0 ratings 0% found this document useful (0 votes) 36 views 33 pages 9th Math ch#02
The document contains various mathematical expressions and equations related to complex numbers, including operations such as addition, multiplication, and simplification. It also discusses properties of complex numbers and provides examples of calculations involving real and imaginary components. Additionally, it includes references to algebraic identities and transformations.
Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content,
claim it here .
Available Formats
Download as PDF or read online on Scribd
Go to previous items Go to next items
Save 9th Math ch#02 For Later C/O sume).
25
sal Fb
COMPLEX NUMBERS _|
HY
supe
3} bel dd
shal
}
})
a
| ol Pt
re aes wiPie -
cl, ue?
“etl Ree Bilal er ble Pedal Pte
R= QUO!
pete ee hee
yp festuaPr Atte tibeoe Al
1 (vy) 7.25 (wi) V29
ay
18 wg aid * w) 3
' @ 8
(ii) =
oS (iii) *
_. 13
(iv) z (vi) 29
(wy) 7.25 Aba ealahserilel Sth ize 2
8
? SMB
xelZ
25ek ON paw LLL nf 5
19 5
xe SK wv
19,28 475 _ 475 eb fi perse LL tones
4°25 100
57
it)
sles < NM
x 125_ 7125 9 195 eh in pas" L EL b 1000
125 1000
2
(iv)
Shy
2S es. Whe Pe"55.65" LE b 1000 F
EI
™ 5
5
xed
8
= 5,125 _ 625. _ 9 695 web peas Lib 1000/0, F
8-125 1000 Zl =
» 2
wi) 35
25 3
X38 we
LI Ae 263.1579 ££ 100067
= 25,, 263.1579 _ 6578.9475 _
*"38"2631579~ 10000 ~ 0.65789
UG ibs tern we Loot 3
saben
oP tS Lin (ii) ett hls a
7 elemgicbiydti 3 (iii)
4
, je ge SEL ()
eo) = (iv) oe iii) en iy we () YR
be BL Auf
2
3 Z oa m fie De oy
pe VE? tack geil yoy ters OSL Inigt A Fa od
ens A eM Bf bl SIAL oLicee
: 4 et 4 ow
Ff (0, bee SLA, ! Sif -5 Fi Ww
tp tient pa ced a -
eth -= eB UGUS -2 el Ley IL
hn ee srg 4
5
“4 '
5 geoorn tie Te fe pie po oP fe Seth If ty,
3 2 Al Oa ee Sl
ae
Ais edcsegchi A 1, WHE AOSE Liab! fv A et oP
aopl'y : sf oa / z
eh IF Q Sus A Lok eng BE
5 8
Sect Pe ureied Webovrl 30-2 AL Lalig! SUAl ~22 sy oe
“PaO we mas webs B
ne tS ~ 25M BUS 22 GAL La eb
-2f
tt
4 3, 2 A 0 1 2is oa
ante Te utacpfebolenl sanbitet ASE Labgt ay 5h,
et ht 23 RIEL UGUY 22 Ssh filaa tits
23
wi) V5
Lue JB gf 7\0P =v 1] OB l= V5 Lure Svea LLOABeky Bg
wei fetlitnc thy -
oB= y(1)' +(2) =vit4 = V5
Beli JS coi P Be ent At ASUS | 0B|= V5 vA Sos
-< Bi
e
e .
ge se ML A f
4 3 2 1 9 yg 2 e.g 4
Ee toe Kt tivo aus Sul 3
Extend suet Probstbron Pe fbaiouagt o
G3) (83) G9
4x9 9x4) _\36 36/ _\36/ _ 47, 1 _ 47
479) _ _
20 2 2 2 362 72
uml 4 # © ipa Lu Abt oars Aiow 4
v 05 = i) 073 — itt) 0.67
i) 0: 4
© 03 sr
X= 0,5555 sen w -e Pye Ae va
LY Pe WISE WLIE deyargrsiusnil nt
10x = (0,555 .....) «10
10x = 5.5555... (ii) ei igpetloem
1Ox—x = 5.5555...- 0.5555...aa
ys
u "
=
,
5
9
5
9
x=0.13
x = 0,13131313
th fone Aspe 00h vie| Meno ASBNIS SUB LE
100x = (0.13131313 ..
100x = 13.13131313 ....
wx—x =(13.13131313....
99x = 13
x= 0. 67676767.
