0% found this document useful (0 votes)
36 views33 pages

9th Math ch#02

The document contains various mathematical expressions and equations related to complex numbers, including operations such as addition, multiplication, and simplification. It also discusses properties of complex numbers and provides examples of calculations involving real and imaginary components. Additionally, it includes references to algebraic identities and transformations.

Uploaded by

ihsan
Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content, claim it here.
Available Formats
Download as PDF or read online on Scribd
0% found this document useful (0 votes)
36 views33 pages

9th Math ch#02

The document contains various mathematical expressions and equations related to complex numbers, including operations such as addition, multiplication, and simplification. It also discusses properties of complex numbers and provides examples of calculations involving real and imaginary components. Additionally, it includes references to algebraic identities and transformations.

Uploaded by

ihsan
Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content, claim it here.
Available Formats
Download as PDF or read online on Scribd
You are on page 1/ 33
C/O sume). 25 sal Fb COMPLEX NUMBERS _| HY supe 3} bel dd shal } }) a | ol Pt re aes wiPie - cl, ue? “etl Ree Bilal er ble Pedal Pte R= QUO! pete ee hee yp festuaPr Atte tibeoe Al 1 (vy) 7.25 (wi) V29 ay 18 wg aid * w) 3 ' @ 8 (ii) = oS (iii) * _. 13 (iv) z (vi) 29 (wy) 7.25 Aba ealahserilel Sth ize 2 8 ? SMB xelZ 25 ek ON paw LLL nf 5 19 5 xe SK wv 19,28 475 _ 475 eb fi perse LL tones 4°25 100 57 it) sles < NM x 125_ 7125 9 195 eh in pas" L EL b 1000 125 1000 2 (iv) Shy 2S es. Whe Pe"55.65" LE b 1000 F EI ™ 5 5 xed 8 = 5,125 _ 625. _ 9 695 web peas Lib 1000/0, F 8-125 1000 Zl = » 2 wi) 35 25 3 X38 we LI Ae 263.1579 ££ 100067 = 25,, 263.1579 _ 6578.9475 _ *"38"2631579~ 10000 ~ 0.65789 UG ibs tern we Loot 3 saben oP tS Lin (ii) ett hls a 7 el emgicbiydti 3 (iii) 4 , je ge SEL () eo) = (iv) oe iii) en iy we () YR be BL Auf 2 3 Z oa m fie De oy pe VE? tack geil yoy ters OSL Inigt A Fa od ens A eM Bf bl SIAL oLicee : 4 et 4 ow Ff (0, bee SLA, ! Sif -5 Fi Ww tp tient pa ced a - eth -= eB UGUS -2 el Ley IL hn ee srg 4 5 “4 ' 5 geoorn tie Te fe pie po oP fe Seth If ty, 3 2 Al Oa ee Sl ae Ais edcsegchi A 1, WHE AOSE Liab! fv A et oP aopl'y : sf oa / z eh IF Q Sus A Lok eng BE 5 8 Sect Pe