PYTHON LAB CIE
NAME : Abhishek Maribashetti , Mahmdasabir Dharwad
SRN : 01FE22MCA037 , 01FE22MCA038
CONTACT NO : 9535907997 , 7019421821
TOPIC : STEEL INDUSTRY ENERGY CONSUMPTION .
STEEL INDUSTRY ENERGY CONSUMPTION
Page | 1
About Dataset :
The information gathered is from the DAEWOO Steel Co. Ltd in
Gwangyang, South Korea. It produces several types of coils, steel
plates, and iron plates.
The information on electricity consumption is held in a cloud-based
system.
The information on energy consumption of the industry is stored on the
website of the Korea Electric Power Corporation (pccs.kepco.go.kr),
and the perspectives on daily, monthly, and annual data are calculated
and shown.
Page | 2
Attribute Information :
Data Variables Type Measurement Industry Energy Consumption Continuous kWh Lagging
Current reactive power Continuous kVarh Leading Current reactive power Continuous kVarh
tCO2(CO2) Continuous ppm Lagging Current power factor Continuous % Leading Current
Power factor Continuous % Number of Seconds from midnight Continuous S Week status
Categorical (Weekend (0) or a Weekday(1)) Day of week Categorical Sunday, Monday ….
Saturday Load Type Categorical Light Load, Medium Load, Maximum Load.
INTRODUCTION:
Indian industrial sectors such as Iron & Steel and Cement manufacture products for equitable
growth but at the same time consume huge amounts of energy. India’s total final energy
consumption was estimated at 449.27 Mtoe of which the industrial sectors consumed about
30%. The Iron & Steel sector is one of the most energy intensive manufacturing industries,
consuming about 25% of the total industrial energy consumption (1). The total GHG emissions
in India were assessed at 1904.73 MtCO2, and 38% (719.31 MtCO2) and 22% (412.55 MtCO2)
were from electricity generation and industry sectors respectively. The Indian Iron and Steel
sector contributed to about 117.32 MtCO2 or 6.2% (2). Figure 1 shows the sectoral share of
total industrial energy consumption in India and the world. Among the major industries the
Iron and Steel sector is among the most energy.
The Indian Iron and Steel industry is vital to the nation’s development efforts and to support
the required rapid economic growth. Steel finds its application in a wide of range sectors such
as automobile, power, machine goods, and infrastructure. Energy efficiency and low carbon
growth have emerged as key pathways to reduce the nation’s energy intensity and emissions
intensity. The industry has taken several initiatives to conserve energy at each sub process by
adopting best technologies and innovative process operations or the usage of alternate
materials. The Bureau of Energy Efficiency (BEE) under the Ministry of Power (MoP) has been
entrusted with the responsibility of implementing various strategic policy mechanisms
specifically to enhance the energy efficiency. The National Steel Policy (NSP) has been framed
by the Ministry of Steel, Government of India for the long term objectives of improving
production, consumption, quality and techno‐economic efficiency, environmental and social
sustainability. The Central Pollution Control Board (CPCB) has set norms for permissible
emissions and other hazardous pollutants from several industrial sectors.
Page | 3
The Indian industrial sectors have worked hard amidst several challenges in the development
of the Indian economy. The industry needs to be supported with rigorous research and
development studies focusing on technology, economics and policy aspects. The research
findings should be disseminated among industries, policy making bodies, financial institutions
and related stakeholders to enable them to contribute to the development of a globally
competitive industry by enhancing energy efficiency while increasing environmental
sustainability.
Energy Consumption:
Reduction of hematite and magnetite ores to iron and thereafter to steel involves highly energy
intensive processes. Coal, electricity and natural gas are most widely used energy sources in this
sector. The efficiency of steelmaking varies with the kind of production route, type of iron ore and
coal used, the steel product mix, operation control technology, and material efficiency. The iron and
steel sector follows three major process routes in steel making. About 45% steel is produced by Blast
Furnace – Basic Oxygen Furnace route, 24% and 31% by electrical furnace such as Arc furnace and
Induction furnace routes respectively (8). It is observed that the blast furnace process is an energy
intensive process and 48% of the total energy input in the BF-BOF route is used in blast furnace
operations. Typically, the larger plants utilize the BF-BOF route while smaller plants have DRI-EAF,
mini blast furnace and induction furnace processes.
