0% found this document useful (0 votes)
106 views25 pages

Integration DPP

The document contains a series of indefinite integration problems designed for Lakshya JEE 2.0 (2024) preparation. It includes various integration exercises with multiple-choice answers for each problem. The problems cover a range of functions and integration techniques suitable for advanced mathematics students.

Uploaded by

Nitesh Tarkar
Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content, claim it here.
Available Formats
Download as PDF, TXT or read online on Scribd
0% found this document useful (0 votes)
106 views25 pages

Integration DPP

The document contains a series of indefinite integration problems designed for Lakshya JEE 2.0 (2024) preparation. It includes various integration exercises with multiple-choice answers for each problem. The problems cover a range of functions and integration techniques suitable for advanced mathematics students.

Uploaded by

Nitesh Tarkar
Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content, claim it here.
Available Formats
Download as PDF, TXT or read online on Scribd
You are on page 1/ 25

1

Lakshya JEE 2.0 (2024)


Indefinite Integration DPP-01

1 − tan 2 x x4 + x2 + 1
1.  1 + tan 2 x dx 8.  x2 − x + 1
dx is equal to

x3 x 2
dx 1) − + x+C
2.  1 + cos x 3 2
x3 x 2
(2) + + x+C
3 2
dx
3.  sin 2 x cos 2 x (3)
x3 x 2
− − x+C
3 2

x3 x3 x 2
(4) + − x+C
4.  x + 1 dx 3 2

2  e x dx =
x
x4 + x2 + 1 9.

( )
5. dx
2 1 + x2 (2e) x e2
(1) +c (2) +c
ln ( 2e ) ln ( 2e )

x 4 + 3x 2 + 1 (2e) x
6.  x
dx equals (3)
ln2 x
+c (4) None of these

7 3 1
2 2 −
(1) x + 2x 2 + x 2 + C 2 x +1 − 5 x −1
2  ax 1 bx
7
7 3
10.  10 x dx =

ln a 5 ln b
+ c , where c is an
2 2 2 2
(2) x + x + x +C integration constant then 10ab =
9 3 (1) –1 (2) 0
5 3 1
2 2 3 2 (3) 1 (4) 2
(3) x + x + 2x 2 + C
5 2
9 5 1 ( x 2 + sin 2 x)sec2 x
(4)
2 2 6 2
x + x + 2x 2 + C 11.  1 + x2
dx =
9 5
(1) tan x + tan −1 x + c
2 + 3x 2 (2) tan −1 x − tan x + c
7.  x2 (1 + x2 ) dx =
(3) tan x − tan −1 x + c
(1) tan −1 x +
2
+c (4) c − tanx − tan −1x
x
2 sin2 x + sin5 x − sin3 x
− tan −1 x + c
(2)
x 12.  cosx + 1 − 2sin 2 2 x
dx =
1
(3) tan −1 x − + c (1) 2cosx + c
x (2) −2sinx + c
2 (3) 2sinx + c
(4) tan −1 x − + c
x (4) −2cosx + c
2

x6 − 1 ( x + 1) ( x 2 – x )
13.  x2 + 1 dx = 15.  x x +x+ x
dx

x5 x3
(1) − − + x − 2 tan −1 x + c
cos 4 x + 1
 cot x – tan x dx
5 3 16.
x5 x3
(2) + + x − 2tan −1 x + c
5 3
17. A function g defined for all positive real numbers,
x5 x3
(3) − + x − 2tan −1 x + c satisfies g(x2) = x3 for all x> 0 and g (1) = 1.
5 3
Compute g (4).
x5 x3
(4) − + x + 2tan −1 x + c
5 3
18.  sin x cos x cos2x cos4x dx
e2 x – 1
14.  ex
dx
1

Lakshya JEE 2.0(2024)


Indefinite Integration DPP-02

2x – 1 sin( nx)
1.  x–2
dx 11.  x
dx

sin 2 x + sin 5 x – sin 3 x x6 – 1


2.  cos x + 1 – 2sin 2 2 x
dx 12.  x 2 + 1 dx

cos4 x – sin 4 x sin 3 x + cos3 x


3.  1 + cos 4 x dx(cos 2 x  0) 13.  dx
sin 2 x cos 2 x

4.  cos x dx x4 + x2 + 1
14.  2(1 + x 2 )
dx

x 21
5.  4cos 2 .cos x.sin x dx

2 15. 1– sin 2 x dx

cos 2 x
6.  cos2 x sin 2 x dx –1  1 + cos x 
16.  tan   dx
 sin x 

 (3sin x cos
2
7. x – sin 3 x) dx
 2  9 x  7 x  
17.  sin  +  – sin 2 
 8 4
+   dx
 8 4 
cos x – sin x
8.  cos x + sin x (2 + 2sin 2 x) dx
cos8 x – cos7 x
18.  1 + 2cos5 x
dx
(1 + x) 2
9.  x(1 + x 2 ) dx
 (tan
3
19. x – x tan 2 x) dx

