STM 8 Af 6388
STM 8 Af 6388
Features
• AEC-Q10x qualified
• Core
– Max fCPU: 24 MHz LQFP80 14x14 mm LQFP64 10x10 mm LQFP48 7x7 mm
– Advanced STM8A core with Harvard
architecture and 3-stage pipeline
– Average 1.6 cycles/instruction resulting in
10 MIPS at 16 MHz fCPU for industry
standard benchmark LQFP32 7x7 mm VFQFP32 5x5 mm
Contents
1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2 Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
3 Product line-up . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
4 Block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
5 Product overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
5.1 STM8A central processing unit (CPU) . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
5.1.1 Architecture and registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
5.1.2 Addressing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
5.1.3 Instruction set . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
5.2 Single wire interface module (SWIM) and debug module (DM) . . . . . . . . 15
5.2.1 SWIM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
5.2.2 Debug module . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
5.3 Interrupt controller . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
5.4 Flash program and data EEPROM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
5.4.1 Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
5.4.2 Write protection (WP) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
5.4.3 Protection of user boot code (UBC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
5.4.4 Read-out protection (ROP) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
5.5 Clock controller . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
5.5.1 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
5.5.2 16 MHz high-speed internal RC oscillator (HSI) . . . . . . . . . . . . . . . . . . 17
5.5.3 128 kHz low-speed internal RC oscillator (LSI) . . . . . . . . . . . . . . . . . . . 18
5.5.4 24 MHz high-speed external crystal oscillator (HSE) . . . . . . . . . . . . . . 18
5.5.5 External clock input . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
5.5.6 Clock security system (CSS) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
5.6 Low-power operating modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
5.7 Timers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
5.7.1 Watchdog timers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
5.7.2 Auto-wakeup counter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
5.7.3 Beeper . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
8 Interrupt table . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
9 Option bytes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
10 Electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
10.1 Parameter conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
10.1.1 Minimum and maximum values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
10.1.2 Typical values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
10.1.3 Typical curves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
10.1.4 Loading capacitor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
10.1.5 Pin input voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
10.2 Absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
10.3 Operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
10.3.1 VCAP external capacitor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
10.3.2 Supply current characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
10.3.3 External clock sources and timing characteristics . . . . . . . . . . . . . . . . . 68
10.3.4 Internal clock sources and timing characteristics . . . . . . . . . . . . . . . . . 70
10.3.5 Memory characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
11 Package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
11.1 LQFP80 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
11.2 LQFP64 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
11.3 LQFP48 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
11.4 LQFP32 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
11.5 VFQFPN32 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
11.6 Thermal characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109
11.6.1 Reference document . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109
11.6.2 Selecting the product temperature range . . . . . . . . . . . . . . . . . . . . . . 110
List of tables
List of figures
1 Introduction
This datasheet refers to the STM8AF6388 products with 32 to 128 Kbytes of program
memory.
In the order code, the letter ‘F’ refers to product versions with Flash and data EEPROM and
‘P’ to product versions with FASTROM. The identifiers ‘F’ and ‘P’ do not coexist in a given
order code.
The datasheet contains the description of family features, pinout, electrical characteristics,
mechanical data and ordering information.
• For complete information on the STM8A microcontroller memory, registers and
peripherals, please refer to STM8S series and STM8AF series 8-bit microcontrollers
reference manual (RM0016).
• For information on programming, erasing and protection of the internal Flash memory
please refer to the STM8S and STM8A Flash programming manual (PM0051).
• For information on the debug and SWIM (single wire interface module) refer to the
STM8 SWIM communication protocol and debug module user manual (UM0470).
• For information on the STM8 core, please refer to the STM8 CPU programming manual
(PM0044).
2 Description
The STM8AF6388 automotive 8-bit microcontrollers described in this datasheet offer from
32 Kbytes to 128 Kbytes of non volatile memory and integrated true data EEPROM. They
are referred to as high density STM8A devices in STM8S series and STM8AF series 8-bit
microcontrollers reference manual (RM0016).
All devices of the STM8A product line provide the following benefits: reduced system cost,
performance and robustness, short development cycles, and product longevity.
The system cost is reduced thanks to an integrated true data EEPROM for up to 300 k
write/erase cycles and a high system integration level with internal clock oscillators,
wtachdog, and brown-out reset.
Device performance is ensured by 20 MIPS at 24 MHz CPU clock frequency and enhanced
characteristics which include robust I/O, independent watchdogs (with a separate clock
source), and a clock security system.
Short development cycles are guaranteed due to application scalability across a common
family product architecture with compatible pinout, memory map, and modular peripherals.
Full documentation is offered with a wide choice of development tools.
Product longevity is ensured in the STM8A family thanks to their advanced core which is
made in a state-of-the art technology for automotive applications with 3.3 V to 5.5 V
operating supply.
All STM8A and ST7 microcontrollers are supported by the same tools including
STVD/STVP development environment, the STice emulator and a low-cost, third party in-
circuit debugging tool.
3 Product line-up
LQFP32 64 K
STM8AF/P6386 2K 1x8-bit: TIM4
(7x7) 3x16-bit: TIM1, LIN(UART),
7 25/23
VFQFPN32 TIM2, TIM3 SPI, I²C
STM8AF/P63A6 128 K (8/8/8)
(5x5)
4 Block diagram
Detector
POR BOR RC int. 128 kHz
Window WDG
STM8A core
Independent WDG
Master/slave
automatic USART Up to 2 Kbyte
resynchronization data EEPROM
Address and data bus
Up to 6 Kbyte RAM
400 Kbit/s I2C
Boot ROM
10 Mbit/s SPI
8-bit AR timer
(TIM4)
Up to 16 channels 10-bit ADC
AWU timer
MS38338V1
1. Legend:
ADC: Analog-to-digital converter
BOR: Brownout reset
I²C: Inter-integrated circuit multimaster interface
IWDG: Independent window watchdog
LINUART: Local interconnect network universal asynchronous receiver transmitter
POR: Power on reset
SPI: Serial peripheral interface
SWIM: Single wire interface module
USART: Universal synchronous asynchronous receiver transmitter
Window WDG: Window watchdog
5 Product overview
This section is intended to describe the family features that are actually implemented in the
products covered by this datasheet.
For more detailed information on each feature please refer to STM8S series and STM8AF
series 8-bit microcontrollers reference manual (RM0016).
5.1.2 Addressing
• 20 addressing modes
• Indexed indirect addressing mode for look-up tables located anywhere in the address
space
• Stack pointer relative addressing mode for efficient implementation of local variables
and parameter passing
5.2 Single wire interface module (SWIM) and debug module (DM)
5.2.1 SWIM
The single wire interface module, SWIM, together with an integrated debug module, permits
non-intrusive, real-time in-circuit debugging and fast memory programming. The interface
can be activated in all device operation modes and can be connected to a running device
(hot plugging).The maximum data transmission speed is 145 bytes/ms.
