Integration DPP
Integration DPP
1 − tan 2 x x4 + x2 + 1
1. 1 + tan 2 x dx 8. x2 − x + 1
dx is equal to
x3 x 2
dx 1) − + x+C
2. 1 + cos x 3 2
x3 x 2
(2) + + x+C
3 2
dx
3. sin 2 x cos 2 x (3)
x3 x 2
− − x+C
3 2
x3 x3 x 2
(4) + − x+C
4. x + 1 dx 3 2
2 e x dx =
x
x4 + x2 + 1 9.
( )
5. dx
2 1 + x2 (2e) x e2
(1) +c (2) +c
ln ( 2e ) ln ( 2e )
x 4 + 3x 2 + 1 (2e) x
6. x
dx equals (3)
ln2 x
+c (4) None of these
7 3 1
2 2 −
(1) x + 2x 2 + x 2 + C 2 x +1 − 5 x −1
2 ax 1 bx
7
7 3
10. 10 x dx =
−
ln a 5 ln b
+ c , where c is an
2 2 2 2
(2) x + x + x +C integration constant then 10ab =
9 3 (1) –1 (2) 0
5 3 1
2 2 3 2 (3) 1 (4) 2
(3) x + x + 2x 2 + C
5 2
9 5 1 ( x 2 + sin 2 x)sec2 x
(4)
2 2 6 2
x + x + 2x 2 + C 11. 1 + x2
dx =
9 5
(1) tan x + tan −1 x + c
2 + 3x 2 (2) tan −1 x − tan x + c
7. x2 (1 + x2 ) dx =
(3) tan x − tan −1 x + c
(1) tan −1 x +
2
+c (4) c − tanx − tan −1x
x
2 sin2 x + sin5 x − sin3 x
− tan −1 x + c
(2)
x 12. cosx + 1 − 2sin 2 2 x
dx =
1
(3) tan −1 x − + c (1) 2cosx + c
x (2) −2sinx + c
2 (3) 2sinx + c
(4) tan −1 x − + c
x (4) −2cosx + c
2
x6 − 1 ( x + 1) ( x 2 – x )
13. x2 + 1 dx = 15. x x +x+ x
dx
x5 x3
(1) − − + x − 2 tan −1 x + c
cos 4 x + 1
cot x – tan x dx
5 3 16.
x5 x3
(2) + + x − 2tan −1 x + c
5 3
17. A function g defined for all positive real numbers,
x5 x3
(3) − + x − 2tan −1 x + c satisfies g(x2) = x3 for all x> 0 and g (1) = 1.
5 3
Compute g (4).
x5 x3
(4) − + x + 2tan −1 x + c
5 3
18. sin x cos x cos2x cos4x dx
e2 x – 1
14. ex
dx
1
2x – 1 sin( nx)
1. x–2
dx 11. x
dx
4. cos x dx x4 + x2 + 1
14. 2(1 + x 2 )
dx
x 21
5. 4cos 2 .cos x.sin x dx
2 15. 1– sin 2 x dx
cos 2 x
6. cos2 x sin 2 x dx –1 1 + cos x
16. tan dx
sin x
(3sin x cos
2
7. x – sin 3 x) dx
2 9 x 7 x
17. sin + – sin 2
8 4
+ dx
8 4
cos x – sin x
8. cos x + sin x (2 + 2sin 2 x) dx
cos8 x – cos7 x
18. 1 + 2cos5 x
dx
(1 + x) 2
9. x(1 + x 2 ) dx
(tan
3
19. x – x tan 2 x) dx
2sin( x 2 + 1) – sin 2( x 2 + 1)
10.