2sin( x 2 + 1) – sin 2( x 2 + 1)
10.
sec2 x
 1 + tan x dx
20.  x. 2sin( x 2 + 1) + sin 2( x 2 + 1)
dx
1

Lakshya JEE 2.0(2024)


Indefinite Integration DPP-03

dx dx
1.  7 − x2
= 4.  4 x2 + 9
 x  1 −1  2 x 
(1) − sin −1  +c (1) tan   + c
 7 4  3
 x  1 −1  2 x 
(2) cos−1  +c (2) tan   + c
 7 8  3 
 x  1  2x 
(3) − cos−1  +c (3) tan −1   + c
 7 12  3 
 x  1 −1  2 x 
(4) sin −1  +c (4) tan   + c
 7 6  3

e x dx dx 1
2.  5.  cosx − sinx = log f ( x ) + c , then f ( x )
e2 x − 1 2

(1) (
ln ex + e2 x − 1 + c ) equals:

(1) tan
x
(2) cot
x

(2) (
–ln ex + e2 x − 1 + c ) 2
 x 3 
(3) tan  + 
2
 x 3 
(4) tan  + 
(3) (
ln ex − e2 x − 1 + c ) 2 8  2 5 

(4) ln ( e + x
e2 x + 1) + c 6. If f(0) = f' (0) = 0 and f" (x) = tan2x then f(x) is
1 1
(1) log sec x − x2 (2) logcos x + x2
2 2
e x dx
 4 + e2 x
1
3. (3) log sec x + x2 (4) x4 + x3 + 1
2
1 −1  e x 
(1) − tan   + c
 2 x2 tan −1 x3
 1 + x6 dx =
2   7.
1 −1  e x 
tan   + c
( )
1 2
(2)
2  4 (1) tan −1 x3 + c
  6
1 −1  e x  ( )
1 2
(3) tan   + c (2) − tan −1 x3 + c
2  2 6
 
( )
1 2
tan −1 x3 + c
1 −1  e x  (3)
4
(4) tan   + c
6
( )
2   1 2
(4) tan −1 x3 + c
3
2

dx cos ec(tan −1 x)
8.  1 − 4 x2
= k1 f ( x) + k2 where 𝑘1 is constant and 12.  1 + x2 dx
k 2 is an integration constant then 2k1 = (1) ln(1 − x) + c
(1) 1 (2) 2  1
(2) ln 1 + x −  + c
(3) 3 (4) 4  x
 1 + x2 − 1 
9.  cosec xdx =
4
(3) ln  +c
 x 
 
cot 3 x
(1) cot x − +c (4) ln x + c
3
cot 3 x
(2) − cot x − +c e x dx
3 13.  5 − 4e x + e2 x
3

( )
cot x
(3) cot x + +c
3 (1) ln e x − 2 + 5 − 4e x + e2 x + c
3

( )
cot x
(4) − cot x + +c
3 (2) − ln e x − 2 + 5 − 4e x + e2 x + c

10.  tan
4
x dx = (
(3) ln e x + 2 + 5 − 4e x + e2 x + c )
ln ( e − 2 − )+c
tan3 x
(1) − − tan x + x + c (4) x
5 − 4ex + e2 x
3
tan3 x
(2) − tan x − x + c
3 dx
tan3 x
14.  1 + ex
(3) − tan x + x + c
3
(1) − log | e(−x) + 1| +c
3
tan x
(4) + tan x + x + c (2) log | e(− x) + 1| +c
3
(3) − log | e(−x) −1| +c
sin 2 x dx
11.  9 − sin 4 x
= (4) log | e( x) + 1| +c

 sin 2 x 
(1) sin −1  +c
 3 
 
15. 10sin 2x  cos 2x cos2 2 x − 5dx
5
−1  sin x2 (1) (cos2 2 x − 5)3/2 + c
(2) − sin  +c 3
 3 

5
 sin 2 x  (2) (cos2 2 x + 5)3/2 + c
(3) sin −1  +c 3
 6 
  6
(3) − (cos2 2 x − 5)3/2 + c
 sin x  2 3
(4) sin −1  +c
 4 
  5
(4) − (cos2 2 x − 5)3/2 + c
3
3

