Biomedicines 12 00691 v2
Biomedicines 12 00691 v2
Review
Functions of Differentially Regulated miRNAs in Breast Cancer
Progression: Potential Markers for Early Detection and
Candidates for Therapy
Kumar Subramanian † and Raghu Sinha *
Department of Biochemistry and Molecular Biology, Penn State College of Medicine, Hershey, PA 17033, USA
* Correspondence: rsinha@pennstatehealth.psu.edu
† Current address: Department of Surgery, Georgetown University School of Medicine, Washington, DC 20007, USA;
ks1888@georgetown.edu.
Abstract: Breast cancer remains a major global health concern, emphasizing the need for reliable
biomarkers to enhance early detection and therapeutic interventions. MicroRNAs (miRNAs) are
evolutionarily conserved small non-coding RNA (~22 nt in length) molecules, which are aberrantly
expressed in cancer and seem to influence tumor behavior and progression. Specific miRNA dys-
regulation has been associated with breast cancer initiation, proliferation, invasion, and metastasis.
Understanding the functional roles of these miRNAs provides valuable insights into the intricate
molecular mechanisms underlying breast cancer progression. The diagnostic potential of miRNAs
as non-invasive biomarkers for early breast cancer detection is a burgeoning area of research. This
review aims to elucidate the functions of differentially regulated miRNAs in breast cancer pro-
gression and assess their potential as markers for early detection, stage-specific biomarkers, and
therapeutic targets. Furthermore, the ability of specific miRNAs to serve as prognostic indicators
and predictors of treatment response highlights their potential clinical utility in guiding personalized
therapeutic interventions.
research, molecular marker-based targeted therapies using miRNAs may improve the
prognosis and diagnosis of a wide range of diseases, including breast cancer [8]. A growing
body of evidence suggests that miRNAs play a critical role in tumorigenesis and breast
cancer development. These molecules are altered in different tumorigenic processes of
breast cancer. miRNAs are small, noncoding RNA molecules that regulate gene expression
through interfering with transcription. miRNAs play a significant role in regulating a
variety of cellular processes, such as angiogenesis, apoptosis, and the cell cycle. Due to
their ability to modulate multiple targets within these pathways, they play a significant
role in maintaining cellular homeostasis. It is often observed that dysregulation of miRNAs
in these processes contributes to various diseases, including breast cancer, which makes
them potential therapeutic targets or diagnostic markers for cancers [9]. It is important to
understand the complex network of miRNA-mediated regulation to gain insight into the
molecular mechanisms that govern these vital processes within cells.
miRNA was discovered by Ambros and co-workers in Caenorhabditis elegans (Nema-
tode), during their genetic study to investigate defects in the temporal control of C. elegans
development [10]. Recent studies have demonstrated that miRNAs play critical roles in the
development of breast cancer, differentiation, proliferation, and other physiological pro-
cesses [11]. A growing body of evidence suggests that miRNAs might have very important
clinical implications.
It is well established that miRNAs are critical regulators of mRNA expression and
cell activity, both in normal and abnormal biological processes, including breast cancer.
As miRNA dysregulation occurs in various types of cancers including breast cancer and
leads to tumor initiation, drug resistance, and metastasis, the therapeutic strategies aimed
at modulating miRNA expression levels and identifying their targets are promising strate-
gies [9,11]. miRNAs are secreted by a variety of cells and transported to a variety of bodily
fluids in remarkably stable forms (i.e., peripheral blood, saliva, cerebrospinal fluid, ascites,
urine, and breast milk) through extracellular vesicles, and interestingly, the levels of miR-
NAs circulating in cancer patients differ from those of healthy donors [12–16]. Therefore, a
quantitative analysis of such potential circulatory miRNAs would be an ideal approach
for detecting breast cancer via liquid biopsy in the early stages. This review summarizes
the major functions of miRNAs in breast cancer progression and discusses the clinical
applications of differentially regulated miRNAs, especially circulating miRNAs in early
diagnosis and as targets for therapy.
Biosynthesis of
Figure1.1.Biosynthesis
Figure of miRNA:
miRNA: Pre-miRNAs
Pre-miRNAsare arefurther
furthercleaved
cleavedinto an an
into asymmetric
asymmetric duplex
duplex us-
using
ing thethe actionofofDicer
action Dicer and
and accessory
accessoryproteins. Transactivation-responsive
proteins. Transactivation-responsive RNA-binding protein protein
RNA-binding
(TRBP) and
(TRBP) and PACT
PACTininhumans
humansremove the loop
remove sequence
the loop by forming
sequence a short-lived
by forming asymmetric
a short-lived duplex
asymmetric du-
intermediate
plex (miRNA:
intermediate miRNA),
(miRNA: with a duplex
miRNA), with aofduplex
about 22 of nucleotides in length. This
about 22 nucleotides in pre-cursor
length. This pre-
is cleaved
cursor to generate
is cleaved ~21–25-nucleotide
to generate mature miRNAs.
~21–25-nucleotide The matureThe
mature miRNAs. miRNA is loaded
mature miRNA into
is the
loaded in-
miRNA-induced silencing complex (miRISC), which binds to target mRNA, resulting
to the miRNA-induced silencing complex (miRISC), which binds to target mRNA, resulting in ei- in either
ther the degradation
the degradation of mRNA of or
mRNA or the ofblockage
the blockage translation ofwithout
translation
mRNA without mRNA
degradation degradation
(adapted
(adapted from [17,18]).
from [17,18]).
based on sequence features, the aim of machine learning is to classify miRNA targets
that reference miRNA-mRNA duplexes with known biological significance [19]. miRNA
sequences are complementary to 3′ -UTR sequences of mRNA targets. For miRNA to bind
to target mRNAs, the seed sequence of the miRNA 5′ region is essential. Specific seed
region characteristics, as well as those in proximity, have been linked to specific effects on
miRNA-induced gene repression [19].
Watson–Crick Pairing between miRNA and mRNA is needed for most target pre-
diction algorithms. miRNA prediction tools include miRNAFinder, miRscan, miRbase,
miRTarBase, and SSC profiler [20,21]. Most of them are focused on miRNA conservation
characteristics across ecosystems. The prediction of miRNA in a wide range of species from
the animal and plant kingdoms have proven successful with this technique.
The miRNAs play an important role in the regulation of gene expression, and the
dysregulation of these molecules has been implicated in various stages of breast cancer
development. Breast cancer miRNAs are classified based on their expression patterns,
functional roles, and clinical implications [22,23]. miRNAs can be classified into two main
categories established on their effects on tumorigenesis:
1. Oncogenic miRNAs (OncomiRs): these miRNAs are often upregulated in breast cancer
and promote tumorigenesis by inhibiting tumor-suppressor genes or regulatory pathways.
2. Tumor-Suppressive miRNAs: conversely, these miRNAs are downregulated in breast
cancer and typically act to inhibit oncogenes or other pro-tumorigenic processes.
To maintain normal cellular function, it is essential to maintain a balance between
oncogenic and tumor-suppressive miRNAs as reviewed earlier [24]. In breast cancer,
dysregulation of miRNA expression contributes to tumorigenesis (Table 1). Therapeutic
potential exists in manipulating miRNA expression. OncomiRs can be inhibited or replaced
with miRNAs (for tumor-suppressive miRNAs).
Table 1. List of miRNAs and the function of their targets in breast cancer.
Table 1. Cont.
miRNAs provide insight into the molecular mechanisms underlying breast cancer pro-
gression. The level of dysregulation of these miRNAs in tumor tissue or bodily fluids
correlates with the cancer stage, aggressiveness, and clinical outcome. It is possible to
tailor personalized treatment strategies for patients by identifying specific OncomiRs and
tumor-suppressive miRNAs associated with breast cancer subtypes or treatment responses.
that in breast cancer cells, miRNA-29a regulates the critical roles of EMT and metastasis by
targeting SUV420H2 [96].
The overexpression of miRNA-17/92 is also involved in metastatic breast cancer [27].
miRNA-454-3p plays an important role in breast cancer’s early metastatic events, promotes
the stemness of breast cancer cells, and promotes early distant relapse in both in vitro and
in vivo conditions. The higher expression of miRNA-454-3p was found to be significantly
associated with both a poor prognosis and early recurrence in breast cancer through Wnt/β-
catenin signaling activation [97]. Higher expression of miRNA-373 was found in breast
cancer samples from tumors exhibiting lymph node metastasis [44]. Dobson et al. identified
a novel target of miRNA-30c, the nephroblastoma overexpressed gene (NOV), which is an
inhibitor of the invasiveness of metastatic TNBC (MDA-MB-231) cells [98]. The miRNA-34a
plays a key role in the proliferation, invasion, and metastasis of breast cancer cells [53].
Moreover, miRNA-373, miRNA-520c, miRNA-210, and miRNA-29b were also shown to
influence the invasion and migration of breast cancer [44]. In addition, oncogenic miRNA-
224 expression is significantly upregulated in highly invasive MDA-MB-231 cells and
correlated with increased metastasis [99]. Another important oncogenic miRNA, miRNA-
155, is frequently overexpressed in invasive breast cancer tissues and is directly targeted
to RhoA and contributes to breast cancer metastasis. Inhibition of miRNA-155 suppressed
TGF-β-induced EMT and tight junction dissolution, along with cell migration and invasion.
Further, the ectopic expression of miRNA-155 reduced RhoA protein and disrupted tight
junction formation [100]. miRNA-21 is an important oncogene and has a role in breast
cancer tumorigenesis. It regulates invasion and tumor metastasis by targeting multiple
tumor and metastasis suppressor genes. Also, inhibiting miRNA-21 reduced the invasion
and lung metastasis of MDA-MB-231 cells [30]. All these studies demonstrated that some
of the miRNAs have a metastatic role in breast cancer cells.
Table 2. Cont.