5.4.1 Architecture
• The memory is organized in blocks of 128 bytes each
• Read granularity: 1 word = 4 bytes
• Write/erase granularity: 1 word (4 bytes) or 1 block (128 bytes) in parallel
• Writing, erasing, word and block management is handled automatically by the memory
interface.
Programmable
area from 1 Kbyte
UBC area
(first two pages) up to
Remains write protected during IAP
program memory end -
maximum 128 Kbyte
Flash program
memory
Flash program memory area
Write access possible for IAP
MS38339V1
The ROP circuit may provide a temporary access for debugging or failure analysis. The
temporary read access is protected by a user defined, 8-byte keyword stored in the option
byte area. This keyword must be entered via the SWIM interface to temporarily unlock the
device.
If desired, the temporary unlock mechanism can be permanently disabled by the user
through OPT6/NOPT6 option bytes.
5.5.1 Features
• Clock sources
– 16 MHz high-speed internal RC oscillator (HSI)
– 128 kHz low-speed internal RC (LSI)
– 1-24 MHz high-speed external crystal (HSE)
– Up to 24 MHz high-speed user-external clock (HSE user-ext)
• Reset: After reset the microcontroller restarts by default with an internal 2-MHz clock
(16 MHz/8). The clock source and speed can be changed by the application program
as soon as the code execution starts.
• Safe clock switching: Clock sources can be changed safely on the fly in Run mode
through a configuration register. The clock signal is not switched until the new clock
source is ready. The design guarantees glitch-free switching.
• Clock management: To reduce power consumption, the clock controller can stop the
clock to the core, individual peripherals or memory.
• Wakeup: In case the device wakes up from low-power modes, the internal RC
oscillator (16 MHz/8) is used for quick startup. After a stabilization time, the device
switches to the clock source that was selected before Halt mode was entered.
• Clock security system (CSS): The CSS permits monitoring of external clock sources
and automatic switching to the internal RC (16 MHz/8) in case of a clock failure.
• Configurable main clock output (CCO): This feature permits to output a clock signal
for use by the application.
User trimming
The register CLK_HSITRIMR with two trimming bits plus one additional bit for the sign
permits frequency tuning by the application program. The adjustment range covers all
possible frequency variations versus supply voltage and temperature. This trimming does
not change the initial production setting.
PCKEN17 TIM1
PCKEN16 TIM3
PCKEN15 TIM2
PCKEN14 TIM4
PCKEN13 LINUART
PCKEN12 USART
PCKEN11 SPI
PCKEN10 I 2C
PCKEN27 -
PCKEN26 Reserved
PCKEN25 Reserved
PCKEN24 Reserved
PCKEN23 ADC
PCKEN22 AWU
PCKEN21 Reserved
PCKEN20 Reserved
5.7 Timers
5.7.3 Beeper
This function generates a rectangular signal in the range of 1, 2 or 4 kHz which can be
output on a pin. This is useful when audible sounds without interference need to be
generated for use in the application.
Table 5. TIM4
Counter Counter Prescaler Inverted Repetition trigger External Break
Timer Channels
width type factor outputs counter unit trigger input
2n
TIM4 8-bit Up 0 None No No No No
n = 0 to 7
• 8-bit auto-reload, adjustable prescaler ratio to any power of two from 1 to 128
• Clock source: master clock
• Interrupt source: 1 x overflow/update
ADC ADC2
ADC features
• 10-bit resolution
• Single and continuous conversion modes
• Programmable prescaler: fMASTER divided by 2 to 18
• Conversion trigger on timer events, and external events
• Interrupt generation at end of conversion
• Selectable alignment of 10-bit data in 2 x 8 bit result registers
• Shadow registers for data consistency
• ADC input range: VSSA ≤VIN ≤VDDA
• Schmitt-trigger on analog inputs can be disabled to reduce power consumption
USART UART1
LINUART UART3
LIN mode
Master mode
• LIN break and delimiter generation
• LIN break and delimiter detection with separate flag and interrupt source for read back
checking.
Slave mode
• Autonomous header handling – one single interrupt per valid header
• Mute mode to filter responses
• Identifier parity error checking
• LIN automatic resynchronization, allowing operation with internal RC oscillator (HSI)
clock source
• Break detection at any time, even during a byte reception
• Header errors detection:
– Delimiter too short
– Synch field error
– Deviation error (if automatic resynchronization is enabled)
– Framing error in synch field or identifier field
– Header time-out
UART mode
• Full duplex, asynchronous communications - NRZ standard format (mark/space)