ureied Webovrl 30-2 AL Lalig! SUAl ~22 sy oe “PaO we mas webs B ne tS ~ 25M BUS 22 GAL La eb -2f tt 4 3, 2 A 0 1 2 is oa ante Te utacpfebolenl sanbitet ASE Labgt ay 5h, et ht 23 RIEL UGUY 22 Ssh filaa tits 23 wi) V5 Lue JB gf 7\0P =v 1] OB l= V5 Lure Svea LLOABeky Bg wei fetlitnc thy - oB= y(1)' +(2) =vit4 = V5 Beli JS coi P Be ent At ASUS | 0B|= V5 vA Sos -< Bi e e . ge se ML A f 4 3 2 1 9 yg 2 e.g 4 Ee toe Kt tivo aus Sul 3 Extend suet Probstbron Pe fbaiouagt o G3) (83) G9 4x9 9x4) _\36 36/ _\36/ _ 47, 1 _ 47 479) _ _ 20 2 2 2 362 72 uml 4 # © ipa Lu Abt oars Aiow 4 v 05 = i) 073 — itt) 0.67 i) 0: 4 © 03 sr X= 0,5555 sen w -e Pye Ae va LY Pe WISE WLIE deyargrsiusnil nt 10x = (0,555 .....) «10 10x = 5.5555... (ii) ei igpetloem 1Ox—x = 5.5555...- 0.5555... aa ys u " = , 5 9 5 9 x=0.13 x = 0,13131313 th fone Aspe 00h vie| Meno ASBNIS SUB LE 100x = (0.13131313 .. 100x = 13.13131313 .... wx—x =(13.13131313.... 99x = 13 x= 0. 67676767. SI __@ -e Pye rie .) x 100 9 ye nnf drew -) = (0.13 131313 w+) SP -e euie Aa we See ee use l00FL eels z A St67 Sb Leln LR 100x 100x 100x — x. 99x. (0.67676767... 67.67676767. (67.67676767. 67 61 99 61 99 x 100 ii) EL Fe Ki f )Aene ) — 0.67676767 000+ ) ue ibe uk? Va,beR,atbeR (feerg at+b=btaVa,beR J pesy (a+b) +e= at+(b+c),Va,b,ceR pikes at+0=a=0+a,VaeR 52 ance O=Cayta Umyt iw ioe Saul SP abe R VabeR te -1 -2 Gi) (iii) (iv) ) (vi) (vii) (viii) (i) onion a VabeR jue (bye ~albo, tanec (tren, al=a=LaVvaeR bigs aa” Flot um, Vabe=eR SUAS Eine | a(b c)=abtac Paresh 6 ety (atb)c=actbe LANG sto I ey, EO Ceet Sue tine 4 ahprbte Fsitivess y (ab)e = a(be) Pb iheeg vw 7*1=7 bigs ae x>ybx=ylx a=ph Babee Ww nes uae tder ew sp seete (c>0) ety CASO iu tueblfiae | 3x + 3(y — x) 3x+ 3y —3x 3x -3x + 3y +3 2 ; * -x) = = + i ms Db F eee S Hs = 3x-3x+3y Dee’ O+3y wat By 2 bie @ HU topthect bun tumbe 3 a V4 +0=J74 pu e.. ta SS 45+7)-(F)o+(23) pb eet UU WL 2 3)\2 patios 0" * vee ) BaB eed? —Pabtnees Wt (ope Fos wih basi Beds we VEIK Ri mithe bee we by ° Pics LPOUEAS x= Ya PUL x = (ays Bure Ure LoS ted JustelGednmoliab=eR A eer Pik @ Yab=Valo @ & = city fa =" (ivy Va" =(/)® @ var be PIAP eit Phat P ne edie when i Lb oe (i) 35 64 =(-64)3 wv 2 =(2) =P iW i) 23 ™ y! pa-(7i=-7 Ww y? =(y?) aay? W EpitfentrerLumpigur -2 (i) gaya iii) 49 =V7 (iv) Vx =x ) a5 y ) we ji) ow (iii) Be (iv) Be ; tere kibae 3 ) as a 14 Ww 32 = (32) =(2x2x2x2%2)F Faas = (-125)3 =(-8) =-5 . = (2x2)! 