This phenomenon was extensively covered in a recent review on the emerging role of
exosomes in breast cancer progression [133].
The detection of circulating miRNA can be a useful method for the non-invasive
detection of breast cancer biomarkers. Because circulating miRNAs are very stable in clinical
sources such as sputum, plasma, serum, urine, and saliva, they have been extensively
used to classify breast cancer subtypes more accurately than circulatory cell-free DNA or
RNA [134].
The miRNA-21 gene is an important regulator of breast carcinogenesis and is the most
sensitive (87.6%) and specific (87.3%) biomarker for breast cancer diagnoses at early stages
compared to other biomarkers like CEA and CA153 [135]. Canatan et al. reported that
miRNA-21, miRNA-125, and are reliable candidates for circulating miRNA biomarkers for
the detection of breast cancer [136]. On the other hand, the serum miRNA expression profile
analysis using highly sensitive microarrays revealed five miRNA signatures (miRNA-1246,
miRNA-1307-3p, miRNA-4634, miRNA-6861-5p, and miRNA-6876-5p) that can be used
to detect early-stage breast cancer [137]. miRNA-195 and let-7a had significantly higher
levels in the circulating blood of the breast cancer cohort than in the healthy controls.
However, circulating levels of miRNA-195 and let-7a decreased in cancer patients following
curative tumor resection [138]. Similarly, preoperative serum miRNA-20a and miRNA-21
expression levels were significantly higher in patients with breast cancer and benign disease
than in healthy women. Serum miRNA-214 levels, on the other hand, could distinguish
between benign and malignant tumors and healthy controls. In addition, in postoperative
serum samples, miRNA-214 levels significantly decreased as compared to the preoperative
sample [139].
Breast cancer patients with lymph node metastasis have high levels of miRNA-10b and
miRNA-373 circulating in their blood, and their expression is associated with promoting
the migration and invasion of breast cancer cells. Furthermore, such miRNAs may serve
as viable biomarkers for detecting lymph node metastases in individuals with breast
cancer [140]. Some studies revealed that groups of circulating miRNAs such as miRNA-299-
5p, miRNA-411, miRNA-215, and miRNA-452 were differentially expressed in metastatic
patients and increased the expression of miRNA-20a, miRNA-214, and miRNA-210 in
lymph node-positive patient subgroups [139,141,142].
A few studies revealed significant high expression levels of circulatory miRNA-10b,
miRNA-34a, miRNA-155, and miRNA-122 in breast cancer patients, which are associated
with primary metastatic breast cancer [143]. Similarly, there were significantly higher
expression levels of serum miRNA-21, miRNA-29a, miRNA-130b-5p, miRNA-145, miRNA-
151a-5p, miRNA-206, miRNA-222-3p, and miRNA-451 in the breast cancer group than in
the control group [144,145]. Cuk et al. also identified dysregulated miRNAs (miRNA-148b,
miRNA-376c, miRNA-409-3p, and miRNA-801) in the plasma of 127 sporadic breast cancer
patients and 80 healthy controls using RT-qPCR [146]. Other studies revealed some of the
candidate biomarkers in plasma, such as miRNA-16, miRNA-21, miRNA-451, miRNA-409-
3p, and miRNA-652, in the plasma of breast cancer patients [147]. But interestingly, these
miRNAs were downregulated after surgery.
7.1.3. AntagomiRs
AntagomiRs, also known as anti-miRs, are another class of synthetic oligonucleotides
that inhibit the activity of miRNAs, like AMOs. Chemically modified antagomiRs com-
plement the targeted miRNAs with cholesterol-conjugated single-stranded 23-nt RNA
molecules. Their backbone consists of single-stranded oligoribonucleotides with 2′ -O-
methyl (2′ -O-Me) and partially modified phosphorothioate linkers [161]. The modifications
were made to improve the RNA’s stability and protect it from degradation. The strategy of
antagomiRs seems promising for suppressing miRNAs in therapeutic strategies.
The use of antisense miRNAs (antagomiRs) to knockdown miRNAs is one of the most
common approaches. Ma et al. demonstrated that systemic treatment of tumor-bearing
mice with miRNA-10b antagomiRs suppressed the metastasis of breast cancer, both in vitro
and in vivo. This achieved significant reduction in the levels of miRNA-10b and increased
levels of a functionally important miRNA-10b target, Hoxd10 [25]. In another study, the
effect of miRNA-10b antagomiR in a 4T1 mouse model of mammary tumor metastasis was
analyzed. AntagomiR-10b systemic delivery had a potent and highly specific metastasis-
suppressing effect on these malignant breast cancer cells without affecting their ability to
Biomedicines 2024, 12, 691 14 of 23
develop as primary tumors; in fact, antagomiR-10b prevented the spread of cancer cells
from the primary tumor but did not influence the late stages of the metastatic phase after
tumor cells had already disseminated [92]. AntagomiR-21 can affect breast cancer cells by
inducing apoptosis and reducing cell proliferation [29].
Figure 3.3.Potential
Figure Potentialapproaches
approachesto miRNA replacement
to miRNA therapy
replacement for breast
therapy cancer using
for breast cancera variety
using aofvariety of
miRNA delivery
miRNA deliverysystems.
systems.
The effects of these therapies may include the suppression of cancer cell growth, modu-
8. Conclusions and Future Directions
lation of immune responses, and restoration of tissue homeostasis. Tumor cell proliferation
can beTo conclude,
inhibited, being able
or apoptosis can to
be understand
induced usinghow miRNA differentially regulated
restoration therapy miRNAs influ-
by restoring
ence breast
exogenous cancer progression
tumor-suppressor miRNAsprovides
that arevaluable insightininto
downregulated tumortheir
cellspotential diagnostic
[153]. Differ-
ent studies
and have shown
therapeutic applications. of in vitro and
the efficacyUnraveling thein vivo miRNA
intricate webrestoration
of miRNAtherapies. For offers
functions
example, Liang
valuable et al.into
insights introduced miRNA
their utility asreplacement in radioresistant
both diagnostic tools andbreast cancer cells.
therapeutic targets for
For the first time, they showed that miRNA-302a’s enforced expression
breast cancer. By identifying stage- and subtype-specific miRNA signatures, effectively sensitizes early-
radioresistant tumor cells to irradiation by directly downregulating both AKT1 and RAD52
detection strategies can be improved and personalized therapeutic interventions can be
expression [171]. These results suggested that decreased miRNA-302 expression confers
implemented. Moreover, it is important to determine which miRNA or group of miR-
radioresistance, and the miRNA-302 baseline expression restoration sensitizes breast cancer
NAs
cells toisradiotherapy.
most dysregulated in breast cancer, specifically, at different stages of the disease
SuchWhen signatures
miRNAcould
mimicsserve
were as robust
used biomarkers,
to force the expressionfacilitating moreand
of miRNA-365 accurate and timely
miRNA-22,
breast cancer cell proliferation was inhibited and sensitivity to paclitaxel and fluorouracil
was boosted, respectively. By targeting GALNT4, miRNA-365 works on overcoming
chemoresistance [172]. In comparison, Jiang et al. found that in breast cancer cells and
tissues, miRNA-148a was downregulated, and its overexpression mimics the reduced
migration and invasion of breast cancer cells [58]. Also, in breast cancer cells, miRNA-
33b expression was downregulated, and it had a negative correlation with the lymph
node metastatic status of breast cancer patients. Ectopic overexpression of miRNA-33b
inhibited lung metastasis in vivo and compromised stem cell characteristics, migration,
and invasion in vitro in highly metastatic breast cancer cells [52]. MRX34 was involved
in the first phase I clinical trial for miRNA replacement therapy and was intended to
restore miRNA-34 expression in patients with different solid tumors including TNBC [173].
The use of miRNA-mimetic agents in patients is a promising new way of treating clinical
breast cancer.
Biomedicines 2024, 12, 691 16 of 23
Author Contributions: Conceptualization, K.S. and R.S.; investigation, K.S. and R.S.; resources, K.S.;
writing—original draft preparation, K.S.; writing—review and editing, K.S. and R.S.; visualization,
K.S.; supervision, R.S. All authors have read and agreed to the published version of the manuscript.
Funding: This research received no external funding.
Conflicts of Interest: The authors declare no conflict of interest.
References
1. Lewandowska, A.; Rudzki, M.; Rudzki, S.; Lewandowski, T.; Laskowska, B. Environmental Risk Factors for Cancer—Review
Paper. Ann. Agric. Environ. Med. 2019, 26, 1–7. [CrossRef] [PubMed]
2. Sung, H.; Ferlay, J.; Siegel, R.L.; Laversanne, M.; Soerjomataram, I.; Jemal, A.; Bray, F. Global Cancer Statistics 2020: GLOBOCAN
Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA Cancer J. Clin. 2021, 71, 209–249. [CrossRef]
[PubMed]
3. Lakhani, S.R.; Ellis, I.O.; Schnitt, S.; Tan, P.H.; van de Vijver, M. (Eds.) WHO Classification of Tumours of the Breast; IARC: Lyon,
France, 2012.
4. Ferlay, J.; Ervik, M.; Lam, F.; Laversanne, M.; Colombet, M.; Mery, L.; Piñeros, M.; Znaor, A.; Soerjomataram, I.; Bray, F.
Global Cancer Observatory: Cancer Today; International Agency for Research on Cancer: Lyon, France, 2024. Available online:
https://gco.iarc.who.int/today (accessed on 12 December 2023).