• High-precision baud rate generator
– A common programmable transmit and receive baud rates up to fMASTER/16
• Programmable data word length (8 or 9 bits) – 1 or 2 stop bits – parity control
• Separate enable bits for transmitter and receiver
• Error detection flags
• Reduced power consumption mode
• Multi-processor communication - enter mute mode if address match does not occur
• Wakeup from mute mode (by idle line detection or address mark detection)
• Two receiver wakeup modes:
– Address bit (MSB)
– Idle line
• Interrupt:
– Successful address/data communication
– Error condition
– Wakeup from Halt
• Wakeup from Halt on address detection in slave mode
PD4 (HS)/TIM2_CH1/BEEP
PD3 (HS)/TIM2_CH2
PD2 (HS)/TIM3_CH1
PD0 (HS)/TIM3_CH2
PD6/LINUART_RX
PD5/LINUART_TX
PE3/TIM1_BKIN
PD1 (HS)/SWIM
PE0/CLK_CCO
PE2/I 2C_SDA
PE1/I2C_SCL
PD7/TLI
PG7
PG6
PG5
PE4
PI7
PI6
PI5
PI4
80
79
78
77
76
75
74
73
72
71
70
69
68
67
66
65
64
63
62
61
NRST 1 60 PI3
OSCIN/PA1 2 59 PI2
OSCOUT/PA2 3 58 PI1
VSSIO_1 4 57 PI0
VSS 5 56 PG4
VCAP 6 55 PG3
VDD 7 54 PG2
VDDIO_1 8 53 PG1
TIM2_CH3/PA3 9 52 PG0
USART_RX/PA4 10 51 PC7/SPI_MISO
USART_TX/PA5 11 50 PC6/SPI_MOSI
USART_CK/PA6 12 49 VDDIO_2
(HS) PH0 13 48 VSSIO_2
(HS) PH1 14 47 PC5/SPI_SCK
PH2 15 46 PC4 (HS)/TIM1_CH4
PH3 16 45 PC3 (HS)/TIM1_CH3
AIN15/PF7 17 44 PC2 (HS)/TIM1_CH2
AIN14/PF6 18 43 PC1 (HS)/TIM1_CH1
AIN13/PF5 19 42 PC0/ADC_ETR
AIN12/PF4 20 41 PE5/SPI_NSS
21
22
23
24
25
26
27
28
29
30
32
34
35
36
37
38
39
40
31
33
VREF+
VREF-
AIN11/PF3
AIN10/PF0
AIN7/PB7
AIN6/PB6
AIN5/PB5
AIN4/PB4
AIN3/PB3
AIN2/PB2
AIN1/PB1
AIN0/PB0
TIM1_ETR/PH4
TIM1_CH3N/PH5
TIM1_CH2N/PH6
TIM1_CH1N/PH7
AIN8/PE7
AIN9/PE6
VDDA
VSSA
PD3 (HS)/TIM2_CH2/ADC_ETR
PD4 (HS)/TIM2_CH1/ BEEP
PD2 (HS)/TIM3_CH1
PD0 (HS)/TIM3_CH2
PD6/LINUART_RX
PD5/LINUART_TX
PE3/TIM1_BKIN
PD1 (HS)/SWIM
PE0/CLK_CCO
PE2/I2C_SDA
PE1/I2C_SCL
PD7/TLI
PG7
PG6
PG5
PE4
64 63 62 61 60 59 58 57 56 55 54 53 52 51 50 49
NRST 1 48 PI0
OSCIN/PA1 2 47 PG4
OSCOUT/PA2 3 46 PG3
VSSIO_1 4 45 PG2
VSS 5 44 PG1
VCAP 6 43 PG0
VDD 7 42 PC7/SPI_MISO
VDDIO_1 8 41 PC6/SPI_MOSI
TIM2_CH3/PA3 9 40 VDDIO_2
USART_RX/PA4 10 39 VSSIO_2
USART_TX/PA5 11 38 PC5/SPI_SCK
USART_CK/PA6 12 37 PC4 (HS)/TIM1_CH4
AIN15/PF7 13 36 PC3 (HS)/TIM1_CH3
AIN14/PF6 14 35 PC2 (HS)/TIM1_CH2
AIN13/PF5 15 34 PC1 (HS)/TIM1_CH1
AIN12/PF4 16 33 PE5/SPI_NSS
17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32
AIN11/PF3
VREF+
AIN10/PF0
AIN7/PB7
AIN6/PB6
AIN5/PB5
AIN4/PB4
TIM1_CH3N/AIN2/PB2
TIM1_CH2N/AIN1/PB1
TIM1_CH1N/AIN0/PB0
AIN8/PE7
AIN9/PE6
TIM1_ETR/AIN3/PB3
VDDA
VSSA
VREF-
PD3 (HS)/TIM2_CH2/ADC_ETR
PD4 (HS)/TIM2_CH1/BEEP
PD2 (HS)/TIM3_CH1
PD0 (HS)/TIM3_CH2
PD6/LINUART_RX
PD5/LINUART_TX
PE3/TIM1_BKIN
PD1 (HS)/SWIM
PE0/CLK_CCO
PE2/I2C_SDA
PE1/I2C_SCL
PD7/TLI
48 47 46 45 44 43 42 41 40 39 38 37
NRST 1 36 PG1
OSCIN/PA1 2 35 PG0
OSCOUT/PA2 3 34 PC7/SPI_MISO
VSSIO_1 4 33 PC6/SPI_MOSI
VSS 5 32 VDDIO_2
VCAP 6 31 VSSIO_2
VDD 7 30 PC5/SPI_SCK
VDDIO_1 8 29 PC4 (HS)/TIM1_CH4
TIM2_CH3/PA3 9 28 PC3 (HS)/TIM1_CH3
USART_RX/PA4 10 27 PC2 (HS)/TIM1_CH2
USART_TX/PA5 11 26 PC1 (HS)/TIM1_CH1
USART_CK/PA6 12 25 PE5/SPI_NSS
13 14 15 16 17 18 19 20 21 2223 24
VDDA
VSSA
TIM1_CH3N/AIN2/PB2
TIM1_CH2N/AIN1/PB1
TIM1_CH1N/AIN0/PB0
AIN7/PB7
AIN6/PB6
AIN5/PB5
AIN4/PB4
TIM1_ETR/AIN3/PB3
AIN8/PE7
AIN9/PE6
PD0 (HS)/TIM3_CH2/CLK_CCO/TIM1_BRK
PD2 (HS)/TIM3_CH1/TIM2_CH3
PD3 (HS)/TIM2_CH2/ADC_ETR
PD4 (HS)/TIM2_CH1/BEEP
PD6/LINUART_RX
PD5/LINUART_TX
PD1 (HS)/SWIM
PD7/TLI
32 31 30 29 28 27 26 25
NRST 1 24 PC7/SPI_MISO
OSCIN/PA1 2 23 PC6/SPI_MOSI
OSCOUT/PA2 3 22 PC5/SPI_SCK
VSS 4 21 PC4 (HS)/TIM1_CH4
VCAP 5 20 PC3 (HS)/TIM1_CH3
VDD 6 19 PC2 (HS)/TIM1_CH2
VDDIO 7 18 PC1 (HS)/TIM1_CH1
AIN12/PF4 8 17 PE5/SPI_NSS
9 10 11 12 13 14 1516
VDDA
VSSA
I2C_SDA/AIN5/PB5
I2C_SCL/AIN4/PB4
TIM1_ETR/AIN3/PB3
TIM1_CH3N/AIN2/PB2
TIM1_CH2N/AIN1/PB1
TIM1_CH1N/AIN0/PB0
PD0 (HS)/TIM3_CH2/CLK_CCO/TIM1_BRK
PD2 (HS)/TIM3_CH1/TIM2_CH3
PD3 (HS)/TIM2_CH2/ADC_ETR
PD4 (HS)/TIM2_CH1/BEEP
PD6/LINUART_RX
D5/LINUART_TX
PD1 (HS)/SWIM
PD7/TLI
32 31 30 29 28 27 26 25
NRST 1 24 PG1
OSCIN/PA1 2 23 PG0
OSCOUT/PA2 3 22 PC5
V SS 4 21 PC4 (HS)/TIM1_CH4
V DD 6 19 PC2 (HS)/TIM1_CH2
V DDIO 7 18 PC1 (HS)/TIM1_CH1
PA6 8 17 PE5
9 10 11 12 13 14 15 16
V DDA
V SSA
TIM1_CH3N/AIN2/PB2
TIM1_CH2N/AIN1/PB1
TIM1_CH1N/AIN0/PB0
TIM1_ETR/AIN3/PB3
I2C_SDA/AIN5/PB5
I2C_SCL/AIN4/PB4
MSv47786V1
1. The following I/O ports are not automatically configured by hardware: PA3, PA4, PA5, PA6, PF4, PB6,
PB7, PE0, PE1, PE2, PE3, PE6, PE7. As a consequence, they must be put into one of the following
configurations by software:
- configured as input with internal pull-up/down resistor,
- configured as output push-pull low.