sec2 x
1 + tan x dx
20. x. 2sin( x 2 + 1) + sin 2( x 2 + 1)
dx
1
dx dx
1. 7 − x2
= 4. 4 x2 + 9
x 1 −1 2 x
(1) − sin −1 +c (1) tan + c
7 4 3
x 1 −1 2 x
(2) cos−1 +c (2) tan + c
7 8 3
x 1 2x
(3) − cos−1 +c (3) tan −1 + c
7 12 3
x 1 −1 2 x
(4) sin −1 +c (4) tan + c
7 6 3
e x dx dx 1
2. 5. cosx − sinx = log f ( x ) + c , then f ( x )
e2 x − 1 2
(1) (
ln ex + e2 x − 1 + c ) equals:
(1) tan
x
(2) cot
x
(2) (
–ln ex + e2 x − 1 + c ) 2
x 3
(3) tan +
2
x 3
(4) tan +
(3) (
ln ex − e2 x − 1 + c ) 2 8 2 5
(4) ln ( e + x
e2 x + 1) + c 6. If f(0) = f' (0) = 0 and f" (x) = tan2x then f(x) is
1 1
(1) log sec x − x2 (2) logcos x + x2
2 2
e x dx
4 + e2 x
1
3. (3) log sec x + x2 (4) x4 + x3 + 1
2
1 −1 e x
(1) − tan + c
2 x2 tan −1 x3
1 + x6 dx =
2 7.
1 −1 e x
tan + c
( )
1 2
(2)
2 4 (1) tan −1 x3 + c
6
1 −1 e x ( )
1 2
(3) tan + c (2) − tan −1 x3 + c
2 2 6
( )
1 2
tan −1 x3 + c
1 −1 e x (3)
4
(4) tan + c
6
( )
2 1 2
(4) tan −1 x3 + c
3
2
dx cos ec(tan −1 x)
8. 1 − 4 x2
= k1 f ( x) + k2 where 𝑘1 is constant and 12. 1 + x2 dx
k 2 is an integration constant then 2k1 = (1) ln(1 − x) + c
(1) 1 (2) 2 1
(2) ln 1 + x − + c
(3) 3 (4) 4 x
1 + x2 − 1
9. cosec xdx =
4
(3) ln +c
x
cot 3 x
(1) cot x − +c (4) ln x + c
3
cot 3 x
(2) − cot x − +c e x dx
3 13. 5 − 4e x + e2 x
3
( )
cot x
(3) cot x + +c
3 (1) ln e x − 2 + 5 − 4e x + e2 x + c
3
( )
cot x
(4) − cot x + +c
3 (2) − ln e x − 2 + 5 − 4e x + e2 x + c
10. tan
4
x dx = (
(3) ln e x + 2 + 5 − 4e x + e2 x + c )
ln ( e − 2 − )+c
tan3 x
(1) − − tan x + x + c (4) x
5 − 4ex + e2 x
3
tan3 x
(2) − tan x − x + c
3 dx
tan3 x
14. 1 + ex
(3) − tan x + x + c
3
(1) − log | e(−x) + 1| +c
3
tan x
(4) + tan x + x + c (2) log | e(− x) + 1| +c
3
(3) − log | e(−x) −1| +c
sin 2 x dx
11. 9 − sin 4 x
= (4) log | e( x) + 1| +c
sin 2 x
(1) sin −1 +c
3
15. 10sin 2x cos 2x cos2 2 x − 5dx
5
−1 sin x2 (1) (cos2 2 x − 5)3/2 + c
(2) − sin +c 3
3
5
sin 2 x (2) (cos2 2 x + 5)3/2 + c
(3) sin −1 +c 3
6
6
(3) − (cos2 2 x − 5)3/2 + c
sin x 2 3
(4) sin −1 +c
4
5
(4) − (cos2 2 x − 5)3/2 + c
3
3
(2 x + 1) 4x + 3
16. ( x2 + 4 x + 1)3/2 dx 19. 3x2 + 3x + 1 dx
x3 1 2
(1) +C (1) ln(3x2 + 3x + 1) + tan −1(2 3x + 3) + C
( x 2 + 4 x + 1)1/2 3 3
2 2
(2)
x
+C (2) ln(3x2 + 3x + 1) + tan −1(2 3x + 3) + C
3 3
( x + 4 x + 1)1/2
2
2 1
x2 (3) ln(3x2 + 3x + 1) + tan −1(2 3x + 3) + C
(3) +C 3 3
( x 2 + 4 x + 1)1/2
2 2
1 (4) ln(3x2 + 3x + 1) − tan−1(2 3x + 3) + C
(4) +C 3 3
( x + 4 x + 1)1/2
2
dx
(sin x )
−1 3 20. 2 + sin2 x
17. 1 − x2
dx
1 3 tan x
(1) tan −1 +c
6 2
xdx 3 tan x
18. x4 + x2 + 1 (2)
1
tan −1 +c
3 2
2 1
(1) tan −1 x2 + + C 1 3 tan x
3 2 (3) − tan −1 +c
6 2
1 2 x2 − 1
(2) tan −1 +C 3 tan x
3 (4) −
1
tan −1
3 +c
3 2
1 2 x2 + 1
(3) tan −1 +C
3
3
1 1
(4) − tan −1 x2 + + C
3 2
1
1.