SI
__@ -e Pye rie
.) x 100
9 ye nnf drew
-) = (0.13 131313 w+)
SP
-e euie Aa
we See ee use l00FL eels z A St67 Sb Leln LR
100x
100x
100x — x.
99x.
(0.67676767...
67.67676767.
(67.67676767.
67
61
99
61
99
x 100
ii) EL Fe Ki f )Aene
) — 0.67676767 000+ )
ue
ibe uk?
Va,beR,atbeR (feerg
at+b=btaVa,beR J pesy
(a+b) +e= at+(b+c),Va,b,ceR pikes
at+0=a=0+a,VaeR 52
ance O=Cayta Umyt
iw ioe Saul SP
abe R VabeR te
-1
-2Gi)
(iii)
(iv)
)
(vi)
(vii)
(viii)
(i)
onion
a
VabeR jue
(bye ~albo, tanec (tren,
al=a=LaVvaeR bigs
aa” Flot um,
Vabe=eR SUAS Eine |
a(b c)=abtac Paresh 6 ety
(atb)c=actbe LANG sto I ey,
EO Ceet Sue tine 4
ahprbte Fsitivess y
(ab)e = a(be) Pb iheeg vw
7*1=7 bigs ae
x>ybx=ylx a=ph Babee Ww
nes uae
tder ew
sp seete (c>0) ety
CASO iu tueblfiae |
3x + 3(y — x)
3x+ 3y —3x
3x -3x + 3y
+3
2 ;
* -x) =
= + i ms Db F eee S Hs
= 3x-3x+3y Dee’
O+3y wat
By 2 bie
@
HU topthect bun tumbe 3
a
V4 +0=J74 pue.. ta SS
45+7)-(F)o+(23) pb eet UU WL
2 3)\2
patios 0" * vee
) BaB eed? —Pabtnees Wt
(ope Fos
wih basi Beds
we VEIK Ri mithe bee we by
° Pics
LPOUEAS x= Ya PUL x = (ays Bure Ure LoS ted
JustelGednmoliab=eR A eer Pik
@ Yab=Valo @ & = city fa ="
(ivy Va" =(/)® @ var
be PIAP eit Phat P ne edie
when i Lb
oe (i) 35
64 =(-64)3 wv 2 =(2) =P iW
i) 23 ™ y!
pa-(7i=-7 Ww y? =(y?) aay? W
EpitfentrerLumpigur -2
(i) gaya iii) 49 =V7 (iv) Vx =x
) a5 y
) we ji) ow (iii) Be (iv) Be ;
tere kibae 3
) as a 14
Ww 32 = (32) =(2x2x2x2%2)F
Faas = (-125)3 =(-8) =-5 . = (2x2)! 22! x(2")t 2292(243) (32) (32)
i) © fas)"
(243) (32) 3 _
a
wie},
we tbe ans Bhat a Pie wo
ie}
Usb Lve}
jusnieGedun, misiysalelrbuslah
2 (amyr=a™ 3. (ab)"=a"b" ‘
™ monaz0g, a=l,ae0
Wb souire soot iLved i
GP x@)? oy Fxey y
| (2x2%7%7)" (2x7)
(ary yer) ar 7
(3
(iy (2xy*)(-8x°y’)
(2x*y*)(-8x*y’)
5)? x (2)! 3x2 3x32 27(93)
= (2)(-8)(s8")(y*¥")
=16x?
= 16x? *y""? = -16x°y? ra
iy (xyz!
on (See)
ryuty* Ye ytd 400)" vw
(S45) a(xtatylytetaty a(t me")ey ae POPE) ext
(si 3*=(3)"" (248) "ye
" (9*)(3) 3737
ayx3*=(3)""(243) _ (3°) (3)° (3) (3) gan _ girs
“PR. ere w
7 gras sees gt_3"(-3') Bust 3(3-3')
7" wp PUPP
= 373! = 9-31-56
| 2 x (27)! x(60)? -€F 3
(180)? x(4)? x(9)*
1 1 1 1 ! ig
B(27)! (60)? __(2Px(FPx(2°x3x5)° 2 x3'x2! 2x?
rT i at co Mek od
(180)2 x(4)3 x(9)# (22 «3° x5) x(2?)3 x(3?)* 2'x3! x5? x2? x3?