5. Nguyen, D.X.; Bos, P.D.; Massagué, J. Metastasis: From Dissemination to Organ-Specific Colonization. Nat. Rev. Cancer 2009,
9, 274–284. [CrossRef] [PubMed]
6. Cardoso, F.; Costa, A.; Norton, L.; Cameron, D.; Cufer, T.; Fallowfield, L.; Francis, P.; Gligorov, J.; Kyriakides, S.; Lin, N.; et al. 1st
International Consensus Guidelines for Advanced Breast Cancer (ABC 1). Breast 2012, 21, 242–252. [CrossRef] [PubMed]
7. Yedjou, C.G.; Sims, J.N.; Miele, L.; Noubissi, F.; Lowe, L.; Fonseca, D.D.; Alo, R.A.; Payton, M.; Tchounwou, P.B. Health and Racial
Disparity in Breast Cancer. Adv. Exp. Med. Biol. 2019, 1152, 31–49. [CrossRef] [PubMed]
8. Bertoli, G.; Cava, C.; Castiglioni, I. MicroRNAs: New Biomarkers for Diagnosis, Prognosis, Therapy Prediction and Therapeutic
Tools for Breast Cancer. Theranostics 2015, 5, 1122–1143. [CrossRef]
9. Rohan, T.; Ye, K.; Wang, Y.; Glass, A.G.; Ginsberg, M.; Loudig, O. MicroRNA expression in benign breast tissue and risk of
subsequent invasive breast cancer. PLoS ONE 2018, 13, e0191814. [CrossRef]
10. Lee, R.C.; Feinbaum, R.L.; Ambros, V. The C. elegans Heterochronic Gene Lin-4 Encodes Small RNAs with Antisense Comple-
mentarity to Lin-14. Cell 1993, 75, 843–854. [CrossRef]
11. Khordadmehr, M.; Shahbazi, R.; Ezzati, H.; Jigari-Asl, F.; Sadreddini, S.; Baradaran, B. Key MicroRNAs in the Biology of Breast
Cancer; Emerging Evidence in the Last Decade. J. Cell Physiol. 2019, 234, 8316–8326. [CrossRef]
12. Weber, J.A.; Baxter, D.H.; Zhang, S.; Huang, D.Y.; Huang, K.H.; Lee, M.J.; Galas, D.J.; Wang, K. The microRNA spectrum in
12 body fluids. Clin. Chem. 2010, 56, 1733–1741. [CrossRef]
13. Kumar, S.; Keerthana, R.; Pazhanimuthu, A.; Perumal, P. Overexpression of Circulating MiRNA-21 and MiRNA-146a in Plasma
Samples of Breast Cancer Patients. Indian J. Biochem. Biophys. 2013, 50, 210–214.
14. Swellam, M.; El Magdoub, H.M.; Hassan, N.M.; Hefny, M.M.; Sobeih, M.E. Potential diagnostic role of circulating MiRNAs in
breast cancer: Implications on clinicopathological characters. Clin. Biochem. 2018, 56, 47–54. [CrossRef]
15. Savari, B.; Boozarpour, S.; Tahmasebi-Birgani, M.; Sabouri, H.; Hosseini, S.M. Overex-pression of MicroRNA-21 in the Serum of
Breast Cancer Patients. MicorRNA 2020, 9, 58–63. [CrossRef]
Biomedicines 2024, 12, 691 17 of 23
16. Clancy, J.W.; D’Souza-Schorey, C. Tumor-Derived Extracellular Vesicles: Multifunctional Entities in the Tumor Microenvironment.
Annu. Rev. Pathol. Mech. Dis. 2023, 18, 205–229. [CrossRef]
17. O’Brien, J.; Hayder, H.; Zayed, Y.; Peng, C. Overview of MicroRNA Biogenesis, Mechanisms of Actions, and Circulation. Front.
Endocrinol. 2018, 9, 402. [CrossRef]
18. Ghamlouche, F.; Yehya, A.; Zeid, Y.; Fakhereddine, H.; Fawaz, J.; Liu, Y.-N.; Al-Sayegh, M.; Abou-Kheir, W. MicroRNAs as
Clinical Tools for Diagnosis, Prognosis, and Therapy in Prostate Cancer. Transl. Oncol. 2023, 28, 101613. [CrossRef] [PubMed]
19. Riolo, G.; Cantara, S.; Marzocchi, C.; Ricci, C. miRNA Targets: From Prediction Tools to Experimental Validation. Methods Protoc.
2020, 4, 1. [CrossRef] [PubMed]
20. Saçar, M.D.; Hamzeiy, H.; Allmer, J. Can MiRBase provide positive data for machine learning for the detection of MiRNA hairpins?
J. Integr. Bioinform. 2013, 10, 215. [CrossRef]
21. Skoufos, G.; Kakoulidis, P.; Tastsoglou, S.; Zacharopoulou, E.; Kotsira, V.; Miliotis, M.; Mavromati, G.; Grigoriadis, D.; Zioga, M.;
Velli, A.; et al. TarBase-v9.0 extends experimentally supported miRNA-gene interactions to cell-types and virally encoded
miRNAs. Nucleic Acids Res. 2024, 52, D304–D310. [CrossRef]
22. Loh, H.-Y.; Norman, B.P.; Lai, K.-S.; Rahman, N.M.A.N.A.; Alitheen, N.B.M.; Osman, M.A. The Regulatory Role of MicroRNAs in
Breast Cancer. Int. J. Mol. Sci. 2019, 20, 4940. [CrossRef]
23. Richard, V.; Davey, M.G.; Annuk, H.; Miller, N.; Dwyer, R.M.; Lowery, A.; Kerin, M.J. MicroRNAs in Molecular Classification and
Pathogenesis of Breast Tumors. Cancers 2021, 13, 5332. [CrossRef] [PubMed]
24. Peng, Y.; Croce, C.M. The Role of MicroRNAs in Human Cancer. Signal Transduct. Target. Ther. 2016, 1, 15004. [CrossRef]
[PubMed]
25. Ma, L.; Teruya-Feldstein, J.; Weinberg, R.A. Tumour Invasion and Metastasis Initiated by MicroRNA-10b in Breast Cancer. Nature
2007, 449, 682–688. [CrossRef] [PubMed]
26. Jin, L.; Lim, M.; Zhao, S.; Sano, Y.; Simone, B.A.; Savage, J.E.; Wickstrom, E.; Camphausen, K.; Pestell, R.G.; Simone, N.L. The
Metastatic Potential of Triple-Negative Breast Cancer Is Decreased via Caloric Restriction-Mediated Reduction of the MiR-17~92
Cluster. Breast Cancer Res. Treat. 2014, 146, 41–50. [CrossRef] [PubMed]
27. Hossain, M.M.; Sultana, A.; Barua, D.; Islam, M.N.; Gupta, A.; Gupta, S. Differential Expression, Function and Prognostic Value of
MiR-17–92 Cluster in ER-Positive and Triple-Negative Breast Cancer. Cancer Treat. Res. Commun. 2020, 25, 100224. [CrossRef]
28. Frankel, L.B.; Christoffersen, N.R.; Jacobsen, A.; Lindow, M.; Krogh, A.; Lund, A.H. Programmed Cell Death 4 (PDCD4) Is an
Important Functional Target of the MicroRNA MiR-21 in Breast Cancer Cells. J. Biol. Chem. 2008, 283, 1026–1033. [CrossRef]
29. Zhao, D.; Tu, Y.; Wan, L.; Bu, L.; Huang, T.; Sun, X.; Wang, K.; Shen, B. In Vivo Monitoring of Angiogenesis Inhibition via
Down-Regulation of Mir-21 in a VEGFR2-Luc Murine Breast Cancer Model Using Bioluminescent Imaging. PLoS ONE 2013,
8, e71472. [CrossRef]
30. Zhu, S.; Wu, H.; Wu, F.; Nie, D.; Sheng, S.; Mo, Y.-Y. MicroRNA-21 Targets Tumor Suppressor Genes in Invasion and Metastasis.
Cell Res. 2008, 18, 350–359. [CrossRef]
31. Song, B.; Wang, C.; Liu, J.; Wang, X.; Lv, L.; Wei, L.; Xie, L.; Zheng, Y.; Song, X. MicroRNA-21 regulates breast cancer invasion
partly by targeting tissue inhibitor of metalloproteinase 3 expression. J. Exp. Clin. Cancer Res. 2010, 29, 29. [CrossRef]
32. Roscigno, G.; Puoti, I.; Giordano, I.; Donnarumma, E.; Russo, V.; Affinito, A.; Adamo, A.; Quintavalle, C.; Todaro, M.;
Vivanco, M.D.; et al. MiR-24 Induces Chemotherapy Resistance and Hypoxic Advantage in Breast Cancer. Oncotarget 2017,
8, 19507–19521. [CrossRef]
33. Lei, P.; Wang, W.; Sheldon, M.; Sun, Y.; Yao, F.; Ma, L. Role of Glucose Metabolic Reprogramming in Breast Cancer Progression
and Drug Resistance. Cancers 2023, 15, 3390. [CrossRef]
34. Hua, K.; Jin, J.; Zhao, J.; Song, J.; Song, H.; Li, D.; Maskey, N.; Zhao, B.; Wu, C.; Xu, H.; et al. MiR-135b, Upregulated in Breast
Cancer, Promotes Cell Growth and Disrupts the Cell Cycle by Regulating LATS2. Int. J. Oncol. 2016, 48, 1997–2006. [CrossRef]
35. Jiang, S.; Zhang, H.-W.; Lu, M.-H.; He, X.-H.; Li, Y.; Gu, H.; Liu, M.-F.; Wang, E.-D. MicroRNA-155 Functions as an OncomiR in
Breast Cancer by Targeting the Suppressor of Cytokine Signaling 1 Gene. Cancer Res. 2010, 70, 3119–3127. [CrossRef] [PubMed]
36. Zhang, C.-M.; Zhao, J.; Deng, H.-Y. MiR-155 Promotes Proliferation of Human Breast Cancer MCF-7 Cells through Targeting
Tumor Protein 53-Induced Nuclear Protein 1. J. Biomed. Sci. 2013, 20, 79. [CrossRef] [PubMed]
37. Kong, W.; He, L.; Coppola, M.; Guo, J.; Esposito, N.N.; Coppola, D.; Cheng, J.Q. MicroRNA-155 Regulates Cell Survival, Growth,
and Chemosensitivity by Targeting FOXO3a in Breast Cancer. J. Biol. Chem. 2010, 285, 17869–17879. [CrossRef] [PubMed]
38. Taylor, M.A.; Sossey-Alaoui, K.; Thompson, C.L.; Danielpour, D.; Schiemann, W.P. TGF-β Upregulates MiR-181a Expression to
Promote Breast Cancer Metastasis. J. Clin. Investig. 2013, 123, 150–163. [CrossRef]
39. Sharma, S.; Nagpal, N.; Ghosh, P.C.; Kulshreshtha, R. P53-MiR-191-SOX4 Regulatory Loop Affects Apoptosis in Breast Cancer.