2. HS stands for high sink capability.
LQFP32/VFQFPN32
Main Alternate
Ext. interrupt
STM8AF62xx
Default
function function
High sink
Type
Floating
LQFP80
LQFP64
LQFP48
Speed
(after after remap
Wpu
OD
PP
function
reset) [option bit]
LQFP32/VFQFPN32
Main Alternate
Ext. interrupt
STM8AF62xx
Default
function function
High sink
Type
Floating
LQFP80
LQFP64
LQFP48
Speed
(after after remap
Wpu
OD
PP
function
reset) [option bit]
LQFP32/VFQFPN32
Main Alternate
Ext. interrupt
STM8AF62xx
Default
function function
High sink
Type
Floating
LQFP80
LQFP64
LQFP48
Speed
(after after remap
Wpu
OD
PP
function
reset) [option bit]
Analog
39 31 23 - PE7/AIN8 I/O X X - - O1 X X Port E7 -
input 8
Analog
40 32 24 PE6/AIN9 I/O X X X - O1 X X Port E6 -
input 9
SPI master/
41 33 25 17 PE5/SPI_NSS I/O X X X - O1 X X Port E5 -
slave select
ADC trigger
42 - - - PC0/ADC_ETR I/O X X X - O1 X X Port C0 -
input
Timer 1 -
43 34 26 18 PC1/TIM1_CH1 I/O X X X HS O3 X X Port C1 -
channel 1
Timer 1-
44 35 27 19 PC2/TIM1_CH2 I/O X X X HS O3 X X Port C2 -
channel 2
Timer 1 -
45 36 28 20 PC3/TIM1_CH3 I/O X X X HS O3 X X Port C3 -
channel 3
Timer 1 -
46 37 29 21 PC4/TIM1_CH4 I/O X X X HS O3 X X Port C4 -
channel 4
47 38 30 22 PC5/SPI_SCK I/O X X X - O3 X X Port C5 SPI clock -
48 39 31 - VSSIO_2 S - - - - - - - I/O ground -
49 40 32 - VDDIO_2 S - - - - - - - I/O power supply -
SPI master
50 41 33 23 PC6/SPI_MOSI I/O X X X - O3 X X Port C6 out/ -
slave in
SPI master
51 42 34 24 PC7/SPI_MISO I/O X X X - O3 X X Port C7 in/ slave -
out
52 43 35 - PG0 I/O X X - - O1 X X Port G0 - -
53 44 36 - PG1 I/O X X - - O1 X X Port G1 - -
54 45 - - PG2 I/O X X - - O1 X X Port G2 - -
55 46 - - PG3 I/O X X - - O1 X X Port G3 - -
56 47 - - PG4 I/O X X - - O1 X X Port G4 - -
57 48 - - PI0 I/O X X - - O1 X X Port I0 - -
58 - - - PI1 I/O X X - - O1 X X Port I1 - -
59 - - - PI2 I/O X X - - O1 X X Port I2 - -
60 - - - PI3 I/O X X - - O1 X X Port I3 - -
LQFP32/VFQFPN32
Main Alternate
Ext. interrupt
STM8AF62xx
Default
function function
High sink
Type
Floating
LQFP80
LQFP64
LQFP48
Speed
(after after remap
Wpu
OD
PP
function
reset) [option bit]
6 Kbyte RAM
0x00 1400
Reserved
0x00 4000
Option bytes
0x00 4900
Reserved
0x00 5000
Hardware registers
0x00 5800
Reserved
0x00 6000
Reserved
0x00 7F00
CPU/SWIM/debug/ITC
registers
0x00 8000
Interrupt vectors
0x00 8080
MS38340V1
8 Interrupt table
9 Option bytes
Option bytes contain configurations for device hardware features as well as the memory
protection of the device. They are stored in a dedicated block of the memory. Each option
byte has to be stored twice, for redundancy, in a regular form (OPTx) and a complemented
one (NOPTx), except for the ROP (read-out protection) option byte and option bytes 8 to 16.
Option bytes can be modified in ICP mode (via SWIM) by accessing the EEPROM address
shown in Table 16: Option bytes below.
Option bytes can also be modified ‘on the fly’ by the application in IAP mode, except the
ROP and UBC options that can only be changed in ICP mode (via SWIM).
Refer to the STM8 Flash programming manual (PM0047) and STM8 SWIM communication
protocol and debug module user manual (UM0470) for information on SWIM programming
procedures.
Read-out
0x00
protection OPT0 ROP[7:0] 0x00
4800
(ROP)
0x00
User boot OPT1 UBC[7:0] 0x00
4801
code
0x00 (UBC) NOPT1 NUBC[7:0] 0xFF
4802
0x00 Alternate OPT2 AFR7 AFR6 AFR5 AFR4 AFR3 AFR2 AFR1 AFR0 0x00
4803 function
0x00 remapping
(AFR) NOPT2 NAFR7 NAFR6 NAFR5 NAFR4 NAFR3 NAFR2 NAFR1 NAFR0 0xFF
4804
0x00 LSI_ IWDG WWD WWDG
OPT3 Reserved 0x00
4805 Watchdog EN _HW G _HW _HALT
0x00 option NLSI_ NIWD NWWD NWWG
NOPT3 Reserved 0xFF
4806 EN G_HW G_HW _HALT
0x00 EXT CKAW
OPT4 Reserved PRSC1 PRSC0 0x00
4807 Clock CLK USEL
0x00 option NEXT NCKAW NPRSC
NOPT4 Reserved NPRSC1 0xFF
4808 CLK USEL 0
0x00
OPT5 HSECNT[7:0] 0x00
4809 HSE clock
0x00 startup
NOPT5 NHSECNT[7:0] 0xFF
480A
0x00
OPT6 TMU[3:0] 0x00
480B
TMU
0x00
NOPT6 NTMU[3:0] 0xFF
480C
0x00 WAIT
OPT7 Reserved 0x00
480D Flash wait STATE
0x00 states NWAIT
NOPT7 Reserved 0xFF
480E STATE
0x00
Reserved
480F
0x00
OPT8 TMU_KEY 1 [7:0] 0x00
4810
0x00
OPT9 TMU_KEY 2 [7:0] 0x00
4811
0x00
OPT10 TMU_KEY 3 [7:0] 0x00
4812
0x00
OPT11 TMU_KEY 4 [7:0] 0x00
4813
0x00
TMU OPT12 TMU_KEY 5 [7:0] 0x00
4814
0x00
OPT13 TMU_KEY 6 [7:0] 0x00
4815
0x00
OPT14 TMU_KEY 7 [7:0] 0x00
4816
0x00
OPT15 TMU_KEY 8 [7:0] 0x00
4817
0x00
OPT16 TMU_MAXATT [7:0] 0xC7
4818
0x00
4819
Reserved
to
487D
0x00
OPT17 BL [7:0] 0x00
487E Boot-
0x00 loader(1) NOPT
NBL [7:0] 0xFF
487F 17
1. This option consists of two bytes that must have a complementary value in order to be valid. If the option is invalid, it has no
effect on EMC reset.