(2 x + 1) 4x + 3
16.  ( x2 + 4 x + 1)3/2 dx 19.  3x2 + 3x + 1 dx
x3 1 2
(1) +C (1) ln(3x2 + 3x + 1) + tan −1(2 3x + 3) + C
( x 2 + 4 x + 1)1/2 3 3
2 2
(2)
x
+C (2) ln(3x2 + 3x + 1) + tan −1(2 3x + 3) + C
3 3
( x + 4 x + 1)1/2
2
2 1
x2 (3) ln(3x2 + 3x + 1) + tan −1(2 3x + 3) + C
(3) +C 3 3
( x 2 + 4 x + 1)1/2
2 2
1 (4) ln(3x2 + 3x + 1) − tan−1(2 3x + 3) + C
(4) +C 3 3
( x + 4 x + 1)1/2
2

dx
(sin x )
−1 3 20.  2 + sin2 x
17.  1 − x2
dx
1  3 tan x 
(1) tan −1  +c
6  2 
xdx  3 tan x 
18.  x4 + x2 + 1 (2)
1
tan −1  +c
3  2 
2  1
(1) tan −1  x2 +  + C 1  3 tan x 
3  2 (3) − tan −1  +c
6  2 
1  2 x2 − 1 
(2) tan −1  +C  3 tan x 
 3  (4) −
1
tan −1 
3  +c
3  2 
1  2 x2 + 1 
(3) tan −1  +C
 3 
3 
1  1
(4) − tan −1  x2 +  + C
3  2
1

Lakshya JEE 2.0 (2024)


Indefinite Integration DPP-04

1. 
dx
= 4.  cot  d 
x − 2x + 3
2

log x − 1 − x2 − 2x + 3 + c 2e x + 3e− x 
( )  + c
(1) 1 −x
 4e x + 7e− x dx = 14 ux + v ln | 4e + 7e |
x
5. If
(2) − log x − 1 + x2 − 2x + 3 + c
Then u + v is equal to:
(3) log x − 1 + x2 − 2x + 3 + c
x2 + 1
(4) log x + 1 + x2 − 2x + 3 + c
6.  x4 − x2 + 1 dx is equal to
 x2 − 1 
tan −1  +c
(1)
 x 
5x + 4  
2.  x + 2x + 5
2
dx
 x2 + 1 
tan −1  +c
(2)
 2 x 
 
(1) –5. x2 + 2x + 5
 x2 − 1 
− tan −1  +c
 x 
(3)
− ln x + 1 + x + 2x + 5 + c
2
 

5. x2 + 2 x + 5  x2 − 1 
(2) tan −1  +c
(4)
 2 x 
 
− ln x + 1 − x2 + 2x + 5 + c

(3) 5. x2 + 2 x + 5 x2 + 4 1 −1  x2 − 4 
7.  x4 + 16 k tan  kx  + c
dx =
− ln x + 1 + x2 + 2x + 5 + c  
(1) 2 (2) 4 2
(4) 5. x + 2 x + 5
2
(3) 2 2 (4) 2
+ ln x + 1 + x + 2x + 5 + c
2

e3x + e x
8.  e4x − e2x + 1 dx =
cos  d 
3. If  5 + 7sin  − 2cos2  d = Alog B() + c , then (1)
1
log(e4 x − e2 x + 1) + c
4
B()
can be: (2) tan−1(ex − e− x ) + c
A
2sin  + 1 2sin  + 1 (3) tan−1(ex + e− x ) + c
(1) (2)
5(sin  + 3) sin  + 3 (4) tan−1(e− x − ex ) + c
5(2sin  + 1) 5sin 
(3) (4)
sin  + 3 2sin  + 1
2

9. For real numbers , ,  and  is 10. Suppose


 x2 + 1  A= 
dx
and B =  2
dx
( x2 − 1) + tan −1  
 x  dx
x + 6x + 25
2
x − 6x − 27
  x2 + 1   x +3 x −9
( x4 + 3x2 + 1) tan −1   If 12( A + B) =   tan −1   +   ln +C ,
 x   4  x+3
  x2 + 1   then the value of ( + ) is:
=   ln  tan −1 
  x  
   (1) 3
(2) 4
 ( x2 − 1)  −1  x + 1 
2
+ tan   +   tan   + c ,
 x (3) 5
   x 
(4) 6
where c is an arbitrary constant, then the value of
10( +  + ) =
1

Lakshya JEE 2.0 (2024)


Indefinite Integration DPP-05

1. x log x dx is equal to: log x


5. dx
x2
x2 1
(1) (2log x 1) c (1) (1+logx) + C
4 2
x2 (2) x(1 + logx) + C
(2) (2log x 1) c (3) –x(1 + logx) + C
2
1
x2 (4) (1+logx) + C
(3) (2log x 1) c x
4
(4) None of these sin 1 xdx
6.
(1 x 2 )3/2
2
2. 2 x3 e x dx x sin 1
x
(1) log 1 x2 c
2 2 2
(1) x2 e x ex c 1 x
1
2 2 x sin x
(2) x2 e x ex c (2) log 1 x2 c
2 2 1 x2
(3) x2 e x ex c 1
x sin x
2 x 2
x 2 (3) log 1 x2 c
(4) x e e c 1 x 2