RNA 2017, 23, 1237–1246. [CrossRef] [PubMed]
40. Hong, H.; Yu, H.; Yuan, J.; Guo, C.; Cao, H.; Li, W.; Xiao, C. MicroRNA-200b Impacts Breast Cancer Cell Migration and Invasion
by Regulating Ezrin-Radixin-Moesin. Med. Sci. Monit. 2016, 22, 1946–1952. [CrossRef]
41. Zhou, Y.; Wang, M.; Tong, Y.; Liu, X.; Zhang, L.; Dong, D.; Shao, J.; Zhou, Y. miR-206 Promotes Cancer Progression by Targeting
Full-Length Neurokinin-1 Receptor in Breast Cancer. Technol. Cancer Res. Treat. 2019, 18, 1533033819875168. [CrossRef]
42. Harquail, J.; LeBlanc, N.; Ouellette, R.J.; Robichaud, G.A. MiRNAs 484 and 210 Regulate Pax-5 Expression and Function in Breast
Cancer Cells. Carcinogenesis 2019, 40, 1010–1020. [CrossRef]
Biomedicines 2024, 12, 691 18 of 23
43. McAnena, P.; Tanriverdi, K.; Curran, C.; Gilligan, K.; Freedman, J.E.; Brown, J.A.L.; Kerin, M.J. Circulating MicroRNAs MiR-331
and MiR-195 Differentiate Local Luminal a from Metastatic Breast Cancer. BMC Cancer 2019, 19, 436. [CrossRef] [PubMed]
44. Huang, Q.; Gumireddy, K.; Schrier, M.; le Sage, C.; Nagel, R.; Nair, S.; Egan, D.A.; Li, A.; Huang, G.; Klein-Szanto, A.J.; et al. The
MicroRNAs MiR-373 and MiR-520c Promote Tumour Invasion and Metastasis. Nat. Cell Biol. 2008, 10, 202–210. [CrossRef]
45. Li, Z.; Meng, Q.; Pan, A.; Wu, X.; Cui, J.; Wang, Y.; Li, L. MicroRNA-455-3p Promotes Invasion and Migration in Triple Negative
Breast Cancer by Targeting Tumor Suppressor EI24. Oncotarget 2017, 8, 19455–19466. [CrossRef]
46. Matamala, N.; Vargas, M.T.; González-Cámpora, R.; Arias, J.I.; Menéndez, P.; Andrés-León, E.; Yanowsky, K.; Llaneza-Folgueras, A.;
Miñambres, R.; Martínez-Delgado, B.; et al. MicroRNA Deregulation in Triple Negative Breast Cancer Reveals a Role of MiR-498
in Regulating BRCA1 Expression. Oncotarget 2016, 7, 20068–20079. [CrossRef]
47. Jiang, H.; Wang, P.; Li, X.; Wang, Q.; Deng, Z.-B.; Zhuang, X.; Mu, J.; Zhang, L.; Wang, B.; Yan, J.; et al. Restoration of MiR17/20a
in Solid Tumor Cells Enhances the Natural Killer Cell Antitumor Activity by Targeting Mekk2. Cancer Immunol. Res. 2014,
2, 789–799. [CrossRef]
48. Yu, Z.; Wang, C.; Wang, M.; Li, Z.; Casimiro, M.C.; Liu, M.; Wu, K.; Whittle, J.; Ju, X.; Hyslop, T.; et al. A Cyclin D1/MicroRNA
17/20 Regulatory Feedback Loop in Control of Breast Cancer Cell Proliferation. J. Cell Biol. 2008, 182, 509–517. [CrossRef]
49. Zhang, H.; Cai, K.; Wang, J.; Wang, X.; Cheng, K.; Shi, F.; Jiang, L.; Zhang, Y.; Dou, J. MiR-7, Inhibited Indirectly by LincRNA
HOTAIR, Directly Inhibits SETDB1 and Reverses the EMT of Breast Cancer Stem Cells by Downregulating the STAT3 Pathway.
Stem Cells 2014, 32, 2858–2868. [CrossRef] [PubMed]
50. Sun, H.; Ding, C.; Zhang, H.; Gao, J. Let-7 MiRNAs Sensitize Breast Cancer Stem Cells to Radiation-Induced Repression through
Inhibition of the Cyclin D1/Akt1/Wnt1 Signaling Pathway. Mol. Med. Rep. 2016, 14, 3285–3292. [CrossRef]
51. Yu, F.; Deng, H.; Yao, H.; Liu, Q.; Su, F.; Song, E. Mir-30 Reduction Maintains Self-Renewal and Inhibits Apoptosis in Breast
Tumor-Initiating Cells. Oncogene 2010, 29, 4194–4204. [CrossRef] [PubMed]
52. Lin, Y.; Liu, A.Y.; Fan, C.; Zheng, H.; Li, Y.; Zhang, C.; Wu, S.; Yu, D.; Huang, Z.; Liu, F.; et al. MicroRNA-33b Inhibits Breast
Cancer Metastasis by Targeting HMGA2, SALL4 and Twist1. Sci. Rep. 2015, 5, 9995. [CrossRef]
53. Huang, Q.-D.; Zheng, S.-R.; Cai, Y.-J.; Chen, D.-L.; Shen, Y.-Y. IMP3 Promotes TNBC Stem Cell Property through MiRNA-34a
Regulation. Eur. Rev. Med. Pharmacol. Sci. 2018, 22, 2688–2696. [CrossRef]
54. Ferracin, M.; Bassi, C.; Pedriali, M.; Pagotto, S.; D’Abundo, L.; Zagatti, B.; Corrà, F.; Musa, G.; Callegari, E.; Lupini, L.; et al.
MiR-125b Targets Erythropoietin and Its Receptor and Their Expression Correlates with Metastatic Potential and ERBB2/HER2
Expression. Mol. Cancer 2013, 12, 130. [CrossRef]
55. Feliciano, A.; Castellvi, J.; Artero-Castro, A.; Leal, J.A.; Romagosa, C.; Hernández-Losa, J.; Peg, V.; Fabra, A.; Vidal, F.; Kondoh, H.;
et al. MiR-125b Acts as a Tumor Suppressor in Breast Tumorigenesis via Its Novel Direct Targets ENPEP, CK2-α, CCNJ, and
MEGF9. PLoS ONE 2013, 8, e76247. [CrossRef]
56. Chen, F.; Luo, N.; Hu, Y.; Li, X.; Zhang, K. MiR-137 Suppresses Triple-Negative Breast Cancer Stemness and Tumorigenesis by
Perturbing BCL11A-DNMT1 Interaction. Cell. Phys. Biochem. 2018, 47, 2147–2158. [CrossRef]
57. Zhou, L.L.; Dong, J.L.; Huang, G.; Sun, Z.L.; Wu, J. MicroRNA-143 Inhibits Cell Growth by Targeting ERK5 and MAP3K7 in
Breast Cancer. Braz. J. Med. Biol. Res. 2017, 50, e5891. [CrossRef]
58. Jiang, Q.; He, M.; Ma, M.-T.; Wu, H.-Z.; Yu, Z.-J.; Guan, S.; Jiang, L.-Y.; Wang, Y.; Zheng, D.-D.; Jin, F.; et al. MicroRNA-148a
Inhibits Breast Cancer Migration and Invasion by Directly Targeting WNT-1. Oncol. Rep. 2016, 35, 1425–1432. [CrossRef]
59. Xue, J.; Chen, Z.; Gu, X.; Zhang, Y.; Zhang, W. MicroRNA-148a inhibits migration of breast cancer cells by targeting MMP-13.
Tumour Biol. 2016, 37, 1581–1590. [CrossRef]
60. Yao, J.; Zhou, E.; Wang, Y.; Xu, F.; Zhang, D.; Zhong, D. microRNA-200a inhibits cell proliferation by targeting mitochondrial
transcription factor A in breast cancer. DNA Cell Biol. 2014, 33, 291–300. [CrossRef]
61. DeCastro, A.J.; Dunphy, K.A.; Hutchinson, J.; Balboni, A.L.; Cherukuri, P.; Jerry, D.J.; DiRenzo, J. MiR203 Mediates Subversion
of Stem Cell Properties during Mammary Epithelial Differentiation via Repression of ∆NP63α and Promotes Mesenchymal-to-
Epithelial Transition. Cell Death Dis. 2013, 4, e514. [CrossRef]
62. Li, J.; Peng, S.; Zou, X.; Geng, X.; Wang, T.; Zhu, W.; Xia, T. Value of Negatively Correlated MiR-205-5p/HMGB3 and MiR-96-
5p/FOXO1 on the Diagnosis of Breast Cancer and Benign Breast Diseases. Cancer Pathog. Ther. 2023, 1, 159–167. [CrossRef]
63. Chao, C.-H.; Chang, C.-C.; Wu, M.-J.; Ko, H.-W.; Wang, D.; Hung, M.-C.; Yang, J.-Y.; Chang, C.-J. MicroRNA-205 Signaling
Regulates Mammary Stem Cell Fate and Tumorigenesis. J. Clin. Investig. 2014, 124, 3093–3106. [CrossRef]
64. Zhou, J.; Tian, Y.; Li, J.; Lu, B.; Sun, M.; Zou, Y.; Kong, R.; Luo, Y.; Shi, Y.; Wang, K.; et al. MiR-206 Is down-Regulated in Breast
Cancer and Inhibits Cell Proliferation through the up-Regulation of CyclinD2. Biochem. Biophys. Res. Commun. 2013, 433, 207–212.