22! x(2")t 2292 (243) (32) (32) i) © fas)" (243) (32) 3 _ a wie}, we tbe ans Bhat a Pie wo ie} Usb Lve} jusnieGedun, misiysalelrbuslah 2 (amyr=a™ 3. (ab)"=a"b" ‘ ™ monaz0g, a=l,ae0 Wb souire soot iLved i GP x@)? oy Fxey y | (2x2%7%7)" (2x7) (ary yer) ar 7 (3 (iy (2xy*)(-8x°y’) (2x*y*)(-8x*y’) 5)? x (2)! 3x2 3x32 27(93) = (2)(-8)(s8")(y*¥") =16x? = 16x? *y""? = -16x°y? ra iy (xyz! on (See) ryuty* Ye ytd 400)" vw (S45) a(xtatylytetaty a(t me") ey ae POPE) ext (si 3*=(3)"" (248) "ye " (9*)(3) 3737 ayx3*=(3)""(243) _ (3°) (3)° (3) (3) gan _ girs “PR. ere w 7 gras sees gt_3"(-3') Bust 3(3-3') 7" wp PUPP = 373! = 9-31-56 | 2 x (27)! x(60)? -€F 3 (180)? x(4)? x(9)* 1 1 1 1 ! ig B(27)! (60)? __(2Px(FPx(2°x3x5)° 2 x3'x2! 2x? rT i at co Mek od (180)2 x(4)3 x(9)# (22 «3° x5) x(2?)3 x(3?)* 2'x3! x5? x2? x3? 2 1 =i 1 a 23 2! x 2423 963! 3? x31 3? 25? 257 Ke? bed Oh 12 28 QP 522 = 03 3x 5 =I xx 1 2 (216)3 «(25)3 al 2 0 | fahast fees feyerask—~ * end ial 1 , , 3 (iti 5” + (5°) 5? 2(5?) = 58 x56 = 58 x5 = 56 = 5? = 25 (iv) (xf +x", x 40 a Ce ee ee (aa aatataiteactan” axl Abed we te PEL p= JA la DER U7 2= at bi mh see bilald Stl Sib CHL by Aer tie C= {2|z=at bi,a,b € R,i=V-]} red @? i =i8i=(?)i=(1Pi= (i= i) i? =()* _ (-" Re(z)=1 asl Im(z)=1 = Re@=-1 4! Im@)=2 i . (iv) 2-27 . z=-31+2 SLL A z=-2-2i SLABS > Re(z)=2 ssl Im(z)=-3 = Re@=-2 4! Im@)= i) -3 m (vi) 2+ 07 . 2=0-3i SLA AP 22401 SLBA > Re(z)=0 os! Im(@)=-3 = Re(z)=2 as! Im) =0 waxtiyti=d—3itupfredS yuk -4 . SEL i BP JnabedeR Luwlided 2-04 id sl z,=a+ib/ ee a 2 +2, = (atc) + (b+d)i Kp 2 2 2 = (ac~bd) + (ad+de)i LP 3 UA GRE Sailer LUE ne ag : @ V3V3=3 (i) =- (ii) #04 ~S(A + CLE OE 614 ay (wy ae ELLE Lala = a+ bie ih () b= 11 a= Geist (al) - (+ 3)1=5+ 814 «| ~o tn M1 oun nd Liste tn peelh Ltn sin ey (iv) ys (iii) be (ii) se (i) of =» (vii) =» (vi) we (v) Us? basa SEAM LES a + bis KY bie 2 @) @+3)+(7-2) =(2+3i)+(7-2i)=2+3i+ 7-21 = 9+1i=94i (ii) 26 + 41) —3(7+4i) 2(5+4i)—3(7+4i)= 10 + 8/21 —12/=-11-47 (iii) — 345) - (44+ 91) —(-3+5i)-(4+9i) =3-Si-4-91=-1-14i (iv) 2? + 68 + 3/16 — 67! + 45 = 2? + 67? 1+ 3 (P)8-6(2) 1+ 4 (P24 =2(-1)+6(-1)i+3(-1)' -6(-1) i+4(-1)"i 2-61 +3(+1)-6(-1)i+4(I)i -2-61+34+ 61+ 4i =3-2+6i-61+4i =144i mB @&2 a & wu UPFEPS a + vite 3 (i) (743i) (3+ 20. J (-7+3i)(-3+2i) =(-7)(-3)+(-7)(2i) +(3i) (-3) + (3i)(2i) =21-141-91+6i* =21-231+6(-1) =21-23i-6 =15-23i Laie f a-v¥-4)G-Vv-4) b-V)(0-3) (2-2i)(3-2i) =(2)(3)+(2)(-2i)+(-2)(8)+-2)(-21) =6-4i-6i+4i? = 6-10i+4(-1) =6-10i-4 =2-10i