1
x sin x
3. 4 x cos(2 3x)dx (4) log 1 x2 c
2
1 x
4x 4
(1) sin(2 3x) cos(2 3x) c
3 9 7. x2x dx
4x 4
(2) sin(2 3x) cos(2 3x) c
3 9
8. The value of is ex ( x5 5x4 1)dx
4x 4
(3) sin(2 3x) cos(2 3x) c
3 9 (1) ex . x5 + C (2) ex . x5 + ex + C
4x 4
(4) sin(2 3x) cos(2 3x) c (3) ex + 1 .x5 + C (4) 5x4 . ex + C
3 9

4.
2
log x dx equals 9. e x (tan x logsec x)dx

(1) x(log x)2 – 2xlogx – 2x + C


(2) x(log x)2 – 2xlogx – x + C 2
(3) x(log x)2 – 2xlogx + 2x + C 10. Evaluate : xe x (sin x2 cos x2 )dx
(4) x(log x)2 – 2xlogx + x + C
11. sin(ln x) cos(ln x) dx
2

ex 18. If x 2e 2x
dx e 2x
(ax2 + bx + c) + d, then the
12. 1 x ln x dx
x value of |a/bc| is
(1) 1 (2) 2
2 x
x e (3) 3 (4) 4
13. 2
dx
x 2
1 sin x x /2
19. e dx, x 0,
2
1 cos x 2
1 x
x
14. The value of e dx is x /2 x
1 x2 (1) e sin C
2
1 x 1 x x /2 x
(1) e x C (2) ex C (2) e sec
C
2
1 x2 1 x2
x
(3) e x/2 sin C
ex 2
(3) C (4) e (1 – x) + C
x
1 x2 (4) e x /2 cos
x
C
2

1 sin x
15. If ex dx f(x) + constant, then f(x) is 20. e3x sin 2 xdx equals
1 cos x
equal to e3 x
(1) (3 cos2x + 2sin2x) + C
x x 13
(1) e x cot C (2) e x
cot C
2 2 e3 x
(2) (3 sin2x – 2cos2x) + C
13
x x
(3) e x cot C (4) e x
cot C e3 x
2 2 (3) (–3sin2x – 2cos2x) + C
13
e3 x
x
1 (4) (3sin2x + 2cos2x) + C
1 x 13
16. 1 x e dx is equal to
x
1 1
x x
(1) ( x 1)e x C (2) xe x C
1 1
x x
(3) ( x 1)e x C (4) xe x C

2
x x 2 f ( x)e x
17. If e dx C the the sum f(x)
x 4 x 4
1
+ f2(x) …..  at, x is
2
1 1
(1) (2)
2 4
3
(3) 1 (4)
2
1

Lakshya JEE 2.0 (2024)


Indefinite Integration DPP-06

1.  sin log x + coslog x dx is equal to


6. If 
2x + 3
dx = − a

 log
 ( x –1) 2 
 2 −
(1) sin(log x) + cos(log x) + C ( x –1)( x 2 + 1)   x +1 
1
(2) x sin(log x) + C tan −1 x + C , x  1 where C is any arbitrary
2
(3) x cos(log x) + C
constant, then the value of ‘a’ is
(4) x tan x + C 5 5
(1) (2) −
4 3
2.  2 x 2 − x + 1 dx (3) −
5
6
(4) −
5
4

f ( x)
3. Evaluate  (2 x − 4) 4 + 3 x − x 2 dx 7. If  x3 − 1 dx , where f(x) is a polynomial of degree
2 in x such that f(0) = f(1) = 3f(2) = – 3 and

e f ( x)
3x
4. sin 2 xdx equals
 x3 − 1 dx = − log | x − 1| + log | x + x + 1|
2

e3x m  2x + 1 
(1) (3 cos2x + 2sin2x) + C + tan −1   + C. Then (2m + n) is
13 n  3 
e3x (1) 3 (2) 5
(2) (3 sin2x – 2cos2x) + C
13 (3) 7 (4) 9

e3x
(3) (–3sin2x – 2cos2x) + C 2 x2 + 3  x −1 
13 8. If  ( x 2 − 1)( x 2 + 4)dx = a ln  x + 1  +
e3x
(4) (3sin2x + 2cos2x) + C x
13 b tan −1 + C , then values of a and b are
2
respectively.
x2 + 1 1 1
5.  ( x − 1)2 ( x + 3) dx equals (1) ,
2 3
(2) 1, 1

1 1 1 1
1 1 (3) , (4) ,
(1) e x −1 + . + tan −1 ( x + 3) + log x + C 2 2 3 3
4 ( x − 1)
3 1 1 1
x2 +
 2 1 
log | x − 1| − +C
e
(2)
 2 x − + 1 dx is
x
8 2 ( x − 1) 9. The value of integral
 x 
3 1 1 5 equal to (where C is the constant of integration)
(3) log | x − 1| − . + log | x + 3 | +C
8 2 ( x − 1) 8 x2 +
1 1
x 2 + +C
(1) e x +C (2) x 2
e 4
1 −1
(4) tan ( x + 1) + log}x + 3 | +C 2 1
x + 2
3 (3) xe x +C (4) x.e x + C
2

tan 
10. The value of integral 11. e sec  – sin ) d equals
x  2 tan x  2  
 e  1 + tan x  + cot  x + 4  dx is equal to: (1) –etan sin + C
(2) etan sin + C
 