Page | 4
THE DATASET INCLUDES FOLLOWING DATA:
Usa Lagging_Curren Leading_Curren CO Lagging_Cur Leading_Cu N Wee Day_ Loa
ge_ t_Reactive.Pow t_Reactive_Po 2(tC rent_Power rrent_Powe S kSta of_w d_T
kWh er_kVarh wer_kVarh O2) _Factor r_Factor M tus eek ype
3.17 2.95 0 0 73.21 100 9 Wee Mon Ligh
0 kda day t_L
0 y oad
4 4.46 0 0 66.77 100 1 Wee Mon Ligh
8 kda day t_L
0 y oad
0
3.24 3.28 0 0 70.28 100 2 Wee Mon Ligh
7 kda day t_L
0 y oad
0
3.31 3.56 0 0 68.09 100 3 Wee Mon Ligh
6 kda day t_L
0 y oad
0
3.82 4.5 0 0 64.72 100 4 Wee Mon Ligh
5 kda day t_L
0 y oad
0
3.28 3.56 0 0 67.76 100 5 Wee Mon Ligh
4 kda day t_L
0 y oad
0
3.6 4.14 0 0 65.62 100 6 Wee Mon Ligh
3 kda day t_L
0 y oad
0
3.6 4.28 0 0 64.37 100 7 Wee Mon Ligh
2 kda day t_L
0 y oad
0
3.28 3.64 0 0 66.94 100 8 Wee Mon Ligh
1 kda day t_L
0 y oad
0
3.78 4.72 0 0 62.51 100 9 Wee Mon Ligh
0 kda day t_L
0 y oad
Page | 5
0
3.46 4.03 0 0 65.14 100 9 Wee Mon Ligh
9 kda day t_L
0 y oad
0
3.24 3.64 0 0 66.49 100 1 Wee Mon Ligh
0 kda day t_L
8 y oad
0
0
3.96 4.97 0 0 62.32 100 1 Wee Mon Ligh
1 kda day t_L
7 y oad
0
0
3.31 3.74 0 0 66.27 100 1 Wee Mon Ligh
2 kda day t_L
6 y oad
0
0
3.31 3.85 0 0 65.19 100 1 Wee Mon Ligh
3 kda day t_L
5 y oad
0
0
3.89 5 0 0 61.4 100 1 Wee Mon Ligh
4 kda day t_L
4 y oad
0
0
3.28 3.82 0 0 65.14 100 1 Wee Mon Ligh
5 kda day t_L
3 y oad
0
0
3.56 4.28 0 0 63.95 100 1 Wee Mon Ligh
6 kda day t_L
2 y oad
0
0
3.74 4.54 0 0 63.58 100 1 Wee Mon Ligh
7 kda day t_L
1 y oad
0
0
3.31 3.6 0 0 67.68 100 1 Wee Mon Ligh
8 kda day t_L
Page | 6
0 y oad
0
0
3.56 4.07 0 0 65.84 100 1 Wee Mon Ligh
8 kda day t_L
9 y oad
0
0
3.56 4.1 0 0 65.56 100 1 Wee Mon Ligh
9 kda day t_L
8 y oad
0
0
3.28 3.49 0 0 68.48 100 2 Wee Mon Ligh
0 kda day t_L
7 y oad
0
0
3.78 4.32 0 0 65.85 100 2 Wee Mon Ligh
1 kda day t_L
6 y oad
0
0
3.35 3.64 0 0 67.72 100 2 Wee Mon Ligh
2 kda day t_L
5 y oad
0
0
3.24 3.35 0 0 69.52 100 2 Wee Mon Ligh
3 kda day t_L
4 y oad
0
0
3.89 4.46 0 0 65.73 100 2 Wee Mon Ligh
4 kda day t_L
3 y oad
0
0
3.31 3.53 0 0 68.4 100 2 Wee Mon Ligh
5 kda day t_L
2 y oad
0
0
3.28 3.49 0 0 68.48 100 2 Wee Mon Ligh
6 kda day t_L
1 y oad
0
Page | 7
0
3.85 4.75 0 0 62.97 100 2 Wee Mon Ligh
7 kda day t_L
0 y oad
0
0
3.2 3.6 0 0 66.44 100 2 Wee Mon Ligh
7 kda day t_L
9 y oad
0
0
3.31 3.78 0 0 65.88 100 2 Wee Mon Ligh
8 kda day t_L
8 y oad
0
0
3.78 4.75 0 0 62.27 100 2 Wee Mon Ligh
9 kda day t_L
7 y oad
0
0
3.28 3.74 0 0 65.94 100 3 Wee Mon Ligh
0 kda day t_L
6 y oad
0
0
3.49 4.46 0.18 0 61.63 99.87 3 Wee Mon Ligh
1 kda day t_L
5 y oad
0
0
3.89 0 15.66 0 100 24.11 3 Wee Mon Ligh