[CrossRef]
65. Lin, Z.-J.; Ming, J.; Yang, L.; Du, J.-Z.; Wang, N.; Luo, H.-J. Mechanism of Regulatory Effect of MicroRNA-206 on Connexin 43 in
Distant Metastasis of Breast Cancer. Chin. Med. J. 2016, 129, 424–434. [CrossRef]
66. Sun, X.; Li, Y.; Zheng, M.; Zuo, W.; Zheng, W. MicroRNA-223 Increases the Sensitivity of Triple-Negative Breast Cancer Stem
Cells to TRAIL-Induced Apoptosis by Targeting HAX-1. PLoS ONE 2016, 11, e0162754. [CrossRef]
67. Huang, X.; Lyu, J. Tumor Suppressor Function of MiR-483-3p on Breast Cancer via Targeting of the Cyclin E1 Gene. Exp. Ther.
Med. 2018, 16, 2615–2620. [CrossRef]
68. Luo, Q.; Li, X.; Gao, Y.; Long, Y.; Chen, L.; Huang, Y.; Fang, L. MiRNA-497 Regulates Cell Growth and Invasion by Targeting
Cyclin E1 in Breast Cancer. Cancer Cell Int. 2013, 13, 95. [CrossRef]
Biomedicines 2024, 12, 691 19 of 23
69. Li, D.; Song, H.; Wu, T.; Xie, D.; Hu, J.; Zhao, J.; Shen, Q.; Fang, L. MiR-519d-3p Suppresses Breast Cancer Cell Growth and
Motility via Targeting LIM Domain Kinase 1. Mol. Cell Biochem. 2018, 444, 169–178. [CrossRef]
70. Hanahan, D.; Weinberg, R.A. Hallmarks of Cancer: The Next Generation. Cell 2011, 144, 646–674. [CrossRef]
71. Polyak, K. Breast Cancer: Origins and Evolution. J. Clin. Investig. 2007, 117, 3155–3163. [CrossRef]
72. Sever, R.; Brugge, J.S. Signal Transduction in Cancer. Cold Spring Harb. Perspect. Med. 2015, 5, a006098. [CrossRef]
73. Mai, Y.; Su, J.; Yang, C.; Xia, C.; Fu, L. The Strategies to Cure Cancer Patients by Eradicating Cancer Stem-like Cells. Mol. Cancer
2023, 22, 171. [CrossRef]
74. Liu, H.; Patel, M.R.; Prescher, J.A.; Patsialou, A.; Qian, D.; Lin, J.; Wen, S.; Chang, Y.-F.; Bachmann, M.H.; Shimono, Y.; et al. Cancer
Stem Cells from Human Breast Tumors Are Involved in Spontaneous Metastases in Orthotopic Mouse Models. Proc. Natl. Acad.
Sci. USA 2010, 107, 18115–18120. [CrossRef]
75. Chang, C.-J.; Yang, J.-Y.; Xia, W.; Chen, C.-T.; Xie, X.; Chao, C.-H.; Woodward, W.A.; Hsu, J.-M.; Hortobagyi, G.N.; Hung, M.-C.
EZH2 Promotes Expansion of Breast Tumor Initiating Cells through Activation of RAF1-β-Catenin Signaling. Cancer Cell 2011,
19, 86–100. [CrossRef]
76. Shimono, Y.; Zabala, M.; Cho, R.W.; Lobo, N.; Dalerba, P.; Qian, D.; Diehn, M.; Liu, H.; Panula, S.P.; Chiao, E.; et al. Downregulation
of MiRNA-200c Links Breast Cancer Stem Cells with Normal Stem Cells. Cell 2009, 138, 592–603. [CrossRef]
77. Zhu, Y.; Yu, F.; Jiao, Y.; Feng, J.; Tang, W.; Yao, H.; Gong, C.; Chen, J.; Su, F.; Zhang, Y.; et al. Reduced MiR-128 in Breast
Tumor–Initiating Cells Induces Chemotherapeutic Resistance via Bmi-1 and ABCC5. Clin. Cancer Res. 2011, 17, 7105–7115.
[CrossRef]
78. Bockhorn, J.; Yee, K.; Chang, Y.-F.; Prat, A.; Huo, D.; Nwachukwu, C.; Dalton, R.; Huang, S.; Swanson, K.E.; Perou, C.M.; et al.
MicroRNA-30c Targets Cytoskeleton Genes Involved in Breast Cancer Cell Invasion. Breast Cancer Res. Treat. 2013, 137, 373–382.
[CrossRef]
79. Yu, F.; Jiao, Y.; Zhu, Y.; Wang, Y.; Zhu, J.; Cui, X.; Liu, Y.; He, Y.; Park, E.-Y.; Zhang, H.; et al. MicroRNA 34c Gene Down-Regulation
via DNA Methylation Promotes Self-Renewal and Epithelial-Mesenchymal Transition in Breast Tumor-Initiating Cells. J. Biol.
Chem. 2012, 287, 465–473. [CrossRef] [PubMed]
80. Hwang-Verslues, W.W.; Chang, P.-H.; Wei, P.-C.; Yang, C.-Y.; Huang, C.-K.; Kuo, W.-H.; Shew, J.-Y.; Chang, K.-J.; Lee, E.Y.-H.P.;
Lee, W.-H. MiR-495 Is Upregulated by E12/E47 in Breast Cancer Stem Cells, and Promotes Oncogenesis and Hypoxia Resistance
via Downregulation of E-Cadherin and REDD1. Oncogene 2011, 30, 2463–2474. [CrossRef] [PubMed]
81. Wang, Y.; Yu, Y.; Tsuyada, A.; Ren, X.; Wu, X.; Stubblefield, K.; Rankin-Gee, E.K.; Wang, S.E. Transforming Growth Factor-
β Regulates the Sphere-Initiating Stem Cell-like Feature in Breast Cancer through MiRNA-181 and ATM. Oncogene 2011,
30, 1470–1480. [CrossRef] [PubMed]
82. Riggio, A.I.; Varley, K.E.; Welm, A.L. The Lingering Mysteries of Metastatic Recurrence in Breast Cancer. Br. J. Cancer 2021,
124, 13–26. [CrossRef] [PubMed]
83. Baumann, Z.; Auf der Maur, P.; Bentires-Alj, M. Feed-forward Loops between Metastatic Cancer Cells and Their
Microenvironment—The Stage of Escalation. EMBO Mol. Med. 2022, 14, e14283. [CrossRef]
84. Huang, Y.; Hong, W.; Wei, X. The Molecular Mechanisms and Therapeutic Strategies of EMT in Tumor Progression and Metastasis.
J. Hematol. Oncol. 2022, 15, 129. [CrossRef]
85. Chua, H.L.; Bhat-Nakshatri, P.; Clare, S.E.; Morimiya, A.; Badve, S.; Nakshatri, H. NF-kappaB represses E-cadherin expression
and enhances epithelial to mesenchymal transition of mammary epithelial cells: Potential involvement of ZEB-1 and ZEB-2.
Oncogene 2007, 26, 711–724. [CrossRef]
86. De, S.; Das, S.; Mukherjee, S.; Das, S.; Bandyopadhyay, S.S. Establishment of twist-1 and TGFBR2 as direct targets of microRNA-20a
in mesenchymal to epithelial transition of breast cancer cell-line MDA-MB-231. Exp. Cell Res. 2017, 361, 85–92. [CrossRef]
87. Kwak, S.Y.; Yoo, J.O.; An, H.J.; Bae, I.H.; Park, M.J.; Kim, J.; Han, Y.H. miR-5003-3p promotes epithelial-mesenchymal transition in
breast cancer cells through Snail stabilization and direct targeting of E-cadherin. J. Mol. Cell Biol. 2016, 8, 372–383. [CrossRef]
[PubMed]
88. Pan, Y.; Li, J.; Zhang, Y.; Wang, N.; Liang, H.; Liu, Y.; Zhang, C.Y.; Zen, K.; Gu, H. Slug-upregulated miR-221 promotes breast
cancer progression through suppressing E-cadherin expression. Sci. Rep. 2016, 6, 25798. [CrossRef] [PubMed]
89. Park, S.-M.; Gaur, A.B.; Lengyel, E.; Peter, M.E. The MiR-200 Family Determines the Epithelial Phenotype of Cancer Cells by
Targeting the E-Cadherin Repressors ZEB1 and ZEB2. Genes Dev. 2008, 22, 894–907. [CrossRef] [PubMed]
90. Gregory, P.A.; Bert, A.G.; Paterson, E.L.; Barry, S.C.; Tsykin, A.; Farshid, G.; Vadas, M.A.; Khew-Goodall, Y.; Goodall, G.J. The
miR-200 family and miR-205 regulate epithelial to mesenchymal transition by targeting ZEB1 and SIP1. Nature Cell Biol. 2008,
10, 593–601. [CrossRef] [PubMed]
91. Xie, F.; Hosany, S.; Zhong, S.; Jiang, Y.; Zhang, F.; Lin, L.; Wang, X.; Gao, S.; Hu, X. MicroRNA-193a Inhibits Breast Cancer
Proliferation and Metastasis by Downregulating WT1. PLoS ONE 2017, 12, e0185565. [CrossRef] [PubMed]
92. Ma, L.; Young, J.; Prabhala, H.; Pan, E.; Mestdagh, P.; Muth, D.; Teruya-Feldstein, J.; Reinhardt, F.; Onder, T.T.; Valastyan, S.;
et al. miR-9, a MYC/MYCN-activated microRNA, regulates E-cadherin and cancer metastasis. Nature Cell Biol. 2010, 12, 247–256.
