Definite Integration
Definite Integration
/2                                                                                                                  2
                                                                                                                                          
                                                                                                                             2                       2
                                                                                                           = ( t e t )12 –                         e t dt    = 2e4 – e – 
Q.1      If I10 =                x10 sin x dx , then I10 + 90 I8 is                                                                       1
                              0
        (A) 10 (/2)6              (B) 10 (/2)9
        (C) 10 (/2)8
                                   (D) 10 (/2)7                                                    Q.6    If f(0) = 1, f(2) = 3 and f (2) = 5 then
                                                                                                               1
Sol.[B] I10 = (– x10 cos x ) 0 / 2 + 10
              / 2                                                                                              xf ' ' (2x ) dx is
          
                              9
                          x       cos x dx                                                                     0
              0
                          /2
                                                                                                           (A) 4                       (B) 6             (C) 8             (D) 2        [D]
         = 10 0                      x 9 cos x dx                                                                                         /2
               9
         = 10 ( x sin x ) 0  9 0
                           / 2
                                                                / 2                
                                                                       x 8 sin x dx 
                                                                                                    Q.7    If           I1         =            cos (sin x )dx ,
                                                                                                                                               0
                                                                                                                                                                                   I2    =
                                                                                   
                                                                                                            /2                                                       /2
         = 10[(/2)9 – 9I8] I10 + 90I8 = 10(/2)9
                                                                                                                
                                                                                                                0
                                                                                                                    sin (cos x )dx and I3 =                            cos x dx
                                                                                                                                                                       0
                                                      /3
                                                                                                           then -
Q.2      If 0 < x < /2, then                          cosec x d(sin x)                       is          (A) I1 > I3 > I2                              (B) I3 > I1 > I2
                                                      /4
                                                                                                           (C) I1 > I2 > I3                              (D) I3 > I2 > I1               [A]
         -
                                                                                                               5
                                                                 1    3
         (A) n 2                                         (B)
                                                                 2
                                                                   n
                                                                      2                             Q.8         ([x ]  [ x ])dx
                                                                                                               2
                                                                                                                                                         =
                  sin 3 / 2 
         (C) n             (D) None of these
                                                                                          [B]             (where [x] is greatest integer function)
                           sin 1 /           2                                                           (A) 3       (B) – 3      (C) 2        (D) – 2 [B]
                                  1                                  1
                                      e x dx                                  x 2 dx                Q.9    The value of
Q.3      Let I1 =                    1 x
                                             and I2 =                 ex     3
                                                                                  (2  x 3 )
                                                                                                ,
                                  0                                  0
         then I1/I2 is-
                                              e                  1                    3                        9  / 4                      5         
         (A) 3e                       (B)                 (C)                 (D)       [A]
                                              3                  3e                   e
                                                                                                                0
                                                                                                               
                                                                                                                    
                                                                                                                (| sin x |  | cos x | )dx  { x} dx 
                                                                                                                                             1
                                                                                                                                                       
                                                                                                                                                       
                                                                                                                                                                       
              1
                             1– x        2       
Q.4      If     1  x 2  x 4  dx = a nb, then                                                     (where [.] denotes greatest integer function and
              0
                                                                                                           {.} represents fractional part function) is-
                                                                  1
         (A) a = 1, b = 9                                 (B) a =   ,b=3
                                                                  2                                        (A) 3                       (B) –4            (C) 2             (D) 4        [C]
                                                                  1                                                          /2                                  1
         (C) a = 2, b = 3                                 (D) a =   ,b=9                  [D]                                        x                                tan 1 x
                                                                  4                                 Q.10   If I1 =           0
                                                                                                                                   sin x
                                                                                                                                         dx and I2 =              
                                                                                                                                                                  0
                                                                                                                                                                         x
                                                                                                                                                                               dx
                                                                 2
                                                                 e
                                                                         x2
Q.5      If the value of the integral                                         dx = , then                 ,
                                                                 1
                                       e4
                                                                                                                        I1
         the value of                     
                                          e
                                              n x dx is                                                   then
                                                                                                                        I2
                                                                                                                           =
                  2                                       2
                                                     