2 kda day t_L
4 y oad
0
0
3.6 0 16.96 0 100 20.76 3 Wee Mon Ligh
3 kda day t_L
3 y oad
0
0
4.03 0 21.28 0 100 18.61 3 Wee Mon Ligh
4 kda day t_L
2 y oad
0
0
3.92 0 19.22 0 100 19.98 3 Wee Mon Ligh
Page | 8
5 kda day t_L
1 y oad
0
0
3.64 0 16.88 0 100 21.08 3 Wee Mon Ligh
6 kda day t_L
0 y oad
0
0
4.07 0 22.32 0 100 17.94 3 Wee Mon Ligh
6 kda day t_L
9 y oad
0
0
3.71 0 18 0 100 20.19 3 Wee Mon Ligh
7 kda day t_L
8 y oad
0
0
3.6 0 16.92 0 100 20.81 3 Wee Mon Ligh
8 kda day t_L
7 y oad
0
0
4.21 0 23.4 0 100 17.71 3 Wee Mon Ligh
9 kda day t_L
6 y oad
0
0
3.49 0 5.65 0 100 52.55 4 Wee Mon Ligh
0 kda day t_L
5 y oad
0
0
3.46 0 4.82 0 100 58.31 4 Wee Mon Ligh
1 kda day t_L
4 y oad
0
0
4 0 6.7 0 100 51.26 4 Wee Mon Ligh
2 kda day t_L
3 y oad
0
0
3.49 0 4.57 0 100 60.69 4 Wee Mon Ligh
3 kda day t_L
2 y oad
Page | 9
0
0
3.6 0 12.89 0 100 26.9 4 Wee Mon Ligh
4 kda day t_L
1 y oad
0
0
4.25 0 23.15 0 100 18.06 4 Wee Mon Ligh
5 kda day t_L
0 y oad
0
0
3.67 0 16.67 0 100 21.5 4 Wee Mon Ligh
5 kda day t_L
9 y oad
0
0
3.67 0 16.63 0 100 21.55 4 Wee Mon Ligh
6 kda day t_L
8 y oad
0
0
4.25 0 23.33 0 100 17.92 4 Wee Mon Ligh
7 kda day t_L
7 y oad
0
0
3.64 0 16.74 0 100 21.25 4 Wee Mon Ligh
8 kda day t_L
6 y oad
0
0
3.67 0 16.99 0 100 21.11 4 Wee Mon Ligh
9 kda day t_L
5 y oad
0
0
4.28 0 23.4 0 100 17.99 5 Wee Mon Ligh
0 kda day t_L
4 y oad
0
0
3.64 0 16.67 0 100 21.33 5 Wee Mon Ligh
1 kda day t_L
3 y oad
0
0
Page | 10
3.78 0 18.25 0 100 20.28 5 Wee Mon Ligh
2 kda day t_L
2 y oad
0
0
4.1 0 22.1 0 100 18.24 5 Wee Mon Ligh
3 kda day t_L
1 y oad
0
0
3.64 0 16.7 0 100 21.3 5 Wee Mon Ligh
4 kda day t_L
0 y oad
0
0
3.92 0 19.33 0 100 19.87 5 Wee Mon Ligh
4 kda day t_L
9 y oad
0
0
4.1 0 21.35 0 100 18.86 5 Wee Mon Ligh
5 kda day t_L
8 y oad
0
0
3.6 0 16.81 0 100 20.94 5 Wee Mon Ligh
6 kda day t_L
7 y oad
0
0
3.96 0 20.45 0 100 19.01 5 Wee Mon Ligh
7 kda day t_L
6 y oad
0
0
4 0 20.77 0 100 18.91 5 Wee Mon Ligh
8 kda day t_L
5 y oad
0
0
3.6 0 16.81 0 100 20.94 5 Wee Mon Ligh
9 kda day t_L
4 y oad
0
0
4.07 0 21.64 0 100 18.48 6 Wee Mon Ligh
0 kda day t_L
Page | 11
3 y oad
0
0
3.82 0 19.19 0 100 19.52 6 Wee Mon Ligh
1 kda day t_L
2 y oad
0
0
3.56 0 16.96 0 100 20.54 6 Wee Mon Ligh
2 kda day t_L
1 y oad
0
0
4.1 0 23.51 0 100 17.18 6 Wee Mon Ligh
3 kda day t_L
0 y oad
0
0
3.6 0 17.39 0 100 20.27 6 Wee Mon Ligh
3 kda day t_L
9 y oad
0
0
3.6 0 17.35 0 100 20.32 6 Wee Mon Ligh
4 kda day t_L
8 y oad
0
0
4 0 8.96 0 100 40.77 6 Wee Mon Ligh
5 kda day t_L
7 y oad
0
0
3.42 0 5.47 0 100 53.01 6 Wee Mon Ligh
6 kda day t_L
