0% found this document useful (0 votes)
44 views4 pages

Calculus 2 Chapter 7 Integral Solutions

The document contains solutions to 6 problems involving integration techniques: 1) Using integration by parts to evaluate ∫5x sin x dx = -5x cos x + 5 sin x + C 2) Evaluating ∫4√56t-6dt = -32ln4 + 16/3 3) Finding the indefinite integral ∫x2arctan(3x)dx = x3tan-1(3x) - 9x2+1 - ln(9x2+1) + C 4) Evaluating ∫10ln(x2-1)dx = 10xln(x2-1) + 10ln|x+1| - 10ln|

Uploaded by

301 27 陳冠豪
Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content, claim it here.
Available Formats
Download as PDF, TXT or read online on Scribd
0% found this document useful (0 votes)
44 views4 pages

Calculus 2 Chapter 7 Integral Solutions

The document contains solutions to 6 problems involving integration techniques: 1) Using integration by parts to evaluate ∫5x sin x dx = -5x cos x + 5 sin x + C 2) Evaluating ∫4√56t-6dt = -32ln4 + 16/3 3) Finding the indefinite integral ∫x2arctan(3x)dx = x3tan-1(3x) - 9x2+1 - ln(9x2+1) + C 4) Evaluating ∫10ln(x2-1)dx = 10xln(x2-1) + 10ln|x+1| - 10ln|

Uploaded by

301 27 陳冠豪
Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content, claim it here.
Available Formats
Download as PDF, TXT or read online on Scribd
You are on page 1/ 4

Calculus 2 Chapter 7 Solution

7.1
Problem 1
Use integration by parts to evaluate the integral.
Z
5x sin x dx = −5x cos x + 5 sin x + C

solution.
Let u = 5x, dv = sin x dx =⇒ du = 5 dx, v = − cos x
Z Z
5x sin x dx = (5x)(− cos x) − (−5 cos x) dx = −5x cos x + 5 sin x + C

Problem 2
Evaluate the following integral : Z 4 √ 56
−6 t dt = −32 ln 4 +
1 3

solution.
√ 1 3
Let u = ln t, dv = −6 t dt =⇒ du = dt, v = −4t 2
t
Z 4 √ 3
! 4
Z 4 
h  3
i 4 4t 2 2 3
−6 t dt = ln t · −4t 2 − − dt = −32 ln 4 + 4 t 2
1 1 1 t 3 1
Z 4 √  
16 2 56
−6 t dt = −32 ln 4 + 4 − = −32 ln 4 +
1 3 3 3

Problem 3
Evaluate the indefinite integral.
x3 9x2 + 1 − ln (9x2 + 1)
Z
x2 arctan (3x) dx = tan−1 (3x) − +C
3 162

solution.
3 x3
Let u = tan−1 (3x), dv = x2 dx =⇒ du = 2 dx, v =
9x + 1 3
x3 x3
Z Z
x2 tan−1 (3x) dx = tan−1 (3x) − dx
3 9x2 + 1
 
2 2 u−1 1
Let u = 9x + 1 =⇒ x = , du = 18x dx =⇒ du = x dx
9 18

x3 x3 x3 x3
Z  
u−1
Z Z
−1 −1 1 −1 1 1
tan (3x) − dx = tan (3x) − du = tan (3x) − 1− du
3 9x2 + 1 3 162 u 3 162 u
x3 u − ln (u) x3 9x2 + 1 − ln (9x2 + 1)
= tan−1 (3x) − +C = tan−1 (3x) − +C
3 162 3 162
1
Problem 4
Evaluate the integral Z
10 ln x2 − 1 dx


Note : Use an upper-case “C” for the constant of integration.


Ans. 10x ln (x2 − 1) + 10 ln |x + 1| − 10 ln |x − 1| − 20x + C

solution.
2x
Let u = ln x2 − 1 , dv = 10 dx =⇒ du = 2

dx, v = 10x
x −1
20x2
Z Z Z  
2
 2
 2
 1
10 ln x − 1 dx = 10x ln x − 1 − dx = 10x ln x − 1 − 20 1− 2 dx
x2 − 1 x −1
Z   
2
 1 1 1
= 10x ln x − 1 − 20 1+ − dx
2 x+1 x−1
 
2
 1 1
= 10x ln x − 1 − 20 x + ln |x + 1| − ln |x − 1| + C
2 2
10x ln x2 − 1 + 10 ln |x + 1| − 10 ln |x − 1| − 20x + C


Problem 5
Suppose that f (1) = −1, f (4) = −8, f ′ (1) = −2, f ′ (4) = −6, and f ′′ is continuous.
Z 4
Find the value of xf ′′ (x) dx.
1
Ans. −15

solution.
Let u = x, dv = f ′′ (x) dx =⇒ du = dx, v = f ′ (x)
Z 4 Z 4
′′ ′ 4
xf (x) dx = [xf (x)]1 − f ′ (x) dx = [4f ′ (4) − f ′ (1)] − [f (4) − f (1)]
1 1
Z 4
xf ′′ (x) dx = (−24 + 2) − (−8 + 1) = −15
1

2
Problem 6
Find the integral.

e3x
Z
e3x sin (7x) dx = [3 sin (7x) − 7 cos (7x)] + C
58

solution.
1
Let u = e3x , dv = sin (7x) dx =⇒ du = 3e3x dx, v = − cos (7x)
7
Z Z
1 3
I = e3x sin (7x) dx = − e3x cos (7x) + e3x cos (7x) dx + C1
7 7
1
Let U = e3x , dV = cos (7x) dx =⇒ dU = 3e3x dx, V = sin (7x)
7
Z Z
1 3 1 3
e3x cos (7x) dx = e3x sin (7x) − e3x sin (7x) dx + C2 = e3x sin (7x) − I + C2
7 7 7 7
   
1 3x 3 1 3x 3 3 3x 1 3x 9 3
I = − e cos (7x)+ e sin (7x) − I + C2 +C1 = e sin (7x)− e cos (7x)− I+ C2 + C1
7 7 7 7 49 7 49 7
e3x
   
58 3 3x 1 3x 3 3
I = e sin (7x) − e cos (7x) + C2 + C1 = [3 sin (7x) − 7 cos (7x)] + C2 + C1
49 49 7 7 49 7
e3x
 
21 49
⇒I= [3 sin (7x) − 7 cos (7x)] + C2 + C1
58 58 58
| {z }
constant
Z 3x
e
⇒ e3x sin (7x) dx = [3 sin (7x) − 7 cos (7x)] + C
58

3
7.2
Problem 1
Evaluate Z
5x sin x dx = −5x cos x + 5 sin x + C

solution.
Let u = 5x, dv = sin x dx =⇒ du = 5 dx, v = − cos x
Z Z
5x sin x dx = (5x)(− cos x) − (−5 cos x) dx = −5x cos x + 5 sin x + C

√ 1 1
Let u = 1 + 2x = u − 1 =⇒ du = √ dx =
2x ⇒ dx ⇒ (u − 1) du = dx
2x u−1
Z
1
Z
u−1
Z
1  √  √
√ dx = du = 1 − du = u − ln |u| + C = 1 + 2x + ln |1 + 2x| + C
1 + 2x u u

You might also like