                                      2                                   2
          2           t 2 .e t . dt            =              t ( 2 te t ) dt
                  1                                    1
Corporate Office: CP Tower, Road No.1, IPIA, Kota (Raj.), Ph: 0744-2434159                                                                     DEFINITE INTEGRATION                       1
                       /4                            /2                                                                b c
                               2        1                    x
          I2 =        0
                             sin 2
                                    d =
                                         2            0
                                                            sin x
                                                                  dx =    Sol.     Note                 that               f ( x  c) dx
                                                                                                                          0
                                                                                                                                                                 =
          1                                                                   c
            . I1
          2                                                                   f ( x ) dx
                                                                              b
           I1
             =2
           I2                                                                                       1                                  1
                                                                                                        e x dx                                   x 2 dx
         / 4
                        x        
                                         2
                                                                          Q.13     Let I1 =             x 1
                                                                                                               and I2 =                e      x3
                                                                                                                                                    (2  x 3 )
                                                                                                                                                                 ,
Q.11      
          0
                                  dx =
                 x sin x  cos x 
                                                                                                    0                                  0
                3                           4                                           I1
         (A)                            (B)
                4                           3                                  then        is equal to -
                                                                                            I2
                4                                               4
         (C)                                                (D)                            3                       e                                   1
                4                                               4              (A)                   (B)               (C) 3e                (D)
                                                                                           e                       3                                   3e
                             [C]
                                                                          [C]
                d         1        
Sol.     Since                      =                                                    1
               dx  x sin x  cos x                                                                 x 2 dx
                                                                          Sol.     I2 =   e
                                                                                           0
                                                                                                 x3
                                                                                                        (2  x 3 )
                  x cos x
                                                                                                                              dt
          ( x sin x  cos x ) 2                                                    {let 1 – x3 = t  x2dx =                       }
                                                                                                                               3
         integration by parts,                                                                  0                                          1
                                                                                           1                   dt                   1           et
              x sec x               
                                                  /4
                                                                4
                                                                                   = 
                                                                                           3    e
                                                                                                1
                                                                                                        1 t
                                                                                                               (1  t )
                                                                                                                              =
                                                                                                                                    3e     
                                                                                                                                           0
                                                                                                                                               1 t
                                                                                                                                                    dt
         I=                   tan x                      =
             x sin x  cos x         0                        4
                                                                                           1       I1
                                                                                   I2 =       I1     = 3e
                                                                                           3e      I2
Q.12     Which of the following is not correct ?                                                             /2
                                                                                                                       sin 2 x dx
                 a                                                        Q.14     The value of                        1 ex
                                                                                                                                           is-
         (A)     
                a
                     x . (f (cos x )) 2 .dx = 0                                                               / 2
                                                                                                                                 
                n                                
                                                                                   (A)                                   (B)
                                                                                           8                                      4
                  f (cos                         
                               2
         (B)                       x ) dx = n f (cos 2 x ) dx
                 0                                0                                                                              
                                                                                   (C)                                   (D)                             [B]
                                                                                           6                                      3
         nN
                                                                                          / 2                                /2
                                                                                                    sin 2 x                            sin 2 (  x )
                                                                                                                               
                b c                          c
                                                                          Sol.     I=                               dx =                                 dx
         (C)      f (x  c) dx =  f ( x ) dx
                 0                            b
                                                                                           / 2
                                                                                                    1 e       x
                                                                                                                               / 2
                                                                                                                                         1  ex
                                                                                                        / 2
                               a                                                                                        ex 1
         (D)                        x.f (sin x ) dx                  =
                                                                                   I+I=                 
                                                                                                      / 2
                                                                                                               sin 2 x
                                                                                                                          1 ex
                                                                                                                                       dx
                                   a
               a                                                                                   / 2
                                                                                               1
                                                                                                        sin
                                                                                                                    2
                     f (sin x ) dx [C]                                             I=                                  x dx
          2                                                                                     2
                a                                                                                    / 2
Corporate Office: CP Tower, Road No.1, IPIA, Kota (Raj.), Ph: 0744-2434159                                          DEFINITE INTEGRATION                         2
                      / 2                                                                  f(x) = x2 + x + 1
         or I =           
                          0
                              sin 2 x dx                                                         f '(x) = 2x + 1
                                                                                               1
                                   2n 
                                        1
                                        2
                                                                                              (f ( x ) + f '(x) + )dx = 20
                                                                                              1
Q.15     The value of                                 x 
                                           (sin x )  dx is (where
                                                      2
                                    – 2n
                                                                                       10           1
                                                                                               x x  
         {x} denotes the fractional part of x) -
                                                                                                   2
                                                                             Q.17           xe                   dx is equal to ([x] denotes the
                –2n  1                              n                                –10
         (A)                                      (B)
                      2                                                             integral part of x) -
                ( n  1)                                2 n – 1                      (A) 0                                 (B) 1
         (C)                                      (D)           2
                                                                                    (C) 2                                 (D) 3
                      1                                                                      10             1
               2n                                                                                     x x  
                                                                                              