(1) e x tan  − x  + C (3) etan sec + C
4 
(4) etan cos + C
 
(2) e x tan  x −  + C
 4 x
 3  12. The graph of the antidervative of f(x) = xe 2 pass
(3) e x tan  − x  + C
 4  through (0, 3) then the value of g(2) – f(0) is
3  (1) 1 (2) 3

(4) e x tan  x −  + C (3) 5 (4) 7
 4 
1

Lakshya JEE 2.0 (2024)


Indefinite Integration DPP-07

dx 2 x12  5 x9
1.  x5  x 6.  ( x5  x3  1)3 dx
1  1 
(1) log 1  4   c  x5 x10
4  x  (1) c (2) c
1  1  ( x5  x3  1)2 2( x5  x3  1)2
(2) log 1  4   c
2  x  x5  x10
(3) c (4) c
1  1  2( x5  x3  1) 2
2( x5  x3  1)2
(3)  log 1  4   c
2  x 
1  1 
(4)  log 1  4   c dx 1  xq 
4  x  7. Let  x2008  x  ln 
p  1  x r
  C , where p, q, r 

n
dx  1  N and need not be distinct then the value of (p + q
2.    1  m   c . Find mn.

x2 1  x 
5 4/5  x  + r) equals:
(1) 6024 (2) 6022
(3) 6021 (4) 6020
dx
3. The value of 
 
3/4
x2 x4  1
5 x 4  4 x5
8.  dx
x 
1/4
 x4  1  2
 x  1  x 1
1/4 5
(1)  4  c (2) 4
c
 x 
 
x5
 x 1
1/4 (1) x5 + x + 1 + C (2) C
 
1/4 4
(3)  x 4  1  c (4)   4  c x5  x 2  1
 x 
 
x5
(3) x–4 + x– 5 + C (4) C
dx x5  x  1
4.  ( x  2)7/8 ( x  3)9/8 
8 x 2
1/8
5 x  2
1/8 ( x  x3 )1/3
(1)    c (2)   c 9.  x4
dx is equals to
5 x 3 8 x 3
4/3
5 x 3
1/8
8 x 3
1/8 3 1 
(3)    c (4)   c (1)   1 C
8 x 2 5 x  2 8 x 2

3 
4/3 
1 
x 7 (2)  1  2  C
5.  dx 8 
 x  
1  x2 
5
4/3
1 1 
1 1 1 1 (3)  1 2  C
(1)  2  c (2)  2 c 8 x 
4 ( x  1)4 6 ( x  1)4
4/3
1 1 1 1 1 1 
(3)  2  c (4)  2 c (4)   1 C
8 ( x  1) 4 12 ( x  1)4 8 x 2

2

1  x2 dx x 2009
10.  1  x2  14. If the primitive of the function
(1  x 2 )1006
w.r.t x
1  x2  x4
 1 m
(1) cos ec 1  x    c 1  x2  n
 x is equal to 
   C then is equal to____
n 1 x 
2 m
 1
(2)  cosec 1  x    c (1) 1 (2) 2
 x
(3) 3 (4) 4
 1
(3) cos1  x    c
 x dx
 1
15. 
(4)  cos 1  x    c ( x  1) x 2  1
 x
x 1 x 1
(1) c (2)  c
x 1 x 1
 x2  1 x 1 x 1
11.  4 2 dx is equal to: (3)  c (4) c
 x  3x  1  tan  x  x 
1  1 x 1 x 1

 1
(1) tan 1  x    c dx
16. 
 x
1  x2  1  x2
 1
(2) cot 1  x    c  1  x2 
 x 1
(1) tan 1  c
 1 4  2x 
(3) log  x    c  
 x  1  x2 
1
  1  (2) tan 1  c
(4) log  tan 1  x     c 2 

2x 

  x 
1  1  x2 
(3) tan 1  c
x 1  
 x(1  xe x )2 dx equals
2 2x
12.  

1  1  x2 
1
C (4) tan 1  c
(1) 4  2x 
1  xe x  
 xe x 
(2) log 
 1  xe x   C x2
  17.  is equal to

1  xe x 
x 2
 3x  3  x 1
(3)  log  x 
C
1  xe x   
 1  xe  (1)
1
tan 1 
x

3  3  x  1 
(4) x(e x  1)  C  

2  x 
7 4 1/2 (2) tan 1  
13. x (1  x ) dx is equal to. 3  3  x  1 
 
x 4  1(2 x 4  1) x4  1  
(1) 6
 c (2) 6
c (3)
2
tan 1  
x
6x 6x 3  x  1 


2 x4  1
(3) c (4) None of these (4) None of these
6 x6
1

Lakshya JEE 2.0 (2024)