2 1 =i 1 a
23 2! x 2423 963! 3? x31 3? 25? 257
Ke? bed Oh 12
28 QP 522 = 03 3x 5 =I xx 1 2
(216)3 «(25)3
al 2 0
| fahast fees feyerask—~ *
end ial 1 ,, 3
(iti 5” + (5°)
5? 2(5?) = 58 x56 = 58 x5 = 56 = 5? = 25
(iv) (xf +x", x 40
a Ce ee ee
(aa aatataiteactan” axl
Abed
we te PEL p= JA la DER U7 2= at bi mh
see bilald
Stl Sib CHL by Aer tie
C= {2|z=at bi,a,b € R,i=V-]}
red
@?
i =i8i=(?)i=(1Pi= (i=
i)
i? =()* _ (-" Re(z)=1 asl Im(z)=1 = Re@=-1 4! Im@)=2
i . (iv) 2-27 .
z=-31+2 SLL A z=-2-2i SLABS
> Re(z)=2 ssl Im(z)=-3 = Re@=-2 4! Im@)=
i) -3 m (vi) 2+ 07 .
2=0-3i SLA AP 22401 SLBA
> Re(z)=0 os! Im(@)=-3 = Re(z)=2 as! Im) =0
waxtiyti=d—3itupfredS yuk -4
. SEL i BP
JnabedeR Luwlided 2-04 id sl z,=a+ib/
ee a
2 +2, = (atc) + (b+d)i
Kp 2
2 2 = (ac~bd) + (ad+de)i
LP 3UA GRE Sailer LUE ne ag :
@ V3V3=3 (i) =- (ii) #04
~S(A + CLE OE 614 ay (wy
ae ELLE Lala = a+ bie ih ()
b= 11 a= Geist (al) - (+ 3)1=5+ 814 «|
~o tn M1 oun nd Liste tn peelh Ltn sin
ey (iv) ys (iii) be (ii) se (i) of
=» (vii) =» (vi) we (v)
Us? basa SEAM LES a + bis KY bie 2
@) @+3)+(7-2)
=(2+3i)+(7-2i)=2+3i+ 7-21 = 9+1i=94i
(ii) 26 + 41) —3(7+4i)
2(5+4i)—3(7+4i)= 10 + 8/21 —12/=-11-47
(iii) — 345) - (44+ 91)
—(-3+5i)-(4+9i) =3-Si-4-91=-1-14i
(iv) 2? + 68 + 3/16 — 67! + 45
= 2? + 67? 1+ 3 (P)8-6(2) 1+ 4 (P24
=2(-1)+6(-1)i+3(-1)' -6(-1) i+4(-1)"i
2-61 +3(+1)-6(-1)i+4(I)i
-2-61+34+ 61+ 4i
=3-2+6i-61+4i
=144i
mB @&2 a &
wu
UPFEPS a + vite 3
(i) (743i) (3+ 20. J
(-7+3i)(-3+2i) =(-7)(-3)+(-7)(2i) +(3i) (-3) + (3i)(2i)
=21-141-91+6i*
=21-231+6(-1)
=21-23i-6
=15-23i Laief a-v¥-4)G-Vv-4)
b-V)(0-3)
(2-2i)(3-2i)
=(2)(3)+(2)(-2i)+(-2)(8)+-2)(-21)
=6-4i-6i+4i?
= 6-10i+4(-1)
=6-10i-4
=2-10i
ii) (V5-3i)°
(si) =(v5)' -2(v5)(a4)+(30)
=5-6Y5i+9(-1)
=5-6y5i-9
=-4-6V5i
in) @-3) B= 2/)
(2-3i)(3=2i) = (2-3i)(3+2i)
=(2)( oe
=6+4i-
Se aaa)
=6-Si+6
=12-Si
92
Ly bei =20i) 242
Ti TH Ti Gtp)-) (1? -GP
242i _-2+2i _-2+2i
2
)(3)+(-3i)2i)
AAP Sa + bio 4
ww243) _ 2431, a4i _ (2+3/)(44i)
4-7 4-i (4-A (441)
(2)(4)+(2)()+ “GCN, aszisiotey
(4 -(i" 16-(-1)
—8+l4i+3(-l) 4147-3 _ 54141
16+1 AT 17
ay ii
1717"
9-7
(iii) py
9-71 _9-Ti, 3-1 _(9-7)(3-i) _ (9)(3)+(9)(-1) + (-71)(3)
347 S48 “3-7 B+GB=1) (3) -(i
20-301 _ 20. 30,_
F109 10 10,
©) Ss
2-61 4+i — (2-6i)- (4+i) _ 2-61-4~i_ =22-7i ~2-7i 3-i
341 341 3+i 3+i 34 SH 3a
GHG By -(@?