                      2                                                                                     2
                                    x                                      Sol.[A] I =           x.e                 dx =
Sol.[A] I =
                         (sin x )  dx
                                    2                                                      –10
                – 2n
                 2                                 1/ 2
                               x                                      x
         = 2n        (sin x ) dx +
                               2                         (sin x )
                                                                      2
                                                                        dx
                                                                                       10                            1
                 0                                  0                                                    – x   – x   
                                                                                         (– x ).e                   2
                                                                                                                                   dx
                                                                                       –10
              –2n  1
         =                                                                                      1          1 
                  2                                                                  Now  – x   =  –  x    1 = –
                                                                                                2          2 
             1               0     0       x           x        
                                   0       x 2    2x   x 2 
Q.16     Let 6               2               =                                       1
                                                                                       x  2 
             
             5               4     3
                                             1  5x  x 2  3                       
                                                                                                              tan
                                                                                                                       1
                                                                             Q.18     The value of                                 x  1 dx is
        1       0            0     x          x                                                        1
                             0     x 2               2  
Sol.[B] 6       2                    =  2 x   x                                     16                                        4
                                                                                     (A)        + 2 3                      (B)           – 2 3
        5       4            3
                                     1  5x  x 2  3                                3                                         3
                 x                x                                                   4                         16
                                                                                      (C)    + 2 3             (D)      – 2 3
            6 x  2 x 2   2x   x 2                                                 3                           3
         =                  =                                            Sol.[D] Integrating by parts, the given integral is equal to
           5x  4 x 2  3 5x  x 2  3
                                                                                                                            16
                                                                                                                                    x             1
                                                                                                                               
                                                                                                                   16
               f(y) = f(1) + y2 – 1 + y – 1 = y2 + y + 1                             x tan   –1          x 1          
                                                                                                                   1
                                                                                                                                        x 4 x         x 1
                                                   {f(1) = 3}                                                                 1
                                                                                      dx
Corporate Office: CP Tower, Road No.1, IPIA, Kota (Raj.), Ph: 0744-2434159                                         DEFINITE INTEGRATION                      3
                                    16                                                                  3                        9
                   16     1                    dx                                                          x  2x 2          x
         =
                    3
                       –
                          4         
                                    1           x 1
                                                                                                        2                        2
                                                                                                                                  2
                                                                                                                                             0
                                                                                           (x) =               0            3             0
                                        3                                                                                         3
                   16     1                 4 t (1  t 2 )                                                     3              2             6
         =
                    3
                       –
                          4         0
                                                   t
                                                           dt (   x =1+
         t2)                                                                                            3                        9
                                                                                                           x  2x 2         x         0
         =
                   16
                    3
                       –          3 3 =
                                           16
                                            3
                                                
                                              –2                     3
                                                                                                        2
                                                                                                                               11
                                                                                                                                 2
                                                                                           (x) =               0                      0
                                                                                                                                3
                                                                                                               3              2        6
Q.19     The length of perpendicular from the foci S and
                                    x2    y2                                                                 11  3
         S' on any tangent to ellipse  +      =1 are                                                                       2 
                                     4     9                                               (x) = 6             x  2x  
         'a' and ‘c’ respectively then the value of
                                                                                                             3 2           
                                                                                            1                                                        1
          ac                                                                                              66  3  x 2 2x 3  
              {2x}dx is equal to                                                              (x ) =        x
                                                                                                         3  2    2
                                                                                                                            