[CrossRef] [PubMed]
93. Martello, G.; Rosato, A.; Ferrari, F.; Manfrin, A.; Cordenonsi, M.; Dupont, S.; Enzo, E.; Guzzardo, V.; Rondina, M.; Spruce, T.; et al.
A MicroRNA targeting dicer for metastasis control. Cell 2010, 141, 1195–1207. [CrossRef]
Biomedicines 2024, 12, 691 20 of 23
94. Cochrane, D.R.; Cittelly, D.M.; Howe, E.N.; Spoelstra, N.S.; McKinsey, E.L.; LaPara, K.; Elias, A.; Yee, D.; Richer, J.K. MicroRNAs
Link Estrogen Receptor Alpha Status and Dicer Levels in Breast Cancer. Horm. Cancer 2010, 1, 306–319. [CrossRef]
95. Chen, P.-S.; Su, J.-L.; Cha, S.-T.; Tarn, W.-Y.; Wang, M.-Y.; Hsu, H.-C.; Lin, M.-T.; Chu, C.-Y.; Hua, K.-T.; Chen, C.-N.; et al. MiR-107
Promotes Tumor Progression by Targeting the Let-7 MicroRNA in Mice and Humans. J. Clin. Investig. 2011, 121, 3442–3455.
[CrossRef]
96. Wu, Y.; Shi, W.; Tang, T.; Wang, Y.; Yin, X.; Chen, Y.; Zhang, Y.; Xing, Y.; Shen, Y.; Xia, T.; et al. MiR-29a Contributes to Breast
Cancer Cells Epithelial–Mesenchymal Transition, Migration, and Invasion via down-Regulating Histone H4K20 Trimethylation
through Directly Targeting SUV420H2. Cell Death Dis. 2019, 10, 176. [CrossRef]
97. Ren, L.; Chen, H.; Song, J.; Chen, X.; Lin, C.; Zhang, X.; Hou, N.; Pan, J.; Zhou, Z.; Wang, L.; et al. MiR-454-3p-Mediated
Wnt/β-Catenin Signaling Antagonists Suppression Promotes Breast Cancer Metastasis. Theranostics 2019, 9, 449–465. [CrossRef]
98. Dobson, J.R.; Taipaleenmäki, H.; Hu, Y.-J.; Hong, D.; van Wijnen, A.J.; Stein, J.L.; Stein, G.S.; Lian, J.B.; Pratap, J. Hsa-Mir-30c
Promotes the Invasive Phenotype of Metastatic Breast Cancer Cells by Targeting NOV/CCN3. Cancer Cell Int. 2014, 14, 73.
[CrossRef]
99. Huang, L.; Dai, T.; Lin, X.; Zhao, X.; Chen, X.; Wang, C.; Li, X.; Shen, H.; Wang, X. MicroRNA-224 Targets RKIP to Control Cell
Invasion and Expression of Metastasis Genes in Human Breast Cancer Cells. Biochem. Biophys. Res. Commun. 2012, 425, 127–133.
[CrossRef]
100. Kong, W.; Yang, H.; He, L.; Zhao, J.; Coppola, D.; Dalton, W.S.; Cheng, J.Q. MicroRNA-155 Is Regulated by the Transforming
Growth Factor β/Smad Pathway and Contributes to Epithelial Cell Plasticity by Targeting RhoA. Mol. Cell. Biol. 2008,
28, 6773–6784. [CrossRef]
101. Sørlie, T.; Perou, C.M.; Tibshirani, R.; Aas, T.; Geisler, S.; Johnsen, H.; Hastie, T.; Eisen, M.B.; van de Rijn, M.; Jeffrey, S.S.; et al.
Gene expression patterns of breast carcinomas distinguish tumor subclasses with clinical implications. Proc. Natl. Acad. Sci. USA
2001, 98, 10869–10874. [CrossRef]
102. Tang, P.; Tse, G.M. Immunohistochemical Surrogates for Molecular Classification of Breast Carcinoma: A 2015 Update. Arch.
Pathol. Lab. Med. 2016, 140, 806–814. [CrossRef]
103. Russnes, H.G.; Lingjærde, O.C.; Børresen-Dale, A.-L.; Caldas, C. Breast Cancer Molecular Stratification. Am. J. Pathol. 2017,
187, 2152–2162. [CrossRef]
104. Parise, C.A.; Caggiano, V. Breast Cancer Survival Defined by the ER/PR/HER2 Subtypes and a Surrogate Classification according
to Tumor Grade and Immunohistochemical Biomarkers. J. Cancer Epidemiol. 2014, 2014, 469251. [CrossRef]
105. Davies, C.; Godwin, J.; Gray, R.; Clarke, M.; Cutter, D.; Darby, S.; McGale, P.; Pan, H.C.; Taylor, C.; Wang, Y.C.; et al. Early Breast
Cancer Trialists’ Collaborative Group (EBCTCG). Relevance of breast cancer hormone receptors and other factors to the efficacy
of adjuvant tamoxifen: Patient-level meta-analysis of randomised trials. Lancet 2011, 378, 771–784. [CrossRef]
106. Normann, L.S.; Aure, M.R.; Leivonen, S.K.; Haugen, M.H.; Hongisto, V.; Kristensen, V.N.; Mælandsmo, G.M.; Sahlberg, K.K.
MicroRNA in combination with HER2-targeting drugs reduces breast cancer cell viability in vitro. Sci. Rep. 2021, 11, 10893.
[CrossRef]
107. Søkilde, R.; Persson, H.; Ehinger, A.; Pirona, A.C.; Fernö, M.; Hegardt, C.; Larsson, C.; Loman, N.; Malmberg, M.; Rydén, L.; et al.
Refinement of Breast Cancer Molecular Classification by MiRNA Expression Profiles. BMC Genom. 2019, 20, 503. [CrossRef]
108. Amiruddin, A.; Massi, M.N.; Islam, A.A.; Patellongi, I.; Pratama, M.Y.; Sutandyo, N.; Natzir, R.; Hatta, M.; Md Latar, N.H.;
Wahid, S. MicroRNA-221 and Tamoxifen Resistance in Luminal-Subtype Breast Cancer Patients: A Case-Control Study. Ann. Med.
Surg. 2022, 73, 103092. [CrossRef]
109. Fan, T.; Mao, Y.; Sun, Q.; Liu, F.; Lin, J.; Liu, Y.; Cui, J.; Jiang, Y. Branched Rolling Circle Amplification Method for Measuring
Serum Circulating MicroRNA Levels for Early Breast Cancer Detection. Cancer Sci. 2018, 109, 2897–2906. [CrossRef]
110. McDermott, A.M.; Miller, N.; Wall, D.; Martyn, L.M.; Ball, G.; Sweeney, K.J.; Kerin, M.J. Identification and Validation of Oncologic
MiRNA Biomarkers for Luminal A-like Breast Cancer. PLoS ONE 2014, 9, e87032. [CrossRef]
111. Chen, Y.; Wu, N.; Liu, L.; Dong, H.; Wu, C. Correlation between MicroRNA-21, MicroRNA-206 and Estrogen Receptor, Proges-
terone Receptor, Human Epidermal Growth Factor Receptor 2 in Breast Cancer. Clin. Biochem. 2019, 71, 52–57. [CrossRef]
112. Lowery, A.J.; Miller, N.; Devaney, A.; McNeill, R.E.; Davoren, P.A.; Lemetre, C.; Benes, V.; Schmidt, S.; Blake, J.; Ball, G.; et al.
MicroRNA Signatures Predict Oestrogen Receptor, Progesterone Receptor and HER2/Neureceptor Status in Breast Cancer. Breast
Cancer Res. 2009, 11, R27. [CrossRef]
113. Amorim, M.; Lobo, J.; Fontes-Sousa, M.; Estevão-Pereira, H.; Salta, S.; Lopes, P.; Coimbra, N.; Antunes, L.; Palma de Sousa, S.;
Henrique, R.; et al. Predictive and Prognostic Value of Selected MicroRNAs in Luminal Breast Cancer. Front. Genet. 2019, 10, 815.
[CrossRef]
114. Ulianova, E.P.; Tokmakov, V.V.; Shatova, I.S.; Sagakyants, A.B.; Goncharova, A.S.; Zaikina, E.V.; Chernikova, E.N.; Bakulina, S.M.;
Pushkareva, T.F.; Kit, O.I.; et al. Evaluation of Prognostic Significance of MicroRNA in Tumors of Luminal, Primary Operable
Breast Cancer without Her2 Neu Overexpression in Postmenopausal Women. J. Clin. Oncol. 2020, 38, e12558. [CrossRef]
115. Ohzawa, H.; Miki, A.; Teratani, T.; Shiba, S.; Sakuma, Y.; Nishimura, W.; Noda, Y.; Fukushima, N.; Fujii, H.; Hozumi, Y.; et al.
Usefulness of MiRNA Profiles for Predicting Pathological Responses to Neoadjuvant Chemotherapy in Patients with Human
Epidermal Growth Factor Receptor 2-Positive Breast Cancer. Oncol. Lett. 2017, 13, 1731–1740. [CrossRef]
116. Han, S.-H.; Kim, H.J.; Gwak, J.M.; Kim, M.; Chung, Y.R.; Park, S.Y. MicroRNA-222 Expression as a Predictive Marker for Tumor
Progression in Hormone Receptor-Positive Breast Cancer. J. Breast Cancer 2017, 20, 35. [CrossRef]
Biomedicines 2024, 12, 691 21 of 23
117. Luo, Y.; Wang, X.; Niu, W.; Wang, H.; Wen, Q.; Fan, S.; Zhao, R.; Li, Z.; Xiong, W.; Peng, S.; et al. Elevated MicroRNA-125b Levels
Predict a Worse Prognosis in HER2-Positive Breast Cancer Patients. Oncol. Lett. 2017, 13, 867–874. [CrossRef]
118. Wu, X.; Somlo, G.; Yu, Y.; Palomares, M.R.; Li, A.X.; Zhou, W.; Chow, A.; Yen, Y.; Rossi, J.J.; Gao, H.; et al. De Novo Sequencing of
Circulating MiRNAs Identifies Novel Markers Predicting Clinical Outcome of Locally Advanced Breast Cancer. J. Transl. Med.