Definite Integration DPP-01

p dx  f ( x) = tan x − tan 3 x + tan 5 x −


1. If 0 1 + 4 x 2 = 8 , then the value of 𝑝 is 6. If
/4
with

(1)
1
(2) −
1 0 x
4
, then  f ( x)dx is equal to:
4 2 0
3 1 (1) 1 (2) 0
(3) (4)
2 2 1 1
(3) (4)
4 2
1
1
2.  3 + 4 x dx = 1

x
2
0 7. cos x3dx
7 7 0
(1) ln   (2) 4ln  
 3  3 (1) 3 sin1 (2)
sin1
1 3
(3) ln(7 / 3) (4) ln (3/7)
4 1
(3) sin   (4) None of these
3
1 x4 +1
3. The value of  dx is  /4
0 x2 +1 sin 2 x dx
1 1
8.  sin 4 x + cos4 x
dx
(1) (3 − 4) (2) (3 + 4) 0
6 6  
1 1 (1) (2)
(3) (3 + 4) (4) (3 − 4) 4 2
6 6 (3)  (4) 2

4
dx
4.  dx
 /2 sinx − cosx
8x − x2
0

9. 0 (1 + sinxcosx ) dx
(1) 0 (2)
4 (1) 0 (2) 1
 (3) –1 (4) None of these
(3) (4) 
2
sin −1 x
1
ln 2
x e− x dx =
10.  dx
5.  0
x(1 − x)
0  
−1 1 e (1) (2)
(1) ln(2e) (2) ln   4 2
2 2 2
2 2
1 1 (3) (4)
(3) ln(2 / e) (4) ln(2e) 4 16
2 2
2

11. If f (x) is monotonic differentiable function on [a, 2 dx


b f (b ) 13. The value of 1 x(1 + x4 ) is equal to
b], then  f ( x)dx +  f −1 ( x)dx =
a f (a) 1 17 1 17
(1) log (2) log
(1) bf (a) – af (b) 4 32 4 2
17 1 32
(2) bf (b) – af (a) (3) log (4) log
2 4 17
(3) f (a) + f (b)
(4) Cannot be found 14. If f(x) = x3 + 3x + 4 then the value of
1 4

 f ( x)dx +  f −1 ( x)dx equals:


d  esin x  −1
F ( x) =   ; x  0 .
0
12. Let
dx  x  17
(1) 4 (2)
4
3 sin x 3

4
If e dx = F (k ) − F (1) , then one of the 21 23
1 x (3) (4)
4 4
possible value of k, is
(1) 15 (2) 16
(3) 63 (4) 64
1

Lakshya JEE 2.0 (2024)


Definite Integration DPP-02

4 a
1. The value of  x − 1 dx is: 7.  x x dx =
0 −a
5 a a2
(1) (2) 5 (1) (2)
4 3 3
(3) 4 (4) 1 a2
(3) (4) 0
2
2
2.  (sin x+ | sin x |)dx is equal to: /2
 2 − sin 
0 8. The value of  log   d  is
 2 + sin 
(1) 0 (2) 4 −/2
(3) 8 (4) 1 (1) 0 (2) 1
(3) 2 (4) None of these
3. If f (x) = x – [x], for every real x, where [x] is the
greatest integer less than or equal to x. then, /4
1 9. The value of  log ( sec − tan ) d is:
−1 f ( x) dx is equal to: − /4
(1) 1 (2) 2 
(3) 3 (4) 0 (1) 0 (2)
4
 
x x (3)  (4)
4.  1 + 4sin 2
2
− 4sin dx is equal to:
2
2
0
2 /2
(1)  − 4 (2)
3
−4−4 3
10. The value of  ( x3 + xcosx + tan5 x + 1) dx is
 −/2
(3) 4 3 − 4 (4) 4 3 − 4 − (1) 0 (2) 2
3
2
(3)  (4) None of these
5. The value of 0 [ x2 ] dx , where [.] is the greatest
a

 ( sin )
integer function, is:
11. If 5
x + tan3 x + cosx dx , where , , 
(1) 2 − 2 (2) 2 + 2 −a
(3) 2 −1 (4) 2 −2 are constants, then the value depends on
(1)  ,a (2) , , ,a
2 x 2 + 1, x  1 2 (3) , ,a (4) 
6. If f ( x) =  3 , then  f ( x) dx is
 4 x − 1, x  1 0 1
ln  
 x2 
f   ( f ( x) + f (− x))
  3 
equal to:  
(1) 47/3 (2) 50/3
12.  g (3x 2 )( g ( x) − g (− x))
dx = .........
ln 
(3) 1/3 (4) 47/2
Where   1 .
(1) 0 (2) 1
(3)  (4) 1 / 
2

 /3 1
1 x 7 − 3 x5 + 7 x3 − x
13.  tan x dx + 
−1
tan xdx = a − b + ln 2 14. The value of the integral  −1 cos2 x
dx
 /6 1/ 3
is:
then a / b is