ii) (V5-3i)° (si) =(v5)' -2(v5)(a4)+(30) =5-6Y5i+9(-1) =5-6y5i-9 =-4-6V5i in) @-3) B= 2/) (2-3i)(3=2i) = (2-3i)(3+2i) =(2)( oe =6+4i- Se aaa) =6-Si+6 =12-Si 92 Ly bei =20i) 242 Ti TH Ti Gtp)-) (1? -GP 242i _-2+2i _-2+2i 2 )(3)+(-3i)2i) AAP Sa + bio 4 ww 243) _ 2431, a4i _ (2+3/)(44i) 4-7 4-i (4-A (441) (2)(4)+(2)()+ “GCN, aszisiotey (4 -(i" 16-(-1) —8+l4i+3(-l) 4147-3 _ 54141 16+1 AT 17 ay ii 1717" 9-7 (iii) py 9-71 _9-Ti, 3-1 _(9-7)(3-i) _ (9)(3)+(9)(-1) + (-71)(3) 347 S48 “3-7 B+GB=1) (3) -(i 20-301 _ 20. 30,_ F109 10 10, ©) Ss 2-61 4+i — (2-6i)- (4+i) _ 2-61-4~i_ =22-7i ~2-7i 3-i 341 341 3+i 3+i 34 SH 3a GHG By -(@? = 26-191-7 _-13-191 13 19, 941 10 10 10° 1+iy (vy) (#4) (4)- alti)? (1) #20) (i) +? _ 1424477 Ri) if Paes 12147? altel) 125-1 i 1-24(-1) 1-21-17 =-l ila! alti, 14 (1i)(4i) teebette isi isi (i)0Fi) 1a aubaie(-t) H) 142-1 212i 1-7 I=) 141 2 +(-7i)(-i) vw Jur peso a a | te Ww FIT) OOFWG+Oaraja = 1 =! © 2-3 2g De 3(- _— at Sri i__ S- sai 5415-1 5) (DF )-(i 35-7 =, Si Pre aM ~25= -- D> wer 26 26 26! UME 27 (a) wh 2-7 © 24% ) 2 @ Eig -5 co i (++i) atte 142-1 25 i “Cais imi 4p SZ 4-31 _ 4-37, 2-47 _ (4-3i)(2-4/) 244) 244i 2-41 (2+4i)(2-47) 8-161-61+12i? _8~22i+12(-1) _~4-22i_-4-221 4 20, (2) -(4iy" 4-167 AAG 200.220 20 73 ya(-b Udy) 21) 1) tt @) 2-( 57 il ttn) =35 30 * 50'~ 100" on St NEM eye Lp t2) API 25 25 100 25 100° 100 =—-:100 4 —~ SUSG AI w= 541 i = 243A @ztwo = +0 LHS. = z+w ztw = (24+3)+(-4)=24+374+5-41=7-i zw = J4=7+i (ql) z+ z 2-3! w 544i +54+4=74+7 (2) Sinente Qa) Aebeut LH.S.=z-w5 zow = 243i — (et) (2-3i)-(S+ =iw aw = (2 +3i) (5 —4i) = 10-8) + 15i- 127 = 10+ 71-121) = 104 714 12= 22+ Ti pe = 2247 = 22-7 RHS=2Z” Zz = 243i w= 5-4 a = 10 + 8i— 15i- 127 2 =z a etini = NE ~ 10=23/-12 (") w 243: 5-4. 2434, 544i _(23/)(5440) S-4i 5+4i (5-41)(5+4i) 1048141514127 _ 10+23/+12(-1) (5) -(4i)° 25+16 10+ 23i-12 _-2423i _-2 , 23, 4. a1 at" zi.) =i[N1 + =5+4i (2-3i)(5-4i) 544i 544i ° 5-47 “Sa 4i) 10-8/-151+12i _ 10~231+12(-1) (5) -(4i)" 25-167 EE: i e ae I “|e na 1 He 41 Sinerbe-Q) MI) eebleut 10-71 12(-1) = 10-71 + 12= 227i WHT W Siete QI) Aebleut —_® Ww we! a wv 1 GIO FS ) 50+2), ¢ oP, (vi) (i) (i) 4(z+2) =7((2+3)+(2-3) (24314239 $(4)=2=Re(z) FED, eo SAW z lez 2)=3(2+3i)-(2-3))= Leora 243) =3(6i)=3.