dx
= 4. cot d
x − 2x + 3
2
log x − 1 − x2 − 2x + 3 + c 2e x + 3e− x
( ) + c
(1) 1 −x
4e x + 7e− x dx = 14 ux + v ln | 4e + 7e |
x
5. If
(2) − log x − 1 + x2 − 2x + 3 + c
Then u + v is equal to:
(3) log x − 1 + x2 − 2x + 3 + c
x2 + 1
(4) log x + 1 + x2 − 2x + 3 + c
6. x4 − x2 + 1 dx is equal to
x2 − 1
tan −1 +c
(1)
x
5x + 4
2. x + 2x + 5
2
dx
x2 + 1
tan −1 +c
(2)
2 x
(1) –5. x2 + 2x + 5
x2 − 1
− tan −1 +c
x
(3)
− ln x + 1 + x + 2x + 5 + c
2
5. x2 + 2 x + 5 x2 − 1
(2) tan −1 +c
(4)
2 x
− ln x + 1 − x2 + 2x + 5 + c
(3) 5. x2 + 2 x + 5 x2 + 4 1 −1 x2 − 4
7. x4 + 16 k tan kx + c
dx =
− ln x + 1 + x2 + 2x + 5 + c
(1) 2 (2) 4 2
(4) 5. x + 2 x + 5
2
(3) 2 2 (4) 2
+ ln x + 1 + x + 2x + 5 + c
2
e3x + e x
8. e4x − e2x + 1 dx =
cos d
3. If 5 + 7sin − 2cos2 d = Alog B() + c , then (1)
1
log(e4 x − e2 x + 1) + c
4
B()
can be: (2) tan−1(ex − e− x ) + c
A
2sin + 1 2sin + 1 (3) tan−1(ex + e− x ) + c
(1) (2)
5(sin + 3) sin + 3 (4) tan−1(e− x − ex ) + c
5(2sin + 1) 5sin
(3) (4)
sin + 3 2sin + 1
2
1
x sin x
3. 4 x cos(2 3x)dx (4) log 1 x2 c
2
1 x
4x 4
(1) sin(2 3x) cos(2 3x) c
3 9 7. x2x dx
4x 4
(2) sin(2 3x) cos(2 3x) c
3 9
8. The value of is ex ( x5 5x4 1)dx
4x 4
(3) sin(2 3x) cos(2 3x) c
3 9 (1) ex . x5 + C (2) ex . x5 + ex + C
4x 4
(4) sin(2 3x) cos(2 3x) c (3) ex + 1 .x5 + C (4) 5x4 . ex + C
3 9
4.