10 Electrical characteristics
STM8A PIN
50 pF
MSv37796V1
STM8A PIN
VIN
MSv37797V1
VDDx - VSS Supply voltage (including VDDA and VDDIO)(1) -0.3 6.5
Input voltage on true open drain pins (PE1, PE2)(2) VSS - 0.3 6.5 V
VIN
(2)
Input voltage on any other pin VSS - 0.3 VDD + 0.3
|VDDx - VDD| Variations between different power pins - 50
mV
|VSSx - VSS| Variations between all the different ground pins - 50
see Absolute maximum ratings
VESD Electrostatic discharge voltage (electrical sensitivity) on
page 88
1. All power (VDD, VDDIO, VDDA) and ground (VSS, VSSIO, VSSA) pins must always be connected to the
external power supply
2. IINJ(PIN) must never be exceeded. This is implicitly insured if VIN maximum is respected. If VIN maximum
cannot be respected, the injection current must be limited externally to the IINJ(PIN) value. A positive
injection is induced by VIN > VDD while a negative injection is induced by VIN < VSS. For true open-drain
pads, there is no positive injection current, and the corresponding VIN maximum must always be respected
1 wait state
16 24
TA = -40 °C to 150 °C
fCPU Internal CPU clock frequency MHz
0 wait state
0 16
TA = -40 °C to 150 °C
VDD/VDDIO Standard operating voltage - 3.0 5.5 V
CEXT: capacitance of external
- 470 3300 nF
capacitor
VCAP(1)
ESR of external capacitor - 0.3 Ω
at 1 MHz(2)
ESL of external capacitor - 15 nH
Suffix A 85
TA Ambient temperature Suffix C - 40 125
Suffix D 150
°C
Suffix A 90
TJ Junction temperature range Suffix C - 40 130
Suffix D 155
1. Care should be taken when selecting the capacitor, due to its tolerance, as well as the parameter
dependency on temperature, DC bias and frequency in addition to other factors. The parameter maximum
value must be respected for the full application range.
2. This frequency of 1 MHz as a condition for VCAP parameters is given by design of internal regulator.
24
Functionality guaranteed
Functionality @TA -40 to 150 °C at 1 waitstate
not guaranteed 16
in this area
12
Functionality guaranteed
@TA -40 to 150 °C at 0 waitstate
8
4
0
3.0 4.0 5.0 5.5
8
tVDD µs/V
(1)
VDD fall time rate - 2 -
8
Reset release delay VDD rising - 1 1.7 ms
tTEMP
Reset generation delay VDD falling - 3 - µs
Power-on reset
VIT+ - 2.65 2.8 2.95
threshold(2) (3)
V
Brown-out reset
VIT- - 2.58 2.73 2.88
threshold
Brown-out reset
VHYS(BOR) - - 70(1) - mV
hysteresis
1. Guaranteed by design, not tested in production.
2. If VDD is below 3 V, the code execution is guaranteed above the VIT- and VIT+ thresholds. RAM content is
kept. The EEPROM programming sequence must not be initiated.
3. There is inrush current into VDD present after device power on to charge CEXT capacitor. This inrush
energy depends from CEXT capacitor value. For example, a CEXT of 1 μF requires Q=1 μF x 1.8 V =
1.8 μC.
ESR
RLeak
MSv36488V1
1. Legend: ESR is the equivalent series resistance and ESL is the equivalent inductance.
Table 24. Total current consumption in Run, Wait and Slow mode. General conditions
for VDD apply, TA = −40 °C to 150 °C
Symbol Parameter Conditions Typ Max Unit
(2)
fCPU = 24 MHz 1 ws 8.8 16.9
All peripherals
clocked, code fCPU = 16 MHz 7.5 14.1
(1) Supply current in executed from Flash
IDD(RUN) fCPU = 8 MHz 4.1 7.5(2)
Run mode program memory,
HSE external clock fCPU = 4 MHz 2.5 4.2(2)
(without resonator)
fCPU = 2 MHz 1.6 2.6
fCPU = 24 MHz 4.5 6.1(2)
All peripherals
fCPU = 16 MHz 3.8 5.1
clocked, code
(1) Supply current in
IDD(RUN) executed from RAM, fCPU = 8 MHz 2.3 3.1(2)
Run mode
HSE external clock
fCPU = 4 MHz 1.5 2.1(2)
(without resonator)
mA
fCPU = 2 MHz 1.1 1.6
fCPU = 24 MHz 2.5 3.2(2)
fCPU = 16 MHz 1.75 2.6
CPU stopped, all
(1) Supply current in
IDD(WFI) peripherals off, HSE fCPU = 8 MHz 1.25 2.0(2)
Wait mode
external clock
fCPU = 4 MHz 1.0 1.7(2)
fCPU = 2 MHz 0.90 1.6
Table 25. Total current consumption in Halt and Active-halt modes. General conditions for VDD
applied. TA = −40 °C to 55 °C unless otherwise stated
Conditions
Main
Symbol Parameter Typ Max Unit
voltage Flash Clock source and
regulator mode(2) temperature condition
(MVR)(1)
Figure 13. Typ. IDD(RUN)HSE vs. VDD Figure 14. Typ. IDD(RUN)HSE vs. fCPU
@fCPU = 16 MHz, peripherals = on @ VDD = 5.0 V, peripherals = on
10 10
9
25°C 25°C
9
IDD(RUN)HSE [mA]
85°C 85°C
IDD(RUN)HSE [mA]
8 8
7 125°C 7 125°C
6 6
5 5
4 4
3 3
2 2
1 1
0 0
2.5 3 3.5 4 4.5 5 5.5 6 0 5 10 15 20 25 30
Figure 15. Typ. IDD(RUN)HSI vs. VDD Figure 16. Typ. IDD(WFI)HSE vs. VDD
@ fCPU = 16 MHz, peripherals = off @ fCPU = 16 MHz, peripherals = on
4 6
IDD(WFI)HSE [mA]
IDD(RUN)HSI [mA]
5
3 4
2 3
25°C 25°C
2
1 85°C 85°C
1 125°C
125°C
0 0
2.5 3.5 4.5 5.5 6.5 2.5 3.5 4.5 5.5 6.5
VDD [V] VDD [V]
Figure 17. Typ. IDD(WFI)HSE vs. fCPU Figure 18. Typ. IDD(WFI)HSI vs. VDD
@ VDD = 5.0 V, peripherals = on @ fCPU = 16 MHz, peripherals = off
6 2.5
5
IDD(WFI)HSE [mA]
2
IDD(WFI)HSI [mA]
4
1.5
3
1
2 25°C 25°C
85°C 0.5 85°C
1
125°C 125°C
0 0
0 5 10 15 20 25 30 2.5 3 3.5 4 4.5 5 5.5 6
V
HSEH
V HSEL
fHSE
External clock
source
OSCIN
STM8
MS36489V1
Rm
fHSE to core
CO RF
Lm
CL1
Cm OSCIN gm
Resonator
Current control
Resonator
OSCOUT
CL2
STM8
MSv37799V1
Equation 1
g m » g mcrit
Equation 2
f 2 2
g mcrit = ( 2 × Π × HSE ) × R m ( 2Co + C )
3%
-40°C
2% 25°C
HSI frequency variation [%]
85°C
1%
125°C
0%
-1%
-2%
-3%
2.5 3 3.5 4 4.5 5 5.5 6
VDD [V]
3%
2%
LSI frequency variation [%]
1% 25°C
0%
-1%
-2%
-3%
2.5 3 3.5 4 4.5 5 5.5 6
VDD [V]
fCPU is 16 to 24 MHz
Operating voltage with 1 ws
VDD 3.0 - 5.5
(all modes, execution/write/erase) fCPU is 0 to 16 MHz
with 0 ws
V
fCPU is 16 to 24 MHz
with 1 ws
VDD Operating voltage (code execution) 2.6 - 5.5
fCPU is 0 to 16 MHz
with 0 ws
Standard programming time (including
erase) for byte/word/block - - 6 6.6
tprog (1 byte/4 bytes/128 bytes)
ms
Fast programming time for 1 block
- - 3 3.3
(128 bytes)