= 26-191-7 _-13-191 13 19,
941 10 10 10°
1+iy
(vy) (#4)
(4)- alti)? (1) #20) (i) +? _ 1424477
Ri) if Paes 12147?
altel) 125-1 i
1-24(-1) 1-21-17
=-l
ila! alti, 14 (1i)(4i) teebette
isi isi (i)0Fi) 1a
aubaie(-t) H) 142-1 212i
1-7 I=) 141 2
+(-7i)(-i) vw
Jurpeso
a a | te Ww
FIT) OOFWG+Oaraja
= 1 =!
© 2-3 2g De 3(- _—
at Sri i__ S- sai
5415-1 5) (DF )-(i 35-7
=, Si Pre aM
~25= -- D> wer 26 26 26!
UME 27 (a) wh 2-7 © 24% ) 2 @ Eig -5
co
i (++i) atte 142-1 25
i “Cais imi 4p SZ4-31 _ 4-37, 2-47 _ (4-3i)(2-4/)
244) 244i 2-41 (2+4i)(2-47)
8-161-61+12i? _8~22i+12(-1) _~4-22i_-4-221 4 20,
(2) -(4iy" 4-167 AAG 200.220 20 73
ya(-b Udy) 21) 1) tt
@) 2-( 57 il ttn) =35 30 * 50'~ 100"
on
St NEM eye Lp t2) API 25
25 100 25 100° 100 =—-:100 4
—~ SUSG AI w= 541 i = 243A
@ztwo = +0
LHS. = z+w
ztw = (24+3)+(-4)=24+374+5-41=7-i
zw = J4=7+i (ql)
z+
z 2-3!
w 544i
+54+4=74+7 (2)
Sinente Qa) Aebeut
LH.S.=z-w5
zow = 243i
— (et)(2-3i)-(S+
=iw
aw = (2 +3i) (5 —4i) = 10-8) + 15i- 127
= 10+ 71-121) = 104 714 12= 22+ Ti
pe = 2247 = 22-7
RHS=2Z”
Zz = 243i
w= 5-4
a = 10 + 8i— 15i- 127
2
=z
a
etini = NE
~ 10=23/-12
(")
w
243:
5-4.
2434, 544i _(23/)(5440)
S-4i 5+4i (5-41)(5+4i)
1048141514127 _ 10+23/+12(-1)
(5) -(4i)° 25+16
10+ 23i-12 _-2423i _-2 , 23,
4. a1 at"
zi.)
=i[N1
+
=5+4i
(2-3i)(5-4i)
544i 544i ° 5-47 “Sa 4i)
10-8/-151+12i _ 10~231+12(-1)
(5) -(4i)" 25-167
EE: i
e ae
I
“|e
na
1
He
41
Sinerbe-Q) MI) eebleut
10-71 12(-1) = 10-71 + 12= 227i
WHT W Siete QI) Aebleut
—_®
Ww
we!
a
wv1 GIO FS
) 50+2), ¢ oP,
(vi)
(i)
(i)
4(z+2) =7((2+3)+(2-3) (24314239
$(4)=2=Re(z)
FED, eo SAW z
lez 2)=3(2+3i)-(2-3))= Leora 243) =3(6i)=3.«Im(2)
2-39 + yn =44) UM tyson
2-3) +y)=447
x+yi =
. Ati 2437
xt yi ea
vey (4412431)
+yi =
i QF-Giy
ety = SHIQi + 2e 43H?
» 4—9i?
; 84147 43-1)
ety = 4-9C1y
é 8414
ey aD
; 5+14i
rey = AS
14,
xtyi = Bt!