                                                                                                                         3  
                                                                                                                               0
                                                                                            0
          ac
                   3x  6 x 2                        3x  11      9                        h(x) dx =
                                                                                           (A) 5/4   (B) 3/4                 (C) 1               (D) 0
               1
         0        ( x )   dx is                                                Sol.[D]
                                                                                                a
                                                                                            0 f ( x ) g(x) h(x) dx
             176                                        176                                         a
        (A)
              5
                                                (B) –
                                                         3
                                                                                           =     0 f (a  x )        g(a – x) h(a–x) dx
             186                                                                                    a                     3h ( x )  5 
         (C)
              3
                                              (D) None of these                            =–    0 f ( x )         g(x) 
                                                                                                                               4        dx
                                                                                                                                        
Sol.[B] R2  R2 – R1                                                                                3 a                        5 a
                                    R3 = R3 – 3R1                                          = –
                                                                                                    4 0 
                                                                                                        f ( x ) g(x) h(x) dx +
                                                                                                                               4 0
                                                                                                                                   f (x)         
                     1  x  2x 2             x 3       1                       g(x) dx
         (x) =             1                  3       2
                                                                                            7 a                        5 a
                            3                  2        6
                                                                                            4 0 
                                                                                                f ( x ) g(x) h(x) dx =
                                                                                                                       4 0
                                                                                                                           f ( x ) g(x)  
                                                                                 dx = 0
                        R2                                                                 {f(a – x) g(a – x) = – f(x) g(x)}
         R1 = R1 –
                        2                                                                           a
                                                                                           So    0         f (x)   g(x) h(x) dx = 0
                                        2
                     1  x  2x  1/ 2                  x  3  3/ 2      0
         (x) =              1                             3            2
                             3                              2            6
                        R3
         R2 = R2 –
                        3
Corporate Office: CP Tower, Road No.1, IPIA, Kota (Raj.), Ph: 0744-2434159                                            DEFINITE INTEGRATION                  4
Q.22     Let f be a real valued function satisfying                                                x
                                                                                                                                       x4       x2 
                                                                                  p'(x) =         0
                                                                                                        p''(x) dx +            3 = a 
                                                                                                                                       4
                                                                                                                                              +
                                                                                                                                            2 
                                                           x 12
                                                                                   
Q.23     Let P(x) be a polynomial of least degree whose
         graph has three points of inflection (–1, – 1),                                  log (1 + cos x) dx is given by
         (1, 1) and a point with abscissa 0 at which the                           0
         curve is inclined to the axis of abscissa at an
                                     1
                                                                                  (A)  log 2 + 4k                        (B)  log 2 + 2k
         angle of 60º. Then          
                                     0
                                         P(x) dx equals to -                      (C)  log 2 + k                         (D)  log 9 + k2
                                                                                           
        (A)
            3 34
               14
                                (B)
                                    3 3
                                     7
                                                                          Sol.[A] I =      
                                                                                           0
                                                                                                log (1 + cos x) dx
             3 7                     32                                                  
        (C)                     (D)                                                                                   x
               14                      7
Sol.[A] Required function is a polynomial, the abscissa
                                                                                   =      0
                                                                                                log (2 cos2
                                                                                                                      2
                                                                                                                        ) dx
         p''(x) = ax (x – 1) (x + 1) = a(x3 – x)
                                                                                                          
                                                                                                                               x
         at the point x = 0, p'(0) = tan 60º =         3                           =  log 2 + 2          
                                                                                                          0
                                                                                                                  log cos
                                                                                                                               2
                                                                                                                                 dx
Corporate Office: CP Tower, Road No.1, IPIA, Kota (Raj.), Ph: 0744-2434159                                        DEFINITE INTEGRATION                  5
                              /2                                                    Since sin x < x < tan x
         =  log 2 + 4         
                               0
                                       log cos xdx
                                                                                
                                                                                     sin(sin x )
                                                                                                 >
                                                                                                   sin x
                                                                                                                                     >
                                                                                                                                              sin(tan x )
                                                                                                                                                            for
                                                                                       sin x         x                                           tan x
                               /2
         =  log 2 + 4         0
                                       log cos (/2 – x) dx                           
                                                                                      6
                                                                                        <x<
                                                                                            