2
log x dx equals 9. e x (tan x logsec x)dx
ex 18. If x 2e 2x
dx e 2x
(ax2 + bx + c) + d, then the
12. 1 x ln x dx
x value of |a/bc| is
(1) 1 (2) 2
2 x
x e (3) 3 (4) 4
13. 2
dx
x 2
1 sin x x /2
19. e dx, x 0,
2
1 cos x 2
1 x
x
14. The value of e dx is x /2 x
1 x2 (1) e sin C
2
1 x 1 x x /2 x
(1) e x C (2) ex C (2) e sec
C
2
1 x2 1 x2
x
(3) e x/2 sin C
ex 2
(3) C (4) e (1 – x) + C
x
1 x2 (4) e x /2 cos
x
C
2
1 sin x
15. If ex dx f(x) + constant, then f(x) is 20. e3x sin 2 xdx equals
1 cos x
equal to e3 x
(1) (3 cos2x + 2sin2x) + C
x x 13
(1) e x cot C (2) e x
cot C
2 2 e3 x
(2) (3 sin2x – 2cos2x) + C
13
x x
(3) e x cot C (4) e x
cot C e3 x
2 2 (3) (–3sin2x – 2cos2x) + C
13
e3 x
x
1 (4) (3sin2x + 2cos2x) + C
1 x 13
16. 1 x e dx is equal to
x
1 1
x x
(1) ( x 1)e x C (2) xe x C
1 1
x x
(3) ( x 1)e x C (4) xe x C
2
x x 2 f ( x)e x
17. If e dx C the the sum f(x)
x 4 x 4
1
+ f2(x) ….. at, x is
2
1 1
(1) (2)
2 4
3
(3) 1 (4)
2
1
f ( x)
3. Evaluate (2 x − 4) 4 + 3 x − x 2 dx 7. If x3 − 1 dx , where f(x) is a polynomial of degree
2 in x such that f(0) = f(1) = 3f(2) = – 3 and
e f ( x)
3x
4. sin 2 xdx equals
x3 − 1 dx = − log | x − 1| + log | x + x + 1|
2
e3x m 2x + 1
(1) (3 cos2x + 2sin2x) + C + tan −1 + C. Then (2m + n) is
13 n 3
e3x (1) 3 (2) 5
(2) (3 sin2x – 2cos2x) + C
13 (3) 7 (4) 9
e3x
(3) (–3sin2x – 2cos2x) + C 2 x2 + 3 x −1
13 8. If ( x 2 − 1)( x 2 + 4)dx = a ln x + 1 +
e3x
(4) (3sin2x + 2cos2x) + C x
13 b tan −1 + C , then values of a and b are
2
respectively.
x2 + 1 1 1
5. ( x − 1)2 ( x + 3) dx equals (1) ,
2 3
(2) 1, 1
1 1 1 1
1 1 (3) , (4) ,
(1) e x −1 + . + tan −1 ( x + 3) + log x + C 2 2 3 3
4 ( x − 1)
3 1 1 1
x2 +
2 1
log | x − 1| − +C
e
(2)
2 x − + 1 dx is
x
8 2 ( x − 1) 9. The value of integral
x
3 1 1 5 equal to (where C is the constant of integration)
(3) log | x − 1| − . + log | x + 3 | +C
8 2 ( x − 1) 8 x2 +
1 1
x 2 + +C
(1) e x +C (2) x 2
e 4
1 −1
(4) tan ( x + 1) + log}x + 3 | +C 2 1
x + 2
3 (3) xe x +C (4) x.e x + C
2
tan
10. The value of integral 11. e sec – sin ) d equals
x 2 tan x 2
e 1 + tan x + cot x + 4 dx is equal to: (1) –etan sin + C
(2) etan sin + C
(1) e x tan − x + C (3) etan sec + C
4
(4) etan cos + C
(2) e x tan x − + C
4 x
3 12. The graph of the antidervative of f(x) = xe 2 pass
(3) e x tan − x + C
4 through (0, 3) then the value of g(2) – f(0) is
3 (1) 1 (2) 3
(4) e x tan x − + C (3) 5 (4) 7
4
1
dx 2 x12 5 x9
1. x5 x 6. ( x5 x3 1)3 dx
1 1
(1) log 1 4 c x5 x10
4 x (1) c (2) c
1 1 ( x5 x3 1)2 2( x5 x3 1)2
(2) log 1 4 c
2 x x5 x10
(3) c (4) c
1 1 2( x5 x3 1) 2
2( x5 x3 1)2
(3) log 1 4 c
2 x
1 1
(4) log 1 4 c dx 1 xq
4 x 7. Let x2008 x ln
p 1 x r
C , where p, q, r
n
dx 1 N and need not be distinct then the value of (p + q
2. 1 m c . Find mn.