ref yall
GB -2i (x+y) =2 (x-2yi + 27-1
3 ~2i) (+ yi) = 2 (x-2yi) + 21-1
3x + 3yi — 2xi -— 4yi + 25-1
3x + 3yi — 2xi-2y C1 ~4yi)
Gx 42y) + (By — 2x) i= (2x = 1) + (2-4y) i
> 3xt2y=2x-1 and 3y-2x=2-dy
3x~2x+2y= -1 —2x+3y +4y=2
x+2y= -1 (1) —2x+7y=2 (2)| =
jyen = y= ALIS 2) fel
Ily= y=
x#2(0)= -1 eb ened Sy An rene
2 x=-l
gt 4?-2(-yi)=x+yi
Mean? 2(x-yi)=x+yi Ww
9+ 247 + 161? — 2x + 2yi= xtyi
g+24i-16 -2x+2yi=x+yi
-7-2x + 24i + 2yi=x + yi
(-7-2x) + (244 2y)i=xt yi
-7-2x=x ai 24+2y=y
RAT dy-y= -24
3x=-7 y= 24
Z
xe" 3
PW Meme heyRends A
(27x")”" @
wo & wo & @
Atpial! Ve Gi)
d) x72
cial pike tal 429 (ii)
@) va
KALE LBS (iv)
| 1
@ 3 ) 3 ©) 35 @ Fr
(@) x (b) x” ©
@ Ve wo) Ve ©
4
lw © 3 ©
nt dhO5 + 4 (vi)
() S+4i
AS? (vii)(a)
= fa 2
(a) 2ab (b) —2ab (c) 2abi (4) —2abj 0
iS AW 1342) Ae A wo
(a) -2 (b) 2 (c) 3 (d) -3 gt
@) (0) ) @.- @ {01} (), {in}
< (-4) x1= 8 eH. ec saf (iy
@ bust et © Aasr @
x I< A ciy
(a) xzyz (©) xz=yz @) UtbS
° -e Oe eb uh ea>blab = a,Va, beR eet (ii)
a=b,b = ca = c¥a,b,ceR eebece (iii)
Seb (iv)
a=b = ac=be Zo)
ac=be,c #0 a=b ecb wi)
we EW Bhatti he wih Vt ve Beds *
EAL lay Eb *
a=batc=bte
(a")"=a™,(ab)" =a"b"
ay a"
) a p40
aa" =a"
a"
Baga 20
ala” sazo
wed
abeR GYUiee i= Ei A fimaginaryys AU 2-04 bia 4
OF (2) = bs ok (2) =0)
-e-bhthz=a—bieLZ66 2=at bie 4
y
LOI A getters 8)
ee Pi he aye
(A) (B) GH? Ov (D) 2, Lg ws
MUU wt nS 2L GO ER 23,4, sl
(A) oe (B) seid (C) sal (D) stl
we tL Gonna TEASE O A eater sal iA
(a) sei ® (B) id (©) id (D) sie”
eter bon p Porat i Poti Bed de” Z = 10,1, 42,23, oe
(A) sei (B) sleid3 © sé (D) slut
LBL Yoon A AD IPM EL Apc LOS pase
(A) seit (B) eed (© wi (D) uid?” as
ALY AO PIE Bey AAAS | aiid! 6 a
(A) se Ht (B) stele e (© i (D) eid? ast
- oy 3 oe ° i
(A) Ft @) Fi2 Oe
1g WS
4 “ Z oe = °
(ay Ht B) Hed © & wo)
we Pet althRerk. srbii Pdr? *
(A) alae Pt (B) Laity ds (C) ste? (Dy idee (an )
eng=
(a) 0 (B) > (CZ (@)R 5)
.. = eed VP. FompirA *
A) ed (B) (C) (p) bs —
aUPB Pe Labei fiers
we @) Oe ©)
BUMS Le Su eed Guagienc orth ncPollseld!
o mel eey sets Byladisesyarte
(0) alae bad
0) i peryip tard
ALPES LB balsas e Rune Celbsalel si 21
| HE Worn at
: eee (B) sei Pt eet kee
(C) ah ESE i Piso bd
0.25 =
(A) -0.25 (B) 0.252627...... (C) 0.2525 (D) 0.2525........
SUL VE IVa, beRiatbeR A
(B) Gebivreee
(D) Gob est
~UtLelnati=a=0+aeVae RN
(A) ug? OM Ob ow A O5gF
~ULe nat Ca)=0=(-a)taVaeR A
(A) uF 8) HF O Ab wD) Haig e
~ALe nal =a=1aVae RS
© A335? oy ey 5b
(A) Cb incet
© Greg
(A) wey Se
Z UPL ery
pe (B) 2 OdlL- wu,
i ~e uth,
(ay vo (B) > ot aes
a
(A) J2a (B) Ja @ z l sabes ig
(D) ¥2
(B) & © “W
| (D)a
-13
-16Oeri=
CRED) g
(A) Ved
(A) 0
(A) x®
(A)
(A) 1
(A) 4-4
(A) 1
(A) £7!