2012, 10, 42. [CrossRef]
119. Souza, K.C.B.; Evangelista, A.F.; Leal, L.F.; Souza, C.P.; Vieira, R.A.; Causin, R.L.; Neuber, A.C.; Pessoa, D.P.; Passos, G.A.S.;
Reis, R.M.V.; et al. Identification of Cell-Free Circulating MicroRNAs for the Detection of Early Breast Cancer and Molecular
Subtyping. J. Oncol. 2019, 2019, 8393769. [CrossRef]
120. Mattie, M.D.; Benz, C.C.; Bowers, J.; Sensinger, K.; Wong, L.; Scott, G.K.; Fedele, V.; Ginzinger, D.; Getts, R.; Haqq, C. Optimized
High-Throughput MicroRNA Expression Profiling Provides Novel Biomarker Assessment of Clinical Prostate and Breast Cancer
Biopsies. Mol. Cancer 2006, 5, 24. [CrossRef]
121. Toyama, T.; Kondo, N.; Endo, Y.; Sugiura, H.; Yoshimoto, N.; Iwasa, M.; Takahashi, S.; Fujii, Y.; Yamashita, H. High Expression of
MicroRNA-210 Is an Independent Factor Indicating a Poor Prognosis in Japanese Triple-Negative Breast Cancer Patients. Jpn. J.
Clin. Oncol. 2012, 42, 256–263. [CrossRef]
122. Kalniete, D.; Nakazawa-Miklaševiča, M.; Štrumfa, I.; Ābolin, š, A.; Irmejs, A.; Gardovskis, J.; Miklaševičs, E. High Expression of
MiR-214 Is Associated with a Worse Disease-Specific Survival of the Triple-Negative Breast Cancer Patients. Hered. Cancer Clin.
Pract. 2015, 13, 7. [CrossRef]
123. Yao, L.; Liu, Y.; Cao, Z.; Li, J.; Huang, Y.; Hu, X.; Shao, Z. MicroRNA-493 Is a Prognostic Factor in Triple-negative Breast Cancer.
Cancer Sci. 2018, 109, 2294–2301. [CrossRef]
124. Uva, P.; Cossu-Rocca, P.; Loi, F.; Pira, G.; Murgia, L.; Orrù, S.; Floris, M.; Muroni, M.R.; Sanges, F.; Carru, C.; et al. MiRNA-135b
Contributes to Triple Negative Breast Cancer Molecular Heterogeneity: Different Expression Profile in Basal-like Versus Non-Basal-like
Phenotypes. Int. J. Med. Sci. 2018, 15, 536–548. [CrossRef]
125. Kolesnikov, N.N.; Veryaskina, Y.A.; Titov, S.E.; Rodionov, V.V.; Gening, T.P.; Abakumova, T.V.; Kometova, V.V.; Torosyan, M.K.;
Zhimulev, I.F. Expression of Micrornas in Molecular Genetic Breast Cancer Subtypes. Cancer Treat. Res. Commun. 2019, 20, 100026.
[CrossRef]
126. Moi, L.; Braaten, T.; Al-Shibli, K.; Lund, E.; Busund, L.-T.R. Differential Expression of the MiR-17-92 Cluster and MiR-17 Family in
Breast Cancer According to Tumor Type; Results from the Norwegian Women and Cancer (NOWAC) Study. J. Transl. Med. 2019,
17, 334. [CrossRef] [PubMed]
127. Harris, E.E.R. Precision Medicine for Breast Cancer: The Paths to Truly Individualized Diagnosis and Treatment. Int. J. Breast
Cancer. 2018, 2018, 4809183. [CrossRef]
128. Hamam, R.; Hamam, D.; Alsaleh, K.A.; Kassem, M.; Zaher, W.; Alfayez, M.; Aldahmash, A.; Alajez, N.M. Circulating microRNAs
in breast cancer: Novel diagnostic and prognostic biomarkers. Cell Death Dis. 2017, 8, e3045. [CrossRef]
129. Mitchell, P.S.; Parkin, R.K.; Kroh, E.M.; Fritz, B.R.; Wyman, S.K.; Pogosova-Agadjanyan, E.L.; Peterson, A.; Noteboom, J.;
O’Briant, K.C.; Allen, A.; et al. Circulating microRNAs as stable blood-based markers for cancer detection. Proc. Natl. Acad. Sci.
USA 2008, 105, 10513–10518. [CrossRef]
130. Zhao, H.; Shen, J.; Medico, L.; Wang, D.; Ambrosone, C.B.; Liu, S. A pilot study of circulating miRNAs as potential biomarkers of
early stage breast cancer. PLoS ONE 2010, 5, e13735. [CrossRef]
131. Bahrami, A.; Aledavood, A.; Anvari, K.; Hassanian, S.M.; Maftouh, M.; Yaghobzade, A.; Salarzaee, O.; ShahidSales, S.; Avan, A.
The prognostic and therapeutic application of microRNAs in breast cancer: Tissue and circulating microRNAs. J. Cell. Physiol.
2018, 233, 774–786. [CrossRef]
132. Terkelsen, T.; Russo, F.; Gromov, P.; Haakensen, V.D.; Brunak, S.; Gromova, I.; Krogh, A.; Papaleo, E. Secreted Breast Tumor
Interstitial Fluid MicroRNAs and Their Target Genes Are Associated with Triple-Negative Breast Cancer, Tumor Grade, and
Immune Infiltration. Breast Cancer Res. 2020, 22, 73. [CrossRef]
133. Li, J.; He, D.; Bi, Y.; Liu, S. The Emerging Roles of Exosomal MiRNAs in Breast Cancer Progression and Potential Clinical
Applications. Breast Cancer Targets Ther. 2023, 15, 825–840. [CrossRef] [PubMed]
134. Cardinali, B.; Tasso, R.; Piccioli, P.; Ciferri, M.C.; Quarto, R.; Del Mastro, L. Circulating miRNAs in Breast Cancer Diagnosis and
Prognosis. Cancers 2022, 14, 2317. [CrossRef] [PubMed]
135. Gao, J.; Zhang, Q.; Xu, J.; Guo, L.; Li, X. Clinical Significance of Serum MiR-21 in Breast Cancer Compared with CA153 and CEA.
Chin. J. Cancer Res. 2013, 25, 743–748. [CrossRef] [PubMed]
136. Canatan, D.; Sönmez, Y.; Yılmaz, Ö.; Çim, A.; Coşkun, H.Ş.; Sezgin Göksu, S.; Ucar, S.; Aktekin, M.R. MicroRNAs as biomarkers
for breast cancer. Acta Biomed. 2021, 92, e2021028. [CrossRef]
137. Shimomura, A.; Shiino, S.; Kawauchi, J.; Takizawa, S.; Sakamoto, H.; Matsuzaki, J.; Ono, M.; Takeshita, F.; Niida, S.; Shimizu, C.;
et al. Novel Combination of Serum MicroRNA for Detecting Breast Cancer in the Early Stage. Cancer Sci. 2016, 107, 326–334.
[CrossRef] [PubMed]
138. Heneghan, H.M.; Miller, N.; Lowery, A.J.; Sweeney, K.J.; Newell, J.; Kerin, M.J. Circulating microRNAs as novel minimally
invasive biomarkers for breast cancer. Ann. Surg. 2010, 251, 499–505. [CrossRef] [PubMed]
139. Schwarzenbach, H.; Milde-Langosch, K.; Steinbach, B.; Müller, V.; Pantel, K. Diagnostic Potential of PTEN-Targeting MiR-214 in
the Blood of Breast Cancer Patients. Breast Cancer Res. Treat. 2012, 134, 933–941. [CrossRef]
Biomedicines 2024, 12, 691 22 of 23
140. Chen, W.; Cai, F.; Zhang, B.; Barekati, Z.; Zhong, X.Y. The Level of Circulating MiRNA-10b and MiRNA-373 in Detecting Lymph
Node Metastasis of Breast Cancer: Potential Biomarkers. Tumor Biol. 2013, 34, 455–462. [CrossRef]
141. van Schooneveld, E.; Wouters, M.C.; Van der Auwera, I.; Peeters, D.J.; Wildiers, H.; Van Dam, P.A.; Vergote, I.; Vermeulen, P.B.;
Dirix, L.Y.; Van Laere, S.J. Expression profiling of cancerous and normal breast tissues identifies microRNAs that are differentially
expressed in serum from patients with (metastatic) breast cancer and healthy volunteers. Breast Cancer Res. 2012, 14, R34.
[CrossRef]
142. Jung, E.J.; Santarpia, L.; Kim, J.; Esteva, F.J.; Moretti, E.; Buzdar, A.U.; Di Leo, A.; Le, X.F.; Bast, R.C., Jr.; Park, S.T.; et al. Plasma
microRNA 210 levels correlate with sensitivity to trastuzumab and tumor presence in breast cancer patients. Cancer 2012,
118, 2603–2614. [CrossRef]
143. Roth, C.; Rack, B.; Müller, V.; Janni, W.; Pantel, K.; Schwarzenbach, H. Circulating microRNAs as blood-based markers for patients
with primary and metastatic breast cancer. Breast Cancer Res. 2010, 12, R90. [CrossRef]
144. Wu, Q.; Lu, Z.; Li, H.; Lu, J.; Guo, L.; Ge, Q. Next-Generation Sequencing of MicroRNAs for Breast Cancer Detection. J. Biomed.