x2 1 x
5 4/5 x + r) equals:
(1) 6024 (2) 6022
(3) 6021 (4) 6020
dx
3. The value of
3/4
x2 x4 1
5 x 4 4 x5
8. dx
x
1/4
x4 1 2
x 1 x 1
1/4 5
(1) 4 c (2) 4
c
x
x5
x 1
1/4 (1) x5 + x + 1 + C (2) C
1/4 4
(3) x 4 1 c (4) 4 c x5 x 2 1
x
x5
(3) x–4 + x– 5 + C (4) C
dx x5 x 1
4. ( x 2)7/8 ( x 3)9/8
8 x 2
1/8
5 x 2
1/8 ( x x3 )1/3
(1) c (2) c 9. x4
dx is equals to
5 x 3 8 x 3
4/3
5 x 3
1/8
8 x 3
1/8 3 1
(3) c (4) c (1) 1 C
8 x 2 5 x 2 8 x 2
3
4/3
1
x 7 (2) 1 2 C
5. dx 8
x
1 x2
5
4/3
1 1
1 1 1 1 (3) 1 2 C
(1) 2 c (2) 2 c 8 x
4 ( x 1)4 6 ( x 1)4
4/3
1 1 1 1 1 1
(3) 2 c (4) 2 c (4) 1 C
8 ( x 1) 4 12 ( x 1)4 8 x 2
2
1 x2 dx x 2009
10. 1 x2 14. If the primitive of the function
(1 x 2 )1006
w.r.t x
1 x2 x4
1 m
(1) cos ec 1 x c 1 x2 n
x is equal to
C then is equal to____
n 1 x
2 m
1
(2) cosec 1 x c (1) 1 (2) 2
x
(3) 3 (4) 4
1
(3) cos1 x c
x dx
1
15.
(4) cos 1 x c ( x 1) x 2 1
x
x 1 x 1
(1) c (2) c
x 1 x 1
x2 1 x 1 x 1
11. 4 2 dx is equal to: (3) c (4) c
x 3x 1 tan x x
1 1 x 1 x 1
1
(1) tan 1 x c dx
16.
x
1 x2 1 x2
1
(2) cot 1 x c 1 x2
x 1
(1) tan 1 c
1 4 2x
(3) log x c
x 1 x2
1
1 (2) tan 1 c
(4) log tan 1 x c 2
2x
x
1 1 x2
(3) tan 1 c
x 1
x(1 xe x )2 dx equals
2 2x
12.