«Im(2) 2-39 + yn =44) UM tyson 2-3) +y)=447 x+yi = . Ati 2437 xt yi ea vey (4412431) +yi = i QF-Giy ety = SHIQi + 2e 43H? » 4—9i? ; 84147 43-1) ety = 4-9C1y é 8414 ey aD ; 5+14i rey = AS 14, xtyi = Bt! ref yall GB -2i (x+y) =2 (x-2yi + 27-1 3 ~2i) (+ yi) = 2 (x-2yi) + 21-1 3x + 3yi — 2xi -— 4yi + 25-1 3x + 3yi — 2xi-2y C1 ~4yi) Gx 42y) + (By — 2x) i= (2x = 1) + (2-4y) i > 3xt2y=2x-1 and 3y-2x=2-dy 3x~2x+2y= -1 —2x+3y +4y=2 x+2y= -1 (1) —2x+7y=2 (2) | = jyen = y= ALIS 2) fel Ily= y= x#2(0)= -1 eb ened Sy An rene 2 x=-l gt 4?-2(-yi)=x+yi Mean? 2(x-yi)=x+yi Ww 9+ 247 + 161? — 2x + 2yi= xtyi g+24i-16 -2x+2yi=x+yi -7-2x + 24i + 2yi=x + yi (-7-2x) + (244 2y)i=xt yi -7-2x=x ai 24+2y=y RAT dy-y= -24 3x=-7 y= 24 Z xe" 3 PW Meme heyRends A (27x")”" @ wo & wo & @ Atpial! Ve Gi) d) x72 cial pike tal 429 (ii) @) va KALE LBS (iv) | 1 @ 3 ) 3 ©) 35 @ Fr (@) x (b) x” © @ Ve wo) Ve © 4 lw © 3 © nt dhO5 + 4 (vi) () S+4i AS? (vii) (a) = fa 2 (a) 2ab (b) —2ab (c) 2abi (4) —2abj 0 iS AW 1342) Ae A wo (a) -2 (b) 2 (c) 3 (d) -3 gt @) (0) ) @.- @ {01} (), {in} < (-4) x1= 8 eH. ec saf (iy @ bust et © Aasr @ x I< A ciy (a) xzyz (©) xz=yz @) UtbS ° -e Oe eb uh ea>blab = a,Va, beR eet (ii) a=b,b = ca = c¥a,b,ceR eebece (iii) Seb (iv) a=b = ac=be Zo) ac=be,c #0 a=b ecb wi) we EW Bhatti he wih Vt ve Beds * EAL lay Eb * a=batc=bte (a")"=a™,(ab)" =a"b" ay a" ) a p40 aa" =a" a" Baga 20 al a” sazo wed abeR GYUiee i= Ei A fimaginaryys AU 2-04 bia 4 OF (2) = bs ok (2) =0) -e-bhthz=a—bieLZ66 2=at bie 4 y LOI A getters 8) ee Pi he aye (A) (B) GH? Ov (D) 2, Lg ws MUU wt nS 2L GO ER 23,4, sl (A) oe (B) seid (C) sal (D) stl we tL Gonna TEASE O A eater sal iA (a) sei ® (B) id (©) id (D) sie” eter bon p Porat i Poti Bed de” Z = 10,1, 42,23, oe (A) sei (B) sleid3 © sé (D) slut LBL Yoon A AD IPM EL Apc LOS pase (A) seit (B) eed (© wi (D) uid?” as ALY AO PIE Bey AAAS | aiid! 6 a (A) se Ht (B) stele e (© i (D) eid? ast - oy 3 oe ° i (A) Ft @) Fi2 Oe 1g WS 4 “ Z oe = ° (ay Ht B) Hed © & wo) we Pet althRerk. srbii Pdr? * (A) alae Pt (B) Laity ds (C) ste? (Dy idee (an ) eng= (a) 0 (B) > (CZ (@)R 5) .. = eed VP. FompirA * A) ed (B) (C) (p) bs — a UPB Pe Labei fiers we @) Oe ©) BUMS Le Su eed Guagienc orth ncPollseld! o mel eey sets Byladisesyarte (0) alae bad 0) i peryip tard ALPES LB balsas e Rune Celbsalel si 21 | HE Worn at : eee (B) sei Pt eet kee (C) ah ESE i Piso bd 0.25 = (A) -0.25 (B) 0.252627...... (C) 0.2525 (D) 0.2525........ SUL VE IVa, beRiatbeR A (B) Gebivreee (D) Gob est ~UtLelnati=a=0+aeVae RN (A) ug? OM Ob ow A O5gF ~ULe nat Ca)=0=(-a)taVaeR A (A) uF 8) HF O Ab wD) Haig e ~ALe nal =a=1aVae RS © A335? oy ey 5b (A) Cb incet © Greg (A) wey Se Z UPL ery pe (B) 2 OdlL- wu, i ~e uth, (ay vo (B) > ot aes a (A) J2a (B) Ja @ z l sabes ig (D) ¥2 (B) & © “W | (D)a -13 -16 Oeri= CRED) g (A) Ved (A) 0 (A) x® (A) (A) 1 (A) 4-4 (A) 1 (A) £7! (A) 6 (A) a™ (A) 0 (A) 0 (A) Ft (A) N (A) Q (B) Wl (B) x (B) x* (B) vi (B) -1 (B) 44 (B) -1 VU tLaeh i= JA @) ow (8) Ged (B) a™ (B) a (B) a (B) Fé (B) W 8) Q ~<_autt at a (©) pbsx ©) EER cty | “yee che 7 tee (3) ; (=) (5) 4 x! x x" 25 ( (1 (D) a ( Sse a6 «x (D) x’ ae tqetn i= 2 © V1 (D) V2 ( etn P= 23 | co (D) VI ~ Lh 44 29 | (C) 44 (D) 4 “=i” 30 Oi (0) =i 5 AGL Athtdyb Gul. - ant | (©) tite (D) 4281 wife AR, 32 | © um Dy) ee? a™.a" = ( (Cc) a™™ (D) a ( (C) 1 (D) 0° saat 3s ( 36 ( 37 ( t= {Pipgezaged 3 ()Z (D)R 0.3 = -39 (A) 0.33 (D) 0.456... hE UL SZ -40 (ay Atte (D) Gad pis ee wi 4 sei 3 Weld 2 ebb -l wy 8 Bye 7 Wel Pte -6 sel Pt 5 » -12 Fee 1 4 -10 welds 9 Sb Tic 60.2525. AS sel SIEGE 14 sel Pesaberyip to" -13 che 200 KY > 19 ume -18 2 Uie% 17 Ul -24 a -23 Va -22 Jv -2 =I -28 VvAl 27 x’ 26 1 -25 Akt ~32 Blifr 31 -1 -30 4+) -29 Pte -36 a 35 1 34 a” 33 Fisted -40 0.333...... -39 Q -38 R -37 LA efenPLewy SSA rie 1 ESE BLA ele SuLnGuihs -2 MPN tl ub bath II th OO tile 1.23 Al tel N= {125 sinsionen Sere te Wu te nto d 3 ABA Sui 3 we tier bei Ew = (0.1.23 orn be FE LW O tne Nig UA BASS , 4 bu Eee 0'sstoiel LBP Le b dedy, a 2 (ooo BIN ON23ac}obe te ~e ty \, UA BAG 5 i Wore Wide a* 0 niuolsiErinaip BIE; all se 0 P a PML ig =| P, , : {imae tare See ME Ie QL ses SA, gal “nat Ke AOE Wier PE 440 sicrestei Eran Abia, PAE rae wye, | 0 sl Se teive Q ferenuy ot a ote Guaigh set +! = Sete shay SP Cll Rer biel Ree Key ‘A a-[xrx + Fina zaqeo} Pedahyg eu fit Toe R=Qgy = dL ~utt SUPP Guat Pe eaves 4 ut Be, dea BE Froth Peatoveliger eh 2 MEAs 2 Servier 4 SAE wun Pesieryir bin Sy EPL Ptegwidit fry ¢ eth Gel Pte Latta Sul Pasi ipB cll ple Peseta 2 2 a 0.375 1 = 0.4 pL Jong SUL Abuser Aird 2 HL LOSI AS Lal Le SER Uses bp DBL 2 vel aE ZN, UPL US en lee putbas ua Prsieeya bi? 8 5 sg 4 2 UP MM Peel i WIE EAE 7 = 0363636... hg = 0.222 Ae 5-H Sen yfo2 F a6 0.23 = 0.232323. i ut atin inact in 7 vatbeR ech VabeR ,atbe os pe. u 4% ounthth byron Gad atb=b+a.vabeR AY bia Bek Ss dialects godin cae Lae Sve S121 E b Sut Pus Sue ise uw. Seeirertiet -17 (a+b) + c= a+ (btc)« VabceR (rea Mele eonr isi 6 E -18 fret Wid ee sere tisputitnerl inde OK alt a+0=a=O0+aeVaeR te bel" Sule -19 S ‘ete 87 aOR GL SAL afin ERIN PS ee at+(-a)=0=(-a)+a a “om tb