3 3 (1) (2) 0
(1) (2) 2
2 2 
(3) (4) 2
3 3 4
(3) 3 3 (4)
2
1

Lakshya JEE 2.0 (2024)


Definite Integration DPP-03

/2
7. Value of the integral I = 10 x(1 − x)n dx =
1.  sin 2 x dx
1 1 1
0 (1) (2) −
  n+2 n +1 n + 2
(1) (2)
4 2 1 1 1
(3) + (4)
(3)  (4) 0 n +1 n + 2 n +1

/2  a + b sin x  8. If [x] stands for the greatest integer function, then
2. 0 log   dx =
 a + b cos x  10  x2  dx
 
(1) 0 (2)  / 4   x2 − 28x + 196 +  x2  is
4    
(3)  / 2 (4) log / 2
(1) 1 (2) 2
7 x (3) 3 (4) 4
3. 2 x + 9− x
dx is equal to
9. If f and g are continuous function satisfying
1 3
(1) (2) f ( x ) = f ( a − x ) and g ( x ) + g ( a − x ) = 2 then
2 2
 0 f ( x ) g ( x ) dx =
a
5
(3) (4) 0
2
0 f ( x ) dx
a
(1) 0 (2)
 ecosx
4. 0 ecosx + e−cosx dx is equal to (3) a f ( x ) dx
0
(4) 1

(1)  (2)
2 3 dx
(4) − −
(1 + ex )(1 + x2 )
(3) 0 10.
3

/2 sin 2 x 
5. 0 sinx + cosx
dx = (1)  (2)
3
(1) 2log ( 2 +1 ) (2)
1
2
log ( )
2 +1 (3)

6
(4)

2

(3) log ( 2 +1 ) (4)


1
log ( )
2 −1  xdx
2 11.  01 + sinx =
 
6. 0 xf ( sinx ) dx = (1)
6
(2) 

  
(1) 0 f (sinx ) dx (2)  f ( sinx ) dx
0
(3)
3
(4) None of these

 
f ( sinx ) dx (4) None of these
2 0
(3)
1

Lakshya JEE 2.0 (2024)


Definite Integration DPP-04


sin8 xlog cotx ( ) dx = /4
1.  2
0
7.  log ( cos x + sin )dx =
cos2 x
−/4
(1) 0 (2) 1
(1) π log 2 (2) − π log 2
1 
(3) (4) 
2 4 (3) − log 2 (4) π2 log 2
4

5
−2 cot ( tan x ) dx is equal to
−1  /2

2. The value of 8. sin 2 x cos2 x(sin x + cos x) dx =
− /2
7 7 2 2 4
(1) (2) (1) (2)
2 2 15 15
3
(3) (4) 2 6 8
2 (3) (4)
15 15
 dx
3. 0 1 + 2sin 2 x is equal to
9.
b
If f(a + b – x) = f(x), then  xf ( x)dx equal to
  a
(1) (2) b
3 3 3 a+b
2 a
(1) f (b − x)dx

(3) (4) 0
b
3 a+b
2 a
(2) f ( x)dx

4. Prove that b
  (3) b − a  f ( x)dx
2 2
− 2
 log ( sin x ) dx =  log ( cos x ) dx =
a
log 2
b
2 a+b
2 a
0 0 (4) f (a + b + x)dx

/2
| x | dx
5.  has the value /2n dx
−/2 8cos 2 x + 1
2
10. The value of 0 1 + tan n (nx)
is equal to, (n  N)
 2
 2
(1) (2) 
6 12 (1) 0 (2)
4n
2 2
(3) (4)  
24 18 (3) (4)
2n 2

ln x
 1 + x2 dx
51 dx
6. 11. Given f(x)(f(– x) = 9 then −51 3 + f ( x) has the value
0
(1) π (2) 2 π equal to
(3) 1 (4) 0 (1) 17 (2) 34
(3) 102 (4) 0
2

 100
12. The value of 
0
3 log (1 + )
3 tan x dx is equal to 14. If 0 (1 − cos2x ) dx then the value of I is
 (1) 100 2 (2) 200 2
(1)  log2 (2) log 2
2 (3) 50 2 (4) 25 2
 
(3) log 2 (4) log 2
3 4 2
15. The solution of the integral 0 sin 4 x·cos6 x dx, is
13. The value of definite integral 3
 2
(1)
x 128
 dx,

− 1 + sin x + 1 + sin x
2
(2)
128
32 (2) 
3
(1) 5
2 3 (3)
128
2 (4) 
3 3
(3) 7
3 6 (4)
128
1

Lakshya JEE 2.0 (2024)


Definite Integration DPP-05

2 5. The value of
ex sec x sin x
1. f ( x ) = cos x tan 2 x x then value of lim
(12 + 22 + ...n2 )(13 + 23 + .... + n3 )(14 + 24 + .... + n4 )