terase Erase time for 1 block (128 bytes) - - 3 3.3
1. Guaranteed by characterization results, not tested in production.
2. Guaranteed by design.
3. Guaranteed by characterization results, not tested in production.
6
-40°C
5 25°C
85°C
4 125°C
VIL / V IH [V]
0
2.5 3 3.5 4 4.5 5 5.5 6
VDD [V]
60
55
Pull-Up resistance [k ohm]
50
45
40 -40°C
25°C
35 85°C
125°C
30
2.5 3 3.5 4 4.5 5 5.5 6
VDD [V]
140
120
100
20
125°C
0
0 1 2 3 4 5 6
VDD [V]
Figure 26. Typ. VOL @ VDD = 3.3 V (standard Figure 27. Typ. VOL @ VDD = 5.0 V (standard
ports) ports)
-40°C -40°C
1.5 1.5
25°C 25°C
1.25 85°C 1.25 85°C
125°C 125°C
1 1
VOL [V]
VOL [V]
0.75 0.75
0.5 0.5
0.25 0.25
0 0
0 1 2 3 4 5 6 7 0 2 4 6 8 10 12
IOL [mA] IOL [mA]
Figure 28. Typ. VOL @ VDD = 3.3 V (true open Figure 29. Typ. VOL @ VDD = 5.0 V (true open
drain ports) drain ports)
-40°C -40°C
2 2
25°C 25°C
1.75 1.75
85°C 85°C
1.5 125°C 1.5 125°C
1.25 1.25
VOL [V]
VOL [V]
1 1
0.75 0.75
0.5 0.5
0.25 0.25
0 0
0 2 4 6 8 10 12 14 0 5 10 15 20 25
IOL [mA] IOL [mA]
Figure 30. Typ. VOL @ VDD = 3.3 V (high sink Figure 31. Typ. VOL @ VDD = 5.0 V (high sink
ports) ports)
-40°C -40°C
1.5 1.5
25°C 25°C
1.25 85°C 1.25 85°C
125°C 125°C
1 1
VOL [V]
VOL [V]
0.75 0.75
0.5 0.5
0.25 0.25
0 0
0 2 4 6 8 10 12 14 0 5 10 15 20 25
IOL [mA] IOL [mA]
Figure 32. Typ. VDD - VOH @ VDD = 3.3 V Figure 33. Typ. VDD - VOH @ VDD = 5.0 V
(standard ports) (standard ports)
-40°C -40°C
2 2
25°C 25°C
1.75 1.75
85°C 85°C
1.5 125°C 1.5 125°C
1.25 1.25
VDD - V OH [V]
VDD - V OH [V]
1 1
0.75 0.75
0.5 0.5
0.25 0.25
0 0
0 1 2 3 4 5 6 7 0 2 4 6 8 10 12
IOH [mA] IOH [mA]
Figure 34. Typ. VDD - VOH @ VDD = 3.3 V (high Figure 35. Typ. VDD - VOH @ VDD = 5.0 V (high
sink ports) sink ports)
-40°C -40°C
2 2
25°C 25°C
1.75 1.75
85°C 85°C
1.5 125°C 1.5 125°C
1.25 1.25
VDD - V OH [V]
VDD - V OH [V]
1 1
0.75 0.75
0.5 0.5
0.25 0.25
0 0
0 2 4 6 8 10 12 14 0 5 10 15 20 25
IOH [mA] IOH [mA]
Figure 36. Typical NRST VIL and VIH vs VDD @ four temperatures
-40°C
6
25°C
5 85°C
125°C
4
VIL / V IH [V]
0
2.5 3 3.5 4 4.5 5 5.5 6
VDD [V]
60 -40°C
25°C
45
40
35
30
2.5 3 3.5 4 4.5 5 5.5 6
VDD [V]
140
120
NRST Pull-Up current [µA]
100
80
60 -40°C
25°C
40
85°C
20 125°C
0
0 1 2 3 4 5 6
VDD [V]
The reset network shown in Figure 39 protects the device against parasitic resets. The user
must ensure that the level on the NRST pin can go below VIL(NRST) max (see Table 37:
NRST pin characteristics), otherwise the reset is not taken into account internally.
For power consumption sensitive applications, the external reset capacitor value can be
reduced to limit the charge/discharge current. If NRST signal is used to reset external
circuitry, attention must be taken to the charge/discharge time of the external capacitor to
fulfill the external devices reset timing conditions. Minimum recommended capacity is 10 nF.
VDD STM8A
RPU
External
reset NRST Filter Internal reset
circuit
0.1 μF
(Optional)
MSv38341V1
Master mode 0 10
fSCK
SPI clock frequency VDD < 4.5 V 0 6(1) MHz
1/tc(SCK) Slave mode
VDD = 4.5 V to 5.5 V 0 8(1)
tr(SCK)
SPI clock rise and fall time Capacitive load: C = 30 pF - 25(2)
tf(SCK)
tsu(NSS)(3) NSS setup time Slave mode 4 * tMASTER -
(3)
th(NSS) NSS hold time Slave mode 70 -
tw(SCKH)(3) tw(SCKH)(3)
SCK high and low time Master mode tSCK/2 - 15 tSCK/2 + 15
tw(SCKL)(3) tw(SCKL)(3)
tv(MO)(3) Data output valid time Master mode (after enable edge) - 30
th(SO)(3) Slave mode (after enable edge) 31 -
Data output hold time
th(MO)(3) Master mode (after enable edge) 12 -
1. fSCK < fMASTER/2.
2. The pad has to be configured accordingly (fast mode).
3. Guaranteed by design or by characterization results, not tested in production.
4. Min time is for the minimum time to drive the output and the max time is for the maximum time to validate the data.
5. Min time is for the minimum time to invalidate the output and the max time is for the maximum time to put the data in Hi-Z.