ice coin? 20 abeR, VabeR ieecb rele yn rabsyoct i? a ab=ba,VabeR whperbielt UL i psbpsirecto bun? n (ab)e=a(be), VabceR pec bee see Oi POLE -23 Le pe tulardsy pre ra BILE Ree L stale Wle a.l=a=la-+ VaeR seo ou? 4 (Gh Peak revere! =| 1 A tispo flee 0) se Gen utRer Melt aat=l=sa7a-o SY Gb IT eUbh -25 Va.b,ceR » Iz a(btc) = ab + ac (GH UIE uw Se Fer YF UL) -26 VabceR wpe (ath) c= ac + be (HEY IE yuu) VG Moby Ie Ul 27 Vab,ceR slg a(b-c) = ab —ac (J Abuds OW : Se SE Sobuds UW -28 Va,bc eR slg (a-b)c=ac—be CF Sedu se Uw) SUP YL y 4 “IL x S a UL v: ‘ Loectuh sit LA SNe OS SUcle hata? 4 a=a VaeR eet, ~L Aloe IOC Setund? a=b= b=a VabeR :e2G hs, UU Aopetbec deta? y a=b,b=c >a=c VabceR eb aly Lee Mutu? a=b=>at+c=bte VabceR este Lect Aton? a=b=ac=be VWa,bceR weeby rae LSet F Side tne ate=b+c > a=b , VabceR Gebectk ek Lge Aber Geet? er ac=be c#0>a=b , WabceR w AbbechF nek foectdscaasuk 3h VabeR rect dite aaxbab>c> arc wu fdpoe oy ASaeri? * VabeRraz0,b20 recbry *' 11 @) a a -s (b) a>b > A gli s mi Lae ae ttt nif ebb et W Ei binesi una Pax A Lite benno tnd xv be " Sal Abe Ce ett x= (ay x= Ya In x°=a AG et SEL, - fe Ebi KELs a1 ESE LS ase tule Mie LS ont da Uibviglt te bn P ved 42 EAs SES tied le ee Pde AS x= Ya PULL x= (ay i US feck: -43 FJunstelGednmslad ER Ale 4 va =(Ya)” 5. va" = (*4) Oe, te Uta 44 UE ae BS af mabey "a" Auta’ Pbve de (216)! x25)}-L™ 45 WEvibtsa a z 1 2 a WR (216)? x (25)? = (2x2%2x3x3x3)) * (5x5)? eh = Bad OP wth gthxses = 22x 3x5 =4x9x5= 180 LASS (5°)* -46 2 ey= st = 5? wee a?.a>.b’ LPt 5 47 a~b 5 ata’.b’ ath bt ee 7 gt 7 ab (aloes aAn -48 afi ead DAE Vai wiabe R Ut yrz = at b ie ting ete le "2" 7 ede bLi 2 = 243i “lz=atbi , al - 2 sD: cr: 5 Re WL re Pd abi eI at if j me tet) -etuie U3 i* 5 MSC =Car, a. uA Lite 2-515 2 24S LEE 2 Since fos HNP Siu 4 Zz ke gh Re (z) Q Im(z) =-5 B+4 +743) LAO LPE arbi Sul i bine (3+4i) + (743i) ad = B+4i) + (7431) = (347 + (4443) = 10477 (245) - Bt) LAP ORI a+ bi sl Be % (2451) - G4) 2-3) + (5-1 = 544i west Q-si) (7>3) EPS (3= Si) (7-31) = (3~ Si) (7+ 3/) = (3)(7) — (Si) (34) + (331) + (-51(7) = 21-157 + 9) - 351 SN = 21-15(-1) + 97-35% ah PPE a+ bi 58 fi 2-1 el =i @+N2=i) ~ QF ne lR G+3)+0-1i =6+0i =6 RF y = ty SEQ y-7-45 wh x=3 4514 00 LHS.=x+y RHS.=X+y, ek x=3457 x=3+57 Y=7-45 y=7-4i My = (3451) + (7-41) x=3-5i = (G47) + (5-4) J=7+4i My = 1047 X+Y¥=(3-5/) + (7441 y= Tor X+Y= (347) + (544); BY= 10-1 Xx+Y=10-7 LHS.=RHS, MY = X+¥ Siete HOHE eS

You might also like