                                                                                            3
                               /2                                                          I2 > I1 > I3
         =  log 2 + 4         0
                                       log sin x dx
                                                                                               
                                                                                                             dx
         =  log 2 + 4k                                                     Q.27     If I =     x2           1 x
                                                                                                                           , then I equals
                                                                                                1
                                                                                      Put x + 1 = t, so that
                                                   
           tan 1 t  4 tan 1  t   3 tan 1  t  
                                                                                           3                    0               3
                        2        2     3        3   0
                                                                                       I1 =  | t | dt =               ( t ) dt +   t   dt
                                                                                             2                      2               0
                                                
              +2 2  –                           3  
                                                                                                          0                3
         =–                                                                                  1 2      1                        13
            2      2                              2                                =–      t     + t2 =
                                                                                             2    2  2 0                       2
                                                                                                                      9
         =      (2 2 –                 3 –1)                                           Similarly, I2 = I3 =
              2                                                                                                        2
                     1
                                 1 x                                                                     31
Q.29     If I =      x          1 x
                                      dx, the I equals-                                Thus, I =
                                                                                                          2
                     0
                                                                             Q.31    If                                   I                       =
         (A) 1 +               (B) 1 –                       (C)  (D) 
                             4         4
                                                                                        0
                                                                                         [x
                                                                                                 3
         –    2                                                                                       3x 2  3x  ( x  1) cos( x  1)] dx
                                                                                       2
Sol.[B] We can write
                 1
                                                                                       , then I equals:
                     x (1  x )
         I=                 1 x 2
                                        dx                                             (A) –4                              (B) –3
                 0
                                                                                       (C) –2                              (D) –1
             1                                              
                                                             2
                             x               1        1 x                     Sol.[C] We can write
         =            1 x2
                                   
                                        1 x2
                                                             dx
                                                           2 
                                                       1 x 
                                                                                       I=
             0                                                                         0
                                                                                         [( x  1)
                                                                                                              3
                                            
                                                  1                                                                1  ( x  1) cos ( x  1)] dx
         =              1  x 2  sin 1 x 
                                            
                                            0                                       2
                                                                      1
                                   x                 1                              Put x + 1= t, so that
                                 +      1 x2         sin 1 x 
                                   2                 2           0                        1
                                                                                              [t
                                                                                                      3
                                                                                       I=                  1  t cos t ] dt
                 1                                                                      1
         =–   +1+    =1–
            2     2 2    4                                                                1
                                                                                       =     (1) dt = – t ]11 = –2
                                                                                            1
                         2
Q.30     If I =           (| x  1 |  | x  2 | | x  1 |) dx , then                as t3 + t cos t is an odd function
                     3
I equals:
Corporate Office: CP Tower, Road No.1, IPIA, Kota (Raj.), Ph: 0744-2434159                                            DEFINITE INTEGRATION          7
Q.32     If                                      I                  =                             1   1
                                                                                    =1–            –   +e–e+1
             |cos x |    1                1                                                 e   e
           e 2 sin  2 cos x   3 cos  2 cos x 
          0
                                                                                     = 2(1 – 1/e)
         sin dx, then I equals
                                                                                               sin 2kx
                                                                        Q.34     If for k  N,         = 2[cos x + cos 3x +......
         (A) 7 e cos (1/2)                                                                      sin x
         (B) 7 e [cos (1/2) – sin (1/2)]                                         + cos (2k –1) x],
         (C) 0
         (D) None of these                                                                                  / 2
Sol.[D] Put
                   1
                     cos x = t, so that –sin x dx = 2dt and
                                                                                 then value of I =               sin 2kx cot           x dx is
                                                                                                                0
                   2
                  1 / 2
                                                                                 (A) –/2                           (B) 0
                                                                                 (C) /2                            (D) 
                       e
                              |t|
         I=                           (2 sin t + 3 cost) (–2) dt                                     / 2
                                                                                                            sin 2kx
                                                                                                      
                   1/ 2
                                                                        Sol.[C] Writing I =                         cos x dx
                                                                                                      0
                                                                                                             sin x
         As e|t| sin t is an odd function, and e|t| cos t is an
         even function,                                                          and using the given identity, we can write
                                                                                       / 2
                       1/ 2
         I=6            e
                              t
                                  cos t dt = 6et cos t ]10/ 2 + 6                I=              2[cos x + cos 3x + ......+ cos (2k –1) x]
                                                                                           0
                        0
         1/ 2                                                                    cos x dx
          e
                   t
                       sin t dt
                                                                                     / 2
                                                                                       