1 1 x2
1
C (4) tan 1 c
(1) 4 2x
1 xe x
xe x
(2) log
1 xe x C x2
17. is equal to
1 xe x
x 2
3x 3 x 1
(3) log x
C
1 xe x
1 xe (1)
1
tan 1
x
3 3 x 1
(4) x(e x 1) C
2 x
7 4 1/2 (2) tan 1
13. x (1 x ) dx is equal to. 3 3 x 1
x 4 1(2 x 4 1) x4 1
(1) 6
c (2) 6
c (3)
2
tan 1
x
6x 6x 3 x 1
2 x4 1
(3) c (4) None of these (4) None of these
6 x6
1
x
2
0 7. cos x3dx
7 7 0
(1) ln (2) 4ln
3 3 (1) 3 sin1 (2)
sin1
1 3
(3) ln(7 / 3) (4) ln (3/7)
4 1
(3) sin (4) None of these
3
1 x4 +1
3. The value of dx is /4
0 x2 +1 sin 2 x dx
1 1
8. sin 4 x + cos4 x
dx
(1) (3 − 4) (2) (3 + 4) 0
6 6
1 1 (1) (2)
(3) (3 + 4) (4) (3 − 4) 4 2
6 6 (3) (4) 2
4
dx
4. dx
/2 sinx − cosx
8x − x2
0
9. 0 (1 + sinxcosx ) dx
(1) 0 (2)
4 (1) 0 (2) 1
(3) –1 (4) None of these
(3) (4)
2
sin −1 x
1
ln 2
x e− x dx =
10. dx
5. 0
x(1 − x)
0
−1 1 e (1) (2)
(1) ln(2e) (2) ln 4 2
2 2 2
2 2
1 1 (3) (4)
(3) ln(2 / e) (4) ln(2e) 4 16
2 2
2
4 a
1. The value of x − 1 dx is: 7. x x dx =
0 −a
5 a a2
(1) (2) 5 (1) (2)
4 3 3
(3) 4 (4) 1 a2
(3) (4) 0
2
2
2. (sin x+ | sin x |)dx is equal to: /2
2 − sin
0 8. The value of log d is
2 + sin
(1) 0 (2) 4 −/2
(3) 8 (4) 1 (1) 0 (2) 1
(3) 2 (4) None of these
3. If f (x) = x – [x], for every real x, where [x] is the
greatest integer less than or equal to x. then, /4
1 9. The value of log ( sec − tan ) d is:
−1 f ( x) dx is equal to: − /4
(1) 1 (2) 2
(3) 3 (4) 0 (1) 0 (2)
4
x x (3) (4)
4. 1 + 4sin 2
2
− 4sin dx is equal to:
2
2
0
2 /2
(1) − 4 (2)
3
−4−4 3
10. The value of ( x3 + xcosx + tan5 x + 1) dx is
−/2
(3) 4 3 − 4 (4) 4 3 − 4 − (1) 0 (2) 2
3
2
(3) (4) None of these
5. The value of 0 [ x2 ] dx , where [.] is the greatest
a
( sin )
integer function, is:
11. If 5
x + tan3 x + cosx dx , where , ,
(1) 2 − 2 (2) 2 + 2 −a
(3) 2 −1 (4) 2 −2 are constants, then the value depends on
(1) ,a (2) , , ,a
2 x 2 + 1, x 1 2 (3) , ,a (4)
6. If f ( x) = 3 , then f ( x) dx is
4 x − 1, x 1 0 1
ln
x2
f ( f ( x) + f (− x))
3
equal to:
(1) 47/3 (2) 50/3
12. g (3x 2 )( g ( x) − g (− x))
dx = .........
ln
(3) 1/3 (4) 47/2
Where 1 .
(1) 0 (2) 1
(3) (4) 1 /
2
/3 1
1 x 7 − 3 x5 + 7 x3 − x
13. tan x dx +
−1
tan xdx = a − b + ln 2 14. The value of the integral −1 cos2 x
dx
/6 1/ 3
is:
then a / b is
3 3 (1) (2) 0
(1) (2) 2
2 2
(3) (4) 2
3 3 4
(3) 3 3 (4)
2
1
/2
7. Value of the integral I = 10 x(1 − x)n dx =
1. sin 2 x dx
1 1 1
0 (1) (2) −
n+2 n +1 n + 2
(1) (2)
4 2 1 1 1
(3) + (4)
(3) (4) 0 n +1 n + 2 n +1
/2 a + b sin x 8. If [x] stands for the greatest integer function, then
2. 0 log dx =
a + b cos x 10 x2 dx
(1) 0 (2) / 4 x2 − 28x + 196 + x2 is
4
(3) / 2 (4) log / 2
(1) 1 (2) 2
7 x (3) 3 (4) 4
3. 2 x + 9− x
dx is equal to
9. If f and g are continuous function satisfying
1 3
(1) (2) f ( x ) = f ( a − x ) and g ( x ) + g ( a − x ) = 2 then
2 2
0 f ( x ) g ( x ) dx =
a
5
(3) (4) 0
2
0 f ( x ) dx
a
(1) 0 (2)
ecosx
4. 0 ecosx + e−cosx dx is equal to (3) a f ( x ) dx
0
(4) 1
(1) (2)
2 3 dx
(4) − −
(1 + ex )(1 + x2 )
(3) 0 10.