6 y oad
0
0
3.67 0 16.24 0 100 22.04 6 Wee Mon Ligh
7 kda day t_L
5 y oad
0
0
4.07 0 22.57 0 100 17.75 6 Wee Mon Ligh
8 kda day t_L
4 y oad
0
Page | 12
0
3.53 0 17.39 0 100 19.89 6 Wee Mon Ligh
9 kda day t_L
3 y oad
0
0
3.85 0 20.74 0 100 18.25 7 Wee Mon Ligh
0 kda day t_L
2 y oad
0
0
3.96 0 20.88 0 100 18.63 7 Wee Mon Ligh
1 kda day t_L
1 y oad
0
0
3.56 0 17.35 0 100 20.1 7 Wee Mon Ligh
2 kda day t_L
0 y oad
0
0
4.03 0 22.54 0 100 17.6 7 Wee Mon Ligh
2 kda day t_L
9 y oad
0
0
3.74 0 19.55 0 100 18.79 7 Wee Mon Ligh
3 kda day t_L
8 y oad
0
0
3.56 0 17.42 0 100 20.02 7 Wee Mon Ligh
4 kda day t_L
7 y oad
0
0
4.21 0 24.26 0 100 17.1 7 Wee Mon Ligh
5 kda day t_L
6 y oad
0
0
3.56 0 17.75 0 100 19.66 7 Wee Mon Ligh
6 kda day t_L
5 y oad
0
0
3.53 0 17.42 0 100 19.86 7 Wee Mon Ligh
Page | 13
7 kda day t_L
4 y oad
0
0
4.25 0 25.2 0 100 16.63 7 Wee Mon Ligh
8 kda day t_L
3 y oad
0
0
3.53 0 17.5 0 100 19.77 7 Wee Mon Ligh
9 kda day t_L
2 y oad
0
0
3.56 1.44 10.08 0 92.7 33.3 8 Wee Mon Ligh
0 kda day t_L
1 y oad
0
0
3.67 4.21 0 0 65.71 100 8 Wee Mon Ligh
1 kda day t_L
0 y oad
0
0
3.24 3.35 0 0 69.52 100 8 Wee Mon Ligh
1 kda day t_L
9 y oad
0
0
3.53 3.74 0 0 68.64 100 8 Wee Mon Ligh
2 kda day t_L
8 y oad
0
0
3.53 3.42 0 0 71.82 100
Page | 14
Usage of energy in kwh of the steel industry :
The figure 1.1 shows there is consumption on each date with time and drastic consumption of the
energy for the production of the steel with high energy consumption.
FIGURE 1.1
Lagging_Current_Reactive Power_ of the steel industry :
Lagging reactive power is prominently absorbed by inductors (induction motors for instance)
and this is supplied by alternators at generating stations since induction motors require the
much needed reactive power to generate the pre-requisite flux . The above figure shows the
Lagging current with respect to the following dataset.
Page | 15
The Load_Type of the steel industry :
The load can visualized by the weight of the steel is exported and thickness of
the steel which is produced using the iron core and coal . The steel is weighted
in tons the about above figure shows the load type of the steel and weight or
capacity of the steel.
CONCLUSION:
By this dataset we can see that more of the energy is utilized by the heat or
generation the steel sheets and more of the reactive power is generated.
The steel industry is having the more and more coal and iron ore for the
generation of the steel with supply of oxygen for combustion and produces
more air pollution which is affecting the environment.
Page | 16