          0
                                                                                 =             [(1 + cos 2x) + (cos 4x + cos 2x) + ..... +
                     1 
         I = 6  e cos   1 + 6et sin t ]10/ 2 – 6                                  0
                                                                                                            b
                         e
                                           dx                                                                       xa
Q.33     If I =  | log x |                      , then I equals        Q.35     If b > a, and I =                 bx
                                                                                                                        dx, then I equals
                       1/ e                x2                                                               a
                  1/ e                                                           =2           c 2  t 2 dt where c =           ba
                   1                                 e                                 0
              =     ( log t ) dt +  (log t ) dt                                   1
                                                                                 = 2  t c2  t 2 
                                                                                                    c2         t 
                                                                                                       sin 1  
                                                                                                                                    c
                  1/ e                               1
                                                                                      2            2         c  0
          b
              |x|                                                                         
Q.36          x
                  dx equals:                                                              sin 
          a
Corporate Office: CP Tower, Road No.1, IPIA, Kota (Raj.), Ph: 0744-2434159                                    DEFINITE INTEGRATION             9
                  2                         1                              0                                  16                              16
                                                                                                                    e sin y
               [ x ] dx =                      [ x ] dx +                 [ x ] dx +           I=                y
                                                                                                                            dy = |F(y)|                = F(16) –F(1)
              2                            2                             1                                   1                                 1
                     cos 4 ( t ) dt +                cos
                                                                     4                                 
         =                                                                t dt                             (  x ) sin(  x )
              0                                      x                                             4                                         dx
                                                                                                           1  (cos(  x )) 2
                                  ... (3)                                                              0
               x                                 
                                                                                                                                  =
                     cos 4 t dt +                cos
                                                                 4
         =                                                           t dt (cos4 t is
               0                                 0
         periodic function)                                                                                
                                                                                                                     dx
                                                                                                   4                          I2
                                                                                                               1  cos 2 x
         = g(x) + g()                                                                                     0
                                                                                                                       
                                                                                                                                cos ec 2 x
Q.43     Let
                        d
                          F(x) =
                                                     e   sin x
                                                                 , x > 0.             If
                                                                                                    I2= 2           cos ec 2 x  cot 2 x dx
                                                                                                                       0
                       dx                                x
                                                                                                                                              
                                                                                                                                                   cos ec 2 x dx
          4
              2e sin x
                              2
                                                                                                                                  = 2         1  2 cot 2 x
         
                                                                                                                                              0
                       dx = f(k) – f(1) then one of the
                  x
          1                                                                                                                       =
         possible value of k is:
                                                                                                                                          
         (A) 2                    (B) 4              (C) 8                  (D) 16                   2
                                                                                                           2
                                                                                                                tan 1              
                                                                                                                             2 cot x 
                                                                                                                                     0
                          4                 2                4                    2
                               2e sin x                              2 xe sin x
Sol.[D] Let I =                   x
                                        dx =                             x2                                                      = –
                                                                                                                                                          
                                                                                                                                                       2    =
                          1                                  1
                                                                                                                                                         2 2
         Put x2 = y, then 2x dx = dy
                                                                                                       2
              x       1        4
              y       1       16
Corporate Office: CP Tower, Road No.1, IPIA, Kota (Raj.), Ph: 0744-2434159                                                    DEFINITE INTEGRATION                  10
                                                                                                                log e 5   ex        ex – 1
  Questions Add                                (24–6-09)                                        Q.4           0                ex  3
                                                                                                                                                   dx =
                                                                                                          (A) 3 + 2                                      (B) 4 – 
                                                                                                          (C) 2 +                                        (D) 4 +  
         
                                        x 2 dx
Q.4       (x    2
                      a 2 ) (x 2  b 2 ) (x 2  c 2 )
                                                                                     =          Sol.[B] Put ex – 1 = t2
          0
                                                                                                        ex dx = 2tdt
                    