3
/2 sin 2 x
5. 0 sinx + cosx
dx = (1) (2)
3
(1) 2log ( 2 +1 ) (2)
1
2
log ( )
2 +1 (3)
6
(4)
2
(1) 0 f (sinx ) dx (2) f ( sinx ) dx
0
(3)
3
(4) None of these
f ( sinx ) dx (4) None of these
2 0
(3)
1
sin8 xlog cotx ( ) dx = /4
1. 2
0
7. log ( cos x + sin )dx =
cos2 x
−/4
(1) 0 (2) 1
(1) π log 2 (2) − π log 2
1
(3) (4)
2 4 (3) − log 2 (4) π2 log 2
4
5
−2 cot ( tan x ) dx is equal to
−1 /2
2. The value of 8. sin 2 x cos2 x(sin x + cos x) dx =
− /2
7 7 2 2 4
(1) (2) (1) (2)
2 2 15 15
3
(3) (4) 2 6 8
2 (3) (4)
15 15
dx
3. 0 1 + 2sin 2 x is equal to
9.
b
If f(a + b – x) = f(x), then xf ( x)dx equal to
a
(1) (2) b
3 3 3 a+b
2 a
(1) f (b − x)dx
(3) (4) 0
b
3 a+b
2 a
(2) f ( x)dx
4. Prove that b
(3) b − a f ( x)dx
2 2
− 2
log ( sin x ) dx = log ( cos x ) dx =
a
log 2
b
2 a+b
2 a
0 0 (4) f (a + b + x)dx
/2
| x | dx
5. has the value /2n dx
−/2 8cos 2 x + 1
2
10. The value of 0 1 + tan n (nx)
is equal to, (n N)
2
2
(1) (2)
6 12 (1) 0 (2)
4n
2 2
(3) (4)
24 18 (3) (4)
2n 2
ln x
1 + x2 dx
51 dx
6. 11. Given f(x)(f(– x) = 9 then −51 3 + f ( x) has the value
0
(1) π (2) 2 π equal to
(3) 1 (4) 0 (1) 17 (2) 34
(3) 102 (4) 0
2
100
12. The value of
0
3 log (1 + )
3 tan x dx is equal to 14. If 0 (1 − cos2x ) dx then the value of I is
(1) 100 2 (2) 200 2
(1) log2 (2) log 2
2 (3) 50 2 (4) 25 2
(3) log 2 (4) log 2
3 4 2
15. The solution of the integral 0 sin 4 x·cos6 x dx, is
13. The value of definite integral 3
2
(1)
x 128
dx,
− 1 + sin x + 1 + sin x
2
(2)
128
32 (2)
3
(1) 5
2 3 (3)
128
2 (4)
3 3
(3) 7
3 6 (4)
128
1
2 5. The value of
ex sec x sin x
1. f ( x ) = cos x tan 2 x x then value of lim
(12 + 22 + ...n2 )(13 + 23 + .... + n3 )(14 + 24 + .... + n4 )
(15 + 25 + .....n5 )
n→ 2
3 4 x + tan x
is equals to:
/2
4n
n 6. The value of
2. lim is equal to
( )
1/ n
n→ r =1 r 3 r +4 n
2
1 22 n 2
lim 1 + 2 1 + 2 ....1 + 2 is
1 1
n→
n n n
(1) (2)
35 14 e/2
1 1 (1) 2
(2) 2e2 e/2
(3) (4) 2e
10 5
2
(3) e/ 2 (4) 0
e2
n n
+ 1
( n2 + i 2 ) n , then ln L is equal to :
3. Let Sn = 2n
( n + 1)( n + 2) ( n + 2)( n + 4) 7. If L = lim
1
n→ n 4
i =1
n 1
+ + …… + then lim Sn has
(n + 3)(n + 6) 6 n' n→ (1) ln 2 + −2
2
the value of equal to:
(2) 2 tan–1 2 – 4 + 2 ln 5
3 9
(1) ln (2) ln (3) 2 tan– 1 2 + 4 + 2 ln 5
2 2
(4) 2 ln 5 – 4 – 2 tan–1 2
3 1 3
(3) 2ln (4) ln
2 2 2 1
2 3 n
1
lim (1 + n ) n 1 + 1 + ....2 is equal to
4. Let > 1 and > –1, then the value of n n n n
8.