(15 + 25 + .....n5 )
n→ 2
3 4 x + tan x
is equals to:
/2

 ( x2 + 1)( f ( x) + f ''( x))dx is (1)


4
5
(2)
3
5
−/2
(1) 0 (2) 1 2 1
(3) (4)
(3) –1 (4) 2 5 5

4n
n 6. The value of
2. lim  is equal to
( )
1/ n
n→ r =1 r 3 r +4 n
2
 1   22   n 2  
lim 1 + 2  1 + 2  ....1 + 2   is
1 1
n→ 
 n   n   n  
(1) (2)
35 14 e/2
1 1 (1) 2
(2) 2e2 e/2
(3) (4) 2e
10 5
2
(3) e/ 2 (4) 0
e2
n n
+ 1

 ( n2 + i 2 ) n , then ln L is equal to :
3. Let Sn = 2n
( n + 1)( n + 2) ( n + 2)( n + 4) 7. If L = lim
1
n→ n 4
i =1
n 1
+ + …… + then lim Sn has 
(n + 3)(n + 6) 6 n' n→ (1) ln 2 + −2
2
the value of equal to:
(2) 2 tan–1 2 – 4 + 2 ln 5
3 9
(1) ln (2) ln (3) 2 tan– 1 2 + 4 + 2 ln 5
2 2
(4) 2 ln 5 – 4 – 2 tan–1 2
3 1 3
(3) 2ln (4) ln
2 2 2 1
 2 3 n
1
   
lim (1 + n ) n 1 +  1 +  ....2  is equal to

4. Let  > 1 and  > –1, then the value of n n n n
8.
n→   2  3 
 1 + 2 + .... + n   
lim n−    is :
n→  1 + 2 + ... + n
  1
 +1  +1 (1) e (2) e2
(1) (2)
 +1  +1 1 −1

+2 +2 (3) e4 (4) e2


(3) (4)
+2 +2
Evaluate the following limits
 1 1 1  
9. lim  + + + ... + 
n→  n 2 n2 + n n 2 + 2n n2 + n2 

2

 1 1 1 1 3 n n n n 
10. lim  + + + ... +  13. lim 1 + + + + ... + 
n→ 1 + n 2 + n 3 + n 5n  n→ n  n+3 n+6 n+9 n + 3(n − 1) 

1  3  2 n 
11. lim sin + 2sin3 + ....... + n sin 3 
n→ n 
2 4n 4n 4n 

n −1
1
12. lim
n→

r =0 n − r2
2
1

Lakshya JEE 2.0 (2024)


Definite Integration DPP-06

cos−1 ( t ) dt
cos x x4
2
2 t f (t )dt =3
3
1. The value of lim 1 8. If f (x) is a continuous function and
x→0 2 x − sin 2 x x
1 sin 2x, then f (1) is equal to
(1) 0 (2)
2 (1) 1 (2) –1
(3) −
1
(4)
2 (3) 3 (4) – 
2 3
x y
 dy 
x 9. If  (3 − x sin 2 t )dt +  cos t dt = 0 then,  
The points of extremum of  ( x ) =  e−t (1 − t 2 ) dt  dx ( ,)
2
/2 
2. 0
2
1
are: is equal to
(1) x = 1, −1 (1) – 3
(2) x = −1, 2 (2) 0
(3) x = 2, 1 (3) 3
(4) x = −2, 1 (4) None of these

x2  

1
dt t 2 f (t ) dt = 1 − sin x , x   0, 
3. If f ( x) =  1+ t
, x > 0 find f(9) 10. If
sin x
 2
then
2
 1 
f   equal to
t  3
x sin 2  
4. Find lim
f '( x)
where f ( x) =   2  dt 1
x →0 x t (1) 3 (2)
0 3
1
e
(3) (4) 3
1  1 3
5. Find  sin  x −  dx
1/ e
x  x
2

11. The solution of the integral 0 sin 4 x·cos6 x dx, is
6. If I n =  x n sin xdx find I5 + 20 I3. 3 
(1) (2)
0 128 128
5 7
x (3) (4)
ln t 128 128
7. Let f(x) =  1 + t dt , for x > 0, then the value of
1
If F(x) = 12
x
4 {4t − 2 F '(t )}dt , then F(4) equals
2
f(e) + f  1  is
12.
x
e
(1) 32/9
1
(1) 1 (2) (2) 64
2
(3) 64/9
1
(3) (4) None of these (4) None of these
4
2

x t2 1 + u4
13. If F(x) = 1 f (t )dt , where f(t) = 1 u
du,

then the value of F (2) equals


7 15
(1) (2)
4 17 17

(3) 257 (4) 15 17


68

14. Let f: (0, ) → R be a continuous function such that

p f ( x) = 0 tf (t ) dt
x
. If F(x2) = x4 + x5, then
12
 f (r 2 ) is equal to
r =1
(1) 216 (2) 219
(3) 222 (4) 225

You might also like