Biotechnol. 2011, 2011, 597145. [CrossRef]
145. Wang, Y.; Yin, W.; Lin, Y.; Yin, K.; Zhou, L.; Du, Y.; Yan, T.; Lu, J. Downregulated Circulating MicroRNAs after Surgery: Potential
Noninvasive Biomarkers for Diagnosis and Prognosis of Early Breast Cancer. Cell Death Discov. 2018, 4, 87. [CrossRef] [PubMed]
146. Cuk, K.; Zucknick, M.; Heil, J.; Madhavan, D.; Schott, S.; Turchinovich, A.; Arlt, D.; Rath, M.; Sohn, C.; Benner, A.; et al. Circulating
MicroRNAs in Plasma as Early Detection Markers for Breast Cancer. Int. J. Cancer 2013, 132, 1602–1612. [CrossRef]
147. Ng, E.K.O.; Li, R.; Shin, V.Y.; Jin, H.C.; Leung, C.P.H.; Ma, E.S.K.; Pang, R.; Chua, D.; Chu, K.-M.; Law, W.L.; et al. Circulating
MicroRNAs as Specific Biomarkers for Breast Cancer Detection. PLoS ONE 2013, 8, e53141. [CrossRef] [PubMed]
148. He, B.; Zhao, Z.; Cai, Q.; Zhang, Y.; Zhang, P.; Shi, S.; Xie, H.; Peng, X.; Yin, W.; Tao, Y.; et al. MiRNA-Based Biomarkers, Therapies,
and Resistance in Cancer. Int. J. Biol. Sci. 2020, 16, 2628–2647. [CrossRef] [PubMed]
149. Fu, Z.; Wang, L.; Li, S.; Chen, F.; Au-Yeung, K.K.-W.; Shi, C. MicroRNA as an Important Target for Anticancer Drug Development.
Front. Pharmacol. 2021, 12, 736323. [CrossRef] [PubMed]
150. Hussen, B.M.; Rasul, M.F.; Abdullah, S.R.; Hidayat, H.J.; Faraj, G.S.H.; Ali, F.A.; Salihi, A.; Baniahmad, A.; Ghafouri-Fard, S.;
Rahman, M.; et al. Targeting MiRNA by CRISPR/Cas in Cancer: Advantages and Challenges. Mil. Med. Res. 2023, 10, 32.
[CrossRef] [PubMed]
151. Singh, S.; Saini, H.; Sharma, A.; Gupta, S.; Huddar, V.G.; Tripathi, R. Breast Cancer: MiRNAs Monitoring Chemoresistance and
Systemic Therapy. Front. Oncol. 2023, 13, 1155254. [CrossRef] [PubMed]
152. Sell, M.C.; Ramlogan-Steel, C.A.; Steel, J.C.; Dhungel, B.P. MicroRNAs in Cancer Metastasis: Biological and Therapeutic
Implications. Expert. Rev. Mol. Med. 2023, 25, e14. [CrossRef]
153. Shah, M.Y.; Ferrajoli, A.; Sood, A.K.; Lopez-Berestein, G.; Calin, G.A. MicroRNA Therapeutics in Cancer—An Emerging Concept.
eBioMedicine 2016, 12, 34–42. [CrossRef]
154. Munoz, J.P.; Perez-Moreno, P.; Perez, Y.; Calaf, G.M. The Role of MicroRNAs in Breast Cancer and the Challenges of Their Clinical
Application. Diagnostics 2023, 13, 3072. [CrossRef]
155. Balacescu, O.; Visan, S.; Baldasici, O.; Balacescu, L.; Vlad, C.; Achimas-Cadariu, P. miRNA-Based Therapeutics in Oncology,
Realities, and Challenges. In Antisense Therapy; IntechOpen: London, UK, 2019.
156. Okumura, S.; Hirano, Y.; Komatsu, Y. Stable Duplex-Linked Antisense Targeting MiR-148a Inhibits Breast Cancer Cell Proliferation.
Sci. Rep. 2021, 11, 11467. [CrossRef]
157. Van Der Ree, M.H.; Van Der Meer, A.J.; De Bruijne, J.; Maan, R.; Van Vliet, A.; Welzel, T.M.; Zeuzem, S.; Lawitz, E.J. Long-term
safety and efficacy of microRNA-targeted therapy in chronic hepatitis C patients. Antiviral Res. 2014, 111, 53–59. [CrossRef]
158. Roberts, T.C.; Langer, R.; Wood, M.J.A. Advances in Oligonucleotide Drug Delivery. Nat. Rev. Drug Discov. 2020, 19, 673–694.
[CrossRef]
159. Querfeld, C.; Pacheco, T.; Foss, F.M.; Halwani, A.S.; Porcu, P.; Seto, A.G.; Ruckman, J.; Landry, M.L.; Jackson, A.L.; Pestano, L.A.;
et al. Preliminary results of a phase 1 trial evaluating MRG-106, a synthetic microRNA antagonist (LNA antimiR) of microRNA-
155, in patients with CTCL. Blood 2016, 128, 1829. [CrossRef]
160. De Cola, A.; Lamolinara, A.; Lanuti, P.; Rossi, C.; Iezzi, M.; Marchisio, M.; Todaro, M.; De Laurenzi, V. MiR-205-5p Inhibition by
Locked Nucleic Acids Impairs Metastatic Potential of Breast Cancer Cells. Cell Death Dis. 2018, 9, 821. [CrossRef]
161. Haftmann, C.; Riedel, R.; Porstner, M.; Wittmann, J.; Chang, H.-D.; Radbruch, A.; Mashreghi, M.-F. Direct Uptake of Antagomirs
and Efficient Knockdown of MiRNA in Primary B and T Lymphocytes. J. Immunol. Methods 2015, 426, 128–133. [CrossRef]
162. Ebert, M.S.; Sharp, P.A. Emerging Roles for Natural MicroRNA Sponges. Curr. Biol. 2010, 20, R858–R861. [CrossRef]
163. Barta, T.; Peskova, L.; Hampl, A. MiRNAsong: A Web-Based Tool for Generation and Testing of MiRNA Sponge Constructs in
Silico. Sci. Rep. 2016, 6, 36625. [CrossRef]
164. Liang, A.-L.; Zhang, T.-T.; Zhou, N.; Wu, C.Y.; Lin, M.-H.; Liu, Y.-J. MiRNA-10b Sponge: An Anti-Breast Cancer Study in Vitro.
Oncol. Rep. 2016, 35, 1950–1958. [CrossRef] [PubMed]
165. Mandal, C.C.; Ghosh-Choudhury, T.; Dey, N.; Choudhury, G.G.; Ghosh-Choudhury, N. miR-21 is targeted by omega-3 polyunsat-
urated fatty acid to regulate breast tumor CSF-1 expression. Carcinogenesis 2012, 33, 1897–1908. [CrossRef] [PubMed]
166. Fan, R.; Xiao, C.; Wan, X.; Cha, W.; Miao, Y.; Zhou, Y.; Qin, C.; Cui, T.; Su, F.; Shan, X. Small Molecules with Big Roles in MicroRNA
Chemical Biology and MicroRNA-Targeted Therapeutics. RNA Biol. 2019, 16, 707–718. [CrossRef]
Biomedicines 2024, 12, 691 23 of 23
167. Sun, J.; Xu, M.; Ru, J.; James-Bott, A.; Xiong, D.; Wang, X.; Cribbs, A.P. Small Molecule-Mediated Targeting of MicroRNAs for
Drug Discovery: Experiments, Computational Techniques, and Disease Implications. Eur. J. Med. Chem. 2023, 257, 115500.
[CrossRef]
168. Melo, S.; Villanueva, A.; Moutinho, C.; Davalos, V.; Spizzo, R.; Ivan, C.; Rossi, S.; Setien, F.; Casanovas, O.; Simo-Riudalbas, L.;
et al. Small Molecule Enoxacin Is a Cancer-Specific Growth Inhibitor That Acts by Enhancing TAR RNA-Binding Protein
2-Mediated MicroRNA Processing. Proc. Natl. Acad. Sci. USA 2011, 108, 4394–4399. [CrossRef]
169. Monroig-Bosque, P.d.C.; Shah, M.Y.; Fu, X.; Fuentes-Mattei, E.; Ling, H.; Ivan, C.; Nouraee, N.; Huang, B.; Chen, L.; Pileczki, V.;
et al. OncomiR-10b Hijacks the Small Molecule Inhibitor Linifanib in Human Cancers. Sci. Rep. 2018, 8, 13106. [CrossRef]
[PubMed]
170. Hosseinahli, N.; Aghapour, M.; Duijf, P.H.G.; Baradaran, B. Treating Cancer with MicroRNA Replacement Therapy: A Literature
Review. J. Cell Physiol. 2018, 233, 5574–5588. [CrossRef]
171. Liang, Z.; Ahn, J.; Guo, D.; Votaw, J.R.; Shim, H. MicroRNA-302 Replacement Therapy Sensitizes Breast Cancer Cells to Ionizing
Radiation. Pharm. Res. 2013, 30, 1008–1016. [CrossRef]
172. Zhang, J.; Zhang, Z.; Wang, Q.; Xing, X.-J.; Zhao, Y. Overexpression of MicroRNA-365 Inhibits Breast Cancer Cell Growth and
Chemo-Resistance through GALNT4. Eur. Rev. Med. Pharmacol. Sci. 2016, 20, 4710–4718.
173. Hong, D.S.; Kang, Y.K.; Borad, M.; Sachdev, J.; Ejadi, S.; Lim, H.Y.; Brenner, A.J.; Park, K.; Lee, J.L.; Kim, T.Y.; et al. Phase 1 study
of MRX34, a liposomal miR-34a mimic, in patients with advanced solid tumours. Br. J. Cancer 2020, 122, 1630–1637. [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.