Figure 40. SPI timing diagram in slave mode and with CPHA = 0
1. Measurement points are at CMOS levels: 0.3 VDD and 0.7 VDD.
Figure 41. SPI timing diagram in slave mode and with CPHA = 1
NSS input
CPHA=1
CPOL=0 tw(SCKH)
CPHA=1 tw(SCKL)
CPOL=1
tr(SCK)
tv(SO) th(SO) tdis(SO)
ta(SO) tf(SCK)
MISO
MSB OUT BIT6 OUT LSB OUT
OUTPUT
tsu(SI) th(SI)
MOSI
INPUT MSB IN BIT 1 IN LSB IN
ai14135b
1. Measurement points are at CMOS levels: 0.3 VDD and 0.7 VDD.
High
NSS input
tc(SCK)
SCK Output
CPHA= 0
CPOL=0
CPHA= 0
CPOL=1
SCK Output
CPHA=1
CPOL=0
CPHA=1
CPOL=1
tw(SCKH) tr(SCK)
tsu(MI) tw(SCKL) tf(SCK)
MISO
INP UT MSB IN BIT6 IN LSB IN
th(MI)
MOSI
MSB OUT B I T1 OUT LSB OUT
OUTPUT
tv(MO) th(MO)
ai14136c
1. Measurement points are at CMOS levels: 0.3 VDD and 0.7 VDD.
VDD STM8A
VT
Rswitch
VAIN RAIN 0.6 V
AINx 10-bit A/D
Ts conversion
VT
CAIN IL Csamp
0.6 V
MSv38342V1
1. Legend: RAIN = external resistance, CAIN = capacitors, Csamp = internal sample and hold capacitor.
0 1 2 3 4 5 6 7 1021102210231024
VSSA VDDA
Max fCPU(1)
Symbol Parameter Unit
General Monitored
conditions frequency band 8 16 24
MHz MHz MHz
Static latch-up
Two complementary static tests are required on 10 parts to assess the latch-up
performance.
• A supply overvoltage (applied to each power supply pin) and
• A current injection (applied to each input, output and configurable I/O pin) are
performed on each sample.
This test conforms to the EIA/JESD 78 IC latch-up standard. For more details, refer to the
application note AN1181.
TA = 25 °C
TA = 85 °C
LU Static latch-up class A
TA = 125 °C
TA = 150 °C
1. Class description: A Class is an STMicroelectronics internal specification. All its limits are higher than the
JEDEC specifications, that means when a device belongs to class A it exceeds the JEDEC standard. B
class strictly covers all the JEDEC criteria (international standard).
11 Package information
A1
c
0.25 mm
GAUGE PLANE
ccc C A1
D L k
D1 L1
D3
60 41
61 40
b
E1
E3
80 21
PIN 1 1 20
IDENTIFICATION
e
1S_ME
A - - 1.600 - - 0.0630
A1 0.050 - 0.150 0.0020 - 0.0059
A2 1.350 1.400 1.450 0.0531 0.0551 0.0571
b 0.220 0.320 0.380 0.0087 0.0126 0.0150
c 0.090 - 0.200 0.0035 - 0.0079
D 15.800 16.000 16.200 0.6220 0.6299 0.6378
D1 13.800 14.000 14.200 0.5433 0.5512 0.5591
D3 - 12.350 - - 0.4862 -
E 15.800 16.000 16.200 0.6220 0.6299 0.6378
E1 13.800 14.000 14.200 0.5433 0.5512 0.5591
E3 - 12.350 - - 0.4862 -
e - 0.650 - - 0.0256 -
L 0.450 0.600 0.750 0.0177 0.0236 0.0295
L1 - 1.000 - - 0.0394 -
k 0° 3.5° 7° 0° 3.5° 7°
ccc - - 0.100 - - 0.0039
1. Values in inches are converted from mm and rounded to 4 decimal digits.
60 41
0.4
61 0.65 40
14.3
16.7
80 21
1.2
1 20
12.75
16.7
1S_FP
Device marking
The following figure gives an example of topside marking orientation versus pin 1 identifier
location.
Other optional marking or inset/upset marks, which identify the parts throughout supply
chain operations, are not indicated below.
Product
identification (1) XXXXXX
XXXX
Date code
Standard ST logo
Y WW
Revision code
Pin 1 identifier
MS38333V1
1. Parts marked as "ES","E” or accompanied by an Engineering Sample notification letter are not yet qualified
and therefore not approved for use in production. ST is not responsible for any consequences resulting
from such use. In no event will ST be liable for the customer using any of these engineering samples in
production. ST's quality department must be contacted to run a qualification activity prior to any decision to
use these engineering samples.
SEATING PLANE
C
A2
A
0.25 mm
GAUGE PLANE
A1
c
ccc C
A1
D K
D1 L
D3 L1
48 33
32
49
E1
E3
E
64 17
PIN 1 1 16
IDENTIFICATION e
5W_ME_V3
A - - 1.600 - - 0.0630
A1 0.050 - 0.150 0.0020 - 0.0059
A2 1.350 1.400 1.450 0.0531 0.0551 0.0571
b 0.170 0.220 0.270 0.0067 0.0087 0.0106
c 0.090 - 0.200 0.0035 - 0.0079
D - 12.000 - - 0.4724 -
D1 - 10.000 - - 0.3937 -
D3 - 7.500 - - 0.2953 -
E - 12.000 - - 0.4724 -
E1 - 10.000 - - 0.3937 -
E3 - 7.500 - - 0.2953 -
e - 0.500 - - 0.0197 -
K 0° 3.5° 7° 0° 3.5° 7°
L 0.450 0.600 0.750 0.0177 0.0236 0.0295
L1 - 1.000 - - 0.0394 -
ccc - - 0.080 - - 0.0031
1. Values in inches are converted from mm and rounded to 4 decimal digits.
48 33
0.3
49 0.5 32
12.7
10.3
10.3
64 17
1.2
1 16
7.8
12.7
ai14909c
Device marking
The following figure gives an example of topside marking orientation versus pin 1 identifier
location.
Other optional marking or inset/upset marks, which identify the parts throughout supply
chain operations, are not indicated below.
Product
identification (1) XXXXXX
XXXX
Date code
Standard ST logo Y WW
Revision code
Pin 1 identifier
MS38334V1
1. Parts marked as "ES","E” or accompanied by an Engineering Sample notification letter are not yet qualified
and therefore not approved for use in production. ST is not responsible for any consequences resulting
from such use. In no event will ST be liable for the customer using any of these engineering samples in
production. ST's quality department must be contacted to run a qualification activity prior to any decision to
use these engineering samples.
SEATING
PLANE
C
A2
A
A1
c
0.25 mm
GAUGE PLANE
ccc C
D K
A1
L
D1 L1
D3
36 25
37 24
E1
E3
E
48 13
PIN 1
IDENTIFICATION 1 12
e 5B_ME_V2
A - - 1.600 - - 0.0630
A1 0.050 - 0.150 0.0020 - 0.0059
A2 1.350 1.400 1.450 0.0531 0.0551 0.0571
b 0.170 0.220 0.270 0.0067 0.0087 0.0106
c 0.090 - 0.200 0.0035 - 0.0079
D 8.800 9.000 9.200 0.3465 0.3543 0.3622
D1 6.800 7.000 7.200 0.2677 0.2756 0.2835
D3 - 5.500 - - 0.2165 -
E 8.800 9.000 9.200 0.3465 0.3543 0.3622
E1 6.800 7.000 7.200 0.2677 0.2756 0.2835
E3 - 5.500 - - 0.2165 -
e - 0.500 - - 0.0197 -
L 0.450 0.600 0.750 0.0177 0.0236 0.0295
L1 - 1.000 - - 0.0394 -
k 0° 3.5° 7° 0° 3.5° 7°
ccc - - 0.080 - - 0.0031
1. Values in inches are converted from mm and rounded to 4 decimal digits.
0.30
36 25
37 24
0.20
7.30
9.70 5.80
7.30
48 13
1 12
1.20
5.80
9.70
ai14911d
Device marking
The following figure gives an example of topside marking orientation versus pin 1 identifier
location.