(A) 6
(A) a™
(A) 0
(A) 0
(A) Ft
(A) N
(A) Q
(B) Wl
(B) x
(B) x*
(B) vi
(B) -1
(B) 44
(B) -1
VU tLaeh i= JA
@) ow
(8) Ged
(B) a™
(B) a
(B) a
(B) Fé
(B) W
8) Q
~<_autt at a
(©) pbsx ©) EER cty |
“yee che 7 tee
(3) ; (=) (5) 4
x! x x" 25 (
(1 (D) a (
Sse a6
«x (D) x’ ae
tqetn i= 2
© V1 (D) V2 (
etn P= 23 |
co (D) VI
~ Lh 44 29 |
(C) 44 (D) 4
“=i” 30
Oi (0) =i
5 AGL Athtdyb Gul. - ant |
(©) tite (D) 4281
wife AR, 32 |
© um Dy) ee?
a™.a" = (
(Cc) a™™ (D)
a (
(C) 1 (D) 0°
saat 3s
(
36
(
37
(
t= {Pipgezaged 3
()Z (D)R0.3 = -39
(A) 0.33 (D) 0.456...
hE UL SZ -40
(ay Atte (D) Gad pis ee
wi 4 sei 3 Weld 2 ebb -l
wy 8 Bye 7 Wel Pte -6 sel Pt 5
» -12 Fee 1 4 -10 welds 9
Sb Tic 60.2525. AS sel SIEGE 14 sel Pesaberyip to" -13
che 200 KY > 19 ume -18 2 Uie% 17
Ul -24 a -23 Va -22 Jv -2
=I -28 VvAl 27 x’ 26 1 -25
Akt ~32 Blifr 31 -1 -30 4+) -29
Pte -36 a 35 1 34 a” 33
Fisted -40 0.333...... -39 Q -38 R -37
LA efenPLewy
SSA rie 1
ESE BLA ele
SuLnGuihs -2
MPN tl ub bath II th OO tile 1.23 Al tel
N= {125 sinsionen Sere te Wu te nto d 3
ABA Sui 3
we tier bei Ew = (0.1.23 orn be FE LW O tne Nig
UA BASS , 4
bu Eee 0'sstoiel LBP Le b dedy, a 2 (ooo BIN ON23ac}obe te
~e ty
\, UA BAG 5
i Wore Wide a* 0 niuolsiErinaip BIE; all se 0
P
a PML ig
=| P, ,
: {imae tare See ME Ie QL sesSA,
gal “nat Ke
AOE Wier PE 440 sicrestei Eran Abia,
PAE rae wye, | 0
sl
Se teive Q ferenuy ot
a ote Guaigh set
+!
=
Sete shay
SP Cll Rer biel Ree Key ‘A
a-[xrx + Fina zaqeo}
Pedahyg eu fit Toe
R=Qgy = dL
~utt SUPP Guat Pe eaves 4 ut
Be, dea BE Froth Peatoveliger eh 2
MEAs 2 Servier 4
SAE wun Pesieryir bin Sy
EPL Ptegwidit fry ¢
eth Gel Pte
Latta Sul Pasi ipB cll
ple Peseta 2 2 a 0.375 1 = 0.4 pL Jong
SUL Abuser Aird 2
HL LOSI AS Lal Le SER Uses bp DBL 2 vel aE ZN,
UPL US en lee
putbas ua Prsieeya bi? 8
5 sg 4 2
UP MM Peel i WIE EAE 7 = 0363636... hg = 0.222 Ae
5-H
Sen yfo2 F a6
0.23 = 0.232323. i
ut atin inact in 7
vatbeR ech
VabeR ,atbe os pe.