n→ 2 3
1 + 2 + .... + n
lim n− is :
n→ 1 + 2 + ... + n
1
+1 +1 (1) e (2) e2
(1) (2)
+1 +1 1 −1
1 1 1 1 3 n n n n
10. lim + + + ... + 13. lim 1 + + + + ... +
n→ 1 + n 2 + n 3 + n 5n n→ n n+3 n+6 n+9 n + 3(n − 1)
1 3 2 n
11. lim sin + 2sin3 + ....... + n sin 3
n→ n
2 4n 4n 4n
n −1
1
12. lim
n→
r =0 n − r2
2
1
cos−1 ( t ) dt
cos x x4
2
2 t f (t )dt =3
3
1. The value of lim 1 8. If f (x) is a continuous function and
x→0 2 x − sin 2 x x
1 sin 2x, then f (1) is equal to
(1) 0 (2)
2 (1) 1 (2) –1
(3) −
1
(4)
2 (3) 3 (4) –
2 3
x y
dy
x 9. If (3 − x sin 2 t )dt + cos t dt = 0 then,
The points of extremum of ( x ) = e−t (1 − t 2 ) dt dx ( ,)
2
/2
2. 0
2
1
are: is equal to
(1) x = 1, −1 (1) – 3
(2) x = −1, 2 (2) 0
(3) x = 2, 1 (3) 3
(4) x = −2, 1 (4) None of these
x2
1
dt t 2 f (t ) dt = 1 − sin x , x 0,
3. If f ( x) = 1+ t
, x > 0 find f(9) 10. If
sin x
2
then
2
1
f equal to
t 3
x sin 2
4. Find lim
f '( x)
where f ( x) = 2 dt 1
x →0 x t (1) 3 (2)
0 3
1
e
(3) (4) 3
1 1 3
5. Find sin x − dx
1/ e
x x
2
11. The solution of the integral 0 sin 4 x·cos6 x dx, is
6. If I n = x n sin xdx find I5 + 20 I3. 3
(1) (2)
0 128 128
5 7
x (3) (4)
ln t 128 128
7. Let f(x) = 1 + t dt , for x > 0, then the value of
1
If F(x) = 12
x
4 {4t − 2 F '(t )}dt , then F(4) equals
2
f(e) + f 1 is
12.
x
e
(1) 32/9
1
(1) 1 (2) (2) 64
2
(3) 64/9
1
(3) (4) None of these (4) None of these
4
2
x t2 1 + u4
13. If F(x) = 1 f (t )dt , where f(t) = 1 u
du,
p f ( x) = 0 tf (t ) dt
x
. If F(x2) = x4 + x5, then
12
f (r 2 ) is equal to
r =1
(1) 216 (2) 219
(3) 222 (4) 225