Other optional marking or inset/upset marks, which identify the parts throughout supply
chain operations, are not indicated below.
Product
identification (1) XXXXXX
XXXX
Date code
Standard ST logo Y WW
MS38335V1
1. Parts marked as "ES","E” or accompanied by an Engineering Sample notification letter are not yet qualified
and therefore not approved for use in production. ST is not responsible for any consequences resulting
from such use. In no event will ST be liable for the customer using any of these engineering samples in
production. ST's quality department must be contacted to run a qualification activity prior to any decision to
use these engineering samples.
SEATING
PLANE
C
A2
A
c
A1
0.25 mm
GAUGE PLANE
ccc C
K
D
L
A1
D1
L1
D3
24 17
25 16
b
E1
E3
32 9
PIN 1
IDENTIFICATION 1 8
e 5V_ME_V2
A - - 1.600 - - 0.0630
A1 0.050 - 0.150 0.0020 - 0.0059
A2 1.350 1.400 1.450 0.0531 0.0551 0.0571
b 0.300 0.370 0.450 0.0118 0.0146 0.0177
c 0.090 - 0.200 0.0035 - 0.0079
D 8.800 9.000 9.200 0.3465 0.3543 0.3622
D1 6.800 7.000 7.200 0.2677 0.2756 0.2835
D3 - 5.600 - - 0.2205 -
E 8.800 9.000 9.200 0.3465 0.3543 0.3622
E1 6.800 7.000 7.200 0.2677 0.2756 0.2835
E3 - 5.600 - - 0.2205 -
e - 0.800 - - 0.0315 -
L 0.450 0.600 0.750 0.0177 0.0236 0.0295
L1 - 1.000 - - 0.0394 -
k 0° 3.5° 7° 0° 3.5° 7°
ccc - - 0.100 - - 0.0039
1. Values in inches are converted from mm and rounded to 4 decimal digits.
1.20
24 17
25 16 0.50
0.30
7.30
6.10
9.70
7.30
32 9
1 8
1.20
6.10
9.70
5V_FP_V2
Device marking
The following figure gives an example of topside marking orientation versus pin 1 identifier
location.
Other optional marking or inset/upset marks, which identify the parts throughout supply
chain operations, are not indicated below.
Product
identification (1) XXXXXX
XXXX
Date code
Standard ST logo Y WW
MS38337V1
1. Parts marked as "ES","E” or accompanied by an Engineering Sample notification letter are not yet qualified
and therefore not approved for use in production. ST is not responsible for any consequences resulting
from such use. In no event will ST be liable for the customer using any of these engineering samples in
production. ST's quality department must be contacted to run a qualification activity prior to any decision to
use these engineering samples.
C
ddd C
A
A3 A1
D
e
9 16
8 17
E2 b E
24
1
L
32
Pin # 1 ID
R = 0.20 D2
L
Bottom view
42_ME_AMKOR_V1
Table 51. VFQFPN32 - 32-pin, 5 x 5 mm, 0.5 mm pitch very thin profile fine pitch quad
flat package mechanical data
millimeters inches(1)
Symbol
Min Typ Max Min Typ Max
Figure 58. VFQFPN32 - 32-pin, 5 x 5 mm, 0.5 mm pitch very thin profile fine pitch quad
flat package recommended footprint
5.30
3.80
0.60
3.10 (Var A)
3.60 (Var B)
5.30 3.80
3.10 (Var A)
3.60 (Var B)
0.50
0.30
0.75
3.80
42_FP_AMKOR_V1
Device marking
The following figure gives an example of topside marking orientation versus pin 1 identifier
location.
Other optional marking or inset/upset marks, which identify the parts throughout supply
chain operations, are not indicated below.
Product
identification (1) XXXXXX
Date code
Y WW
Standard ST logo
Revision code
Pin 1 identifier
MS38336V1
1. Parts marked as "ES","E” or accompanied by an Engineering Sample notification letter are not yet qualified
and therefore not approved for use in production. ST is not responsible for any consequences resulting
from such use. In no event will ST be liable for the customer using any of these engineering samples in
production. ST's quality department must be contacted to run a qualification activity prior to any decision to
use these engineering samples.
where:
PI/Omax = Σ (VOL * IOL) + Σ((VDD - VOH) * IOH)
taking into account the actual VOL / IOL and VOH / IOH of the I/Os at low- and high-level in the
application.
PIOmax = 20 x 8 mA x 0.4 V = 64 mW
This gives:
PINTmax = 400 mW and PIOmax 64 mW
PDmax = 400 mW + 64 mW
Thus:
PDmax = 464 mW.
Using the values obtained in Table 52: Thermal characteristics TJmax is calculated as
follows:
For LQFP64 46 °C/W
This is within the range of the suffix C version parts (-40 °C < Tj < 125 ° C).
Parts must be ordered at least with the temperature range suffix C.
12 Ordering information
Product class
8-bit automotive microcontroller
Device family
63 = Silicon rev S, LIN only
Pin count
6 = 32 pins
8 = 48 pins
9 = 64 pins
A = 80 pins
Package type
T = LQFP
U = VFQFPN
Temperature range
A = -40 to 85 °C
C = -40 to 125 °C
D = -40 to 150 °C
Packing
Y = Tray
U = Tube
X = Tape and reel compliant with EIA 481-C
1. For a list of available options (e.g. memory size, package) and orderable part numbers or for further
information on any aspect of this device, please go to www.st.com or contact the nearest ST Sales Office.
2. Qualified and characterized according to AEC Q100 and Q003 or equivalent, advanced screening
according to AEC Q001 and Q002 or equivalent.
3. Customer specific FASTROM code or custom device configuration. This field shows ‘SSS’ if the device
contains a super set silicon, usually equipped with bigger memory and more I/Os. This silicon is supposed
to be replaced later by the target silicon.
ST visual develop
Full-featured integrated development environment from STMicroelectronics, featuring:
• Seamless integration of C and ASM toolsets
• Full-featured debugger
• Project management
• Syntax highlighting editor
• Integrated programming interface
• Support of advanced emulation features for STice such as code profiling and coverage
14 Revision history
STMicroelectronics NV and its subsidiaries (“ST”) reserve the right to make changes, corrections, enhancements, modifications, and
improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on
ST products before placing orders. ST products are sold pursuant to ST’s terms and conditions of sale in place at the time of order
acknowledgement.
Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or
the design of Purchasers’ products.
Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.
ST and the ST logo are trademarks of ST. All other product or service names are the property of their respective owners.
Information in this document supersedes and replaces information previously supplied in any prior versions of this document.