No.
of Printed Pages : 8 MTE–01
BACHELOR’S DEGREE PROGRAMME
(BDP)
Term-End Examination
December, 2023
(Elective Course : Mathematics)
MTE-01 : CALCULUS
Time : 2 Hours Maximum Marks : 50
Weightate : 70%
Note : (i) Question No. 1 is compulsory.
(ii) Attempt any four questions from
Question Nos. 2 to 7.
(iii) Use of calculator is not allowed.
1. Which of the following statements are true or
false. Give a short proof or a counter-example of
your answers : 2 each
x
(i) If f : R R be defined by f x ,
1 x2
x
then f o f o f x .
2
1 3x
P. T. O.
[2] MTE–01
d sin x
(ii) cos t2 dt cos x.
dx x
cos sin2 x cos x2 .
(iii) If :
x3 x2 16 x 20
, x2
f x x 2 2
k , x2
then the value of k if f is continuous at
x = 2 is 7.
(iv) If f x 0 x ] a, b[ then f is
monotonically increasing on ] a, b [.
(v) The range of the function f defined by
1
f x
x x
is ] 1, [.
2. (a) Differentiate : 5
1 x2 1
1 w. r. t. tan1 x .
tan
x
(b) Integrate : 5
x
x
e dx
1 x 2
[3] MTE–01
3. (a) Find the area enclosed between the
parabolas : 5
y2 4 a x a and y2 4 a x a
(b) By dividing the interval [2,10] into four
equal parts, find the approximate value of
10 dx
2 2
x 4
using Simpsopn’s rule. 5
4. (a) Find the length of the arc of the curve
x 2y intercepted between y0 and
y ln 2 . 5
(b) Differentiate :
log x x xlog x
with respect be x. 5
2
5. Trace the curve y2 x 1 x 2 . Clearly
stating all the properties used for tracing it. 10
6. (a) If :
sin3 t cos3 t
x and y
cos 2t cos 2t
dy
then find at t . 5
dx 6
P. T. O.
[4] MTE–01
(b) If In tan n x dx, prove that :
tan n 1 x
In In 2
n 1
4 tan5
Using this find 0
xdx . 5
7. (a) Evaluate the integral : 5
2 5 x2
1 x2 4 x 3
dx
(b) Verify Lagrange’s mean value theorem for
the function f defined by : 5
f x x 1 x 2 x 3 , x 0, 4
[5] MTE–01
MTE–01
2023
-01
%
(i)
(ii)
(iii)
x
(i) f :RR, f x
1 x2
x
] f o f o f x
1 3 x2
P. T. O.
[6] MTE–01
d sin x
(ii) cos t2 dt cos x.
dx x
cos sin2 x cos x2
(iii)
x3 x2 16 x 20
, x2
f x x 2 2
k , x2
] x2 f k
(iv) f x 0 x ] a, b[ ] f , ] a, b[
1
(v) f, f x
x x
] ]1, [
1 x2 1
1
tan tan 1 x
x
x
x
e dx
1 x 2
[7] MTE–01
y2 4 a x a
y2 4 a x a
2,10
]
10 dx
2 2
x 4
x ey y0 y ln 2
log x x xlog x x
2
y2 x 1 x 2
sin3 t cos3 t
x y
cos 2t cos 2t
dy
] t
6 dx
P. T. O.
[8] MTE–01
In tan n x dx, ]
tan n 1 x
In In 2
n 1
4 tan5
0
xdx
2 5 x2
1 x2 4 x 3
dx
f x x 1 x 2 x 3 , x 0, 4
f
MTE–01