al) = 2) added
) Re = & = (N) 2M
ae
Max Rs = 4
May ig d§2 = U = O.8
Sy
_3sh__Aaosoxi ration 22 dz2 > Ma 4 re BR Value
Q= O + Ci)(o.g) = -O.9
Rat (i) (0.3) = 1.2
Re = Wy -S (0-3) = O
Maxi Ra = 1.2
" dys ta = 0-3
u
St Gp pro: imation ays uy > Md 40
R= = 0.2 — yo.) = —=tl
Ro = 1.2 —W)\o-3) = 0
Rs = O - 3(0.3) .=- 0.9
Max Ri = il
ai dx -le| - -O- 1375
3
U s appicxiation An = o
Riz —)-1 - 2 Co-(3g) =. 42.204 0
g OQ —avo.133) = —o.436 0-226
\
lon
v fo
-0.9 — (0-133)
~\\obe = 0-762
Mee hs 2
uw da 2-204 ==
g
Max is Re =\- o- 762]
vu das O22 962 = - 0.1524
bi 5Page no.
m
G opie aimation
Ris Naaoy - 3 ware) =U ule
Ras -O-8g -—2 lO. 276) = 929
—— Rs = -\. o2a\— (0-276) = = Be
aS Aopaoxmnation
Riz O — \ (-90.-\6q) = 0.\92u
Ro 0.276 -} [-o.\G94) = O-4QVY
Qs= -O.2%42 -5(-0-1599) = 0
May \ Roe = O. UIZSU
X dy is O.Ugey =. O-.\O0F
=
3". __ Appsoximation
Q = O-isau = 10-\o3\ an O- OUSH
Re = 9. 4aey — 410.102) = 5
Ran = oO = 3 (0.107). f= Oe gal
May is Re 69-4 Ras “— © - 321
» Az = Az = ~0-321 - ~0-o44)
S
B_ Aoproximatton
Riz O-Oury =! (~0-04a) = 0-034
Bz O =| | -0- 0642) = 0.0642
Rs> —-O- 3a) -5 \-O-0642) = O
Max ig Qi = O-\094
“ dx = Qrio% = O. Ol
3y
vs
g”_appsox
Rz_O. log _~ 3(0-O 44) = O
Raz O. 064 -2 (0.0) = 0.036
Ra> O -) bovolw) b= 25. OW
‘
Way _\s_ Ra = 9-036 ;
ne dys 0-086 ~ O. 005 ‘
wr ‘
a
\o* __appaox 7
. ‘
R= O —\ (0.909) = =9.009 ‘
Ra = O-O0% -Yl0-0o9) = O : .
Ra = -O-Olu = 30.003) = = O-.0U &
a
Mau ae Razl- o-owl v
u
92 2-O-.OUl = - 0-008 v
S = s v
: v
a ) aK =) -O.g9F + 6.0137 = O- 276 E
Yo ay. = O. 3 + O-\O% +O-003 = O- 44 wv
a: 2 = O-%7 O- IGA -O.~ O6UR —O-00%8 = 0-575 &
. e
w
uig te et
Maths
Ne Sooward “tntexpdation ( Diff lena |
| 7
| ~ Vo 4 ~1)_Az Yo
\.
+ ww (u-\) Cu-2) 3 Yo wfuctl Ladi 3) AS
! 3! :
[ . Tae aA-Fo
|g Y=) Moy ay ey
(iss (wae
= T.0% ol)
ce ean 6 et Cg 7
0.06235 (0.0099 16}
L.\o - \gt00 =O -000}3
0-004 3% ©. 0990\5S
\ -\ 7S O- VA 26 =0-00\ 91
L Q. cour ©. 000QI5 3
Wy. \g0 O- Les 1y -0.©0|20
\ 0.004222 0..Q000 UF
So =O -QOolFQ
L! SS 9.00421) Q 000 (“4
(190 9.13335: 0-000 (F4 .
2O.004123 60,699 (UX
Mb ap
©.00 Ul? S
1 \- 2) _(O- 7192320) .
t = | tha —\. yo
“ OOS (ews
a any dal
us OY