u
4% ounthth byron Gad
atb=b+a.vabeR AY
bia Bek Ss dialects godin cae
Lae Sve S121 E b Sut Pus Sue iseuw. Seeirertiet -17
(a+b) + c= a+ (btc)« VabceR (rea Mele
eonr isi 6 E -18
fret Wid ee sere tisputitnerl inde OK alt
a+0=a=O0+aeVaeR
te bel" Sule -19
S ‘ete 87 aOR GL SAL afin ERIN PS ee
at+(-a)=0=(-a)+a
a “om tb ice coin? 20
abeR, VabeR ieecb rele
yn rabsyoct i? a
ab=ba,VabeR whperbielt
UL i psbpsirecto bun? n
(ab)e=a(be), VabceR pec bee
see Oi POLE -23
Le pe tulardsy pre ra BILE Ree L stale Wle
a.l=a=la-+ VaeR seo ou? 4
(Gh Peak revere! =| 1 A tispo flee 0) se Gen utRer Melt
aat=l=sa7a-o
SY Gb IT eUbh -25
Va.b,ceR » Iz
a(btc) = ab + ac (GH UIE uw
Se Fer YF UL) -26
VabceR wpe
(ath) c= ac + be (HEY IE yuu)
VG Moby Ie Ul 27
Vab,ceR slg
a(b-c) = ab —ac (J Abuds OW :
Se SE Sobuds UW -28
Va,bc eR slg(a-b)c=ac—be CF Sedu se Uw)
SUP YL y 4
“IL x
S a UL v: ‘
Loectuh sit
LA SNe OS SUcle hata? 4
a=a VaeR eet,
~L Aloe IOC Setund?
a=b= b=a VabeR :e2G hs,
UU Aopetbec deta? y
a=b,b=c >a=c VabceR eb aly
Lee Mutu?
a=b=>at+c=bte VabceR este
Lect Aton?
a=b=ac=be VWa,bceR weeby rae
LSet F Side tne
ate=b+c > a=b , VabceR Gebectk ek
Lge Aber Geet? er
ac=be c#0>a=b , WabceR w AbbechF nek
foectdscaasuk 3h
VabeR rect dite
aaxbab>c> arc
wu fdpoe oy ASaeri? *
VabeRraz0,b20 recbry *'
11
@) a a
-s
(b) a>b > A gli
s
mi
Lae ae ttt nif ebb
et W Ei binesi una Pax A Lite benno tnd xv be
" SalAbe Ce ett x= (ay x= Ya In x°=a AG
et SEL,
- fe Ebi KELs a1
ESE LS ase tule Mie LS ont da Uibviglt
te bn P ved 42
EAs SES tied le
ee Pde AS x= Ya PULL x= (ay i
US feck: -43
FJunstelGednmslad ER Ale
4 va =(Ya)” 5. va" =
(*4) Oe, te Uta 44
UE ae BS af mabey "a" Auta’ Pbve de
(216)! x25)}-L™ 45
WEvibtsa
a
z 1 2 a WR
(216)? x (25)? = (2x2%2x3x3x3)) * (5x5)? eh
= Bad OP
wth gthxses
= 22x 3x5
=4x9x5= 180
LASS (5°)* -46
2 ey= st = 5? wee
a?.a>.b’
LPt 5 47
a~b 5
ata’.b’ ath bt ee
7 gt 7 ab
(aloes aAn -48
afi ead DAE Vai wiabe R Ut yrz = at b ie ting
ete le "2" 7
ede bLi 2 = 243i“lz=atbi , al
- 2 sD: cr: 5
Re WL re Pd abi eI at if j me tet)
-etuie
U3 i* 5
MSC =Car,
a.
uA Lite 2-515
2 24S LEE 2 Since
fos HNP Siu 4
Zz ke gh
Re (z) Q
Im(z) =-5
B+4 +743) LAO LPE arbi Sul i bine
(3+4i) + (743i) ad
= B+4i) + (7431)
= (347 + (4443)
= 10477
(245) - Bt) LAP ORI a+ bi sl Be %
(2451) - G4)
2-3) + (5-1
= 544i west
Q-si) (7>3) EPS
(3= Si) (7-31)
= (3~ Si) (7+ 3/)
= (3)(7) — (Si) (34) + (331) + (-51(7)
= 21-157 + 9) - 351
SN= 21-15(-1) + 97-35%
ah PPE a+ bi 58
fi 2-1 el
=i @+N2=i) ~ QF
ne lR
G+3)+0-1i
=6+0i
=6
RF y = ty SEQ y-7-45 wh x=3 4514 00
LHS.=x+y RHS.=X+y, ek
x=3457 x=3+57
Y=7-45 y=7-4i
My = (3451) + (7-41) x=3-5i
= (G47) + (5-4) J=7+4i
My = 1047 X+Y¥=(3-5/) + (7441
y= Tor X+Y= (347) + (544);
BY= 10-1 Xx+Y=10-7
LHS.=RHS,
MY = X+¥ Siete
HOHE
eS