          2(a  b)(b  c)(c  a )                                                                                           2    t .2 tdt
                                                                                                          I =            0    t2  4
                 
                                         dx
         then     (x
                 0
                            2
                                   4)( x 2  9)
                                                           =
                                                                                                                   n 1
                                                                                                Q.5           n
                                                                                                                          f ( x )dx           = n2 + 1 n Z then
                                                             
         (A)                           (B)               (C)                   (D)                                 3
                 60                           20               40                                              –2
                                                                                                                        f ( x ) dx        =
                                                                                                         (A) 10                                          (B) 13
          80                                                                                              (C) 15                                          (D) 18 
Sol.[A] put c = 0, a = 2, b = 3                                                                 Sol.[C]                                            I                              =
                                                                                                               –1                              0                           1
                                                                                                              –2
                                                                                                                       f ( x ) dx           –1
                                                                                                                                                   f ( x ) dx         0
                                                                                                                                                                            f ( x ) dx 
                     / 2
                      x
                                  n
Q.5      If In =                      sinx dx then I7 + 42 I5 =                                                    2                          3
                      0                                                                                       1
                                                                                                                       f ( x )dx         2
                                                                                                                                               f ( x )dx
                          7                                      6
                                                      
         (A)                                       (B)                                                1000
             2                                         2
                                                                                                           
                                                                                                                                n
                                                                                                Q.6                                 e x –[x]           dx =
                              6                                      7                                                      n –1
                                                                                                     n 1
         (C) 7                                     (D) 7  
               2                                         2                                                      e1000 – 1                                   e1000 – 1
               /2                                                                                        (A)                                             (B)
Sol.[C] In=     x
                        n
                              sinx dx =
                                                x   n
                                                         ( cos x )      / 2
                                                                          0      –
                                                                                                                     1000                                         e –1
                                                                                                                                                                e –1
                0
                     /2                                                                                  (C) 1000 (e – 1)                                (D)        
                                                                                                                                                                1000
                       nx
                                      n 1
                                                                                                                   n                                              1
                                              (– cos x)dx
                      0
                     /2
                                                                                                Sol.[C]       n –1
                                                                                                                       e{ x}dx         = n – (n – 1)             0
                                                                                                                                                                      e{x}dx
                     
                                                                                                                                      1
              =n                xn–1 cosx dx                                                                                    =  0 e x dx = e –1
                      0
                                                                           =         n
                                                                /2                             Q.6       If C0, C1, C2,....., Cn are their usual meaning,
         [[x     n 1
                        (sin          x )]0 / 2    (n  1)     x
                                                                          n 2
                                                                                 sin x dx   ]                             C0           C1
                                                                 0                                        then                  –                +
                                  n 1
                                                                                                                       n (n  1) (n  1) (n  2)
                
         In = n                        – (n – 1)n In–2        put n = 7                                        C2
                2                                                                                                         + .... to (n+1) terms is equal
                                                                                                           (n  2) ( n  3)
         4                                                                                                to–
Q.6          ( | x  1 | 3 | x  2 |  4 | x  3 | ) dx                                                         1
                                                                                                                   x
                                                                                                                          n 1
         0                                                                                                (A)                    (1  x ) n 1 dx                       (B)
        (A) 37                                     (B) 14                                                          0
        (C) 22                                     (D) 11                                                  1
                                                                                                          x           (1  x ) n 1 dx
                                                                                                                   n
Sol.[A] Break integral at x = 1, 2, 3                                                                      0
Corporate Office: CP Tower, Road No.1, IPIA, Kota (Raj.), Ph: 0744-2434159                                                                DEFINITE INTEGRATION                    11
                   1                                                                                                sin             z
           (C)      x (1  x ) dx
                      n 1     n 1
                                                                               (D) None                   B=       1        ( z  1)2             dz
                   0
        of these                                                                                                        sin                 z
Sol.[C] (1–x)n = C0 – C1x + C2x2 – C3x3 + .......+ (–1)n                                                  B=–       1                   2
                                                                                                                                     ( z  1)
                                                                                                                                                     dz                  zt
        Cnxn
        Multiplying by xn–1 to both side                                                                                sin             t
        xn–1 (1 –x)n = C0 xn–1 –C1xn + C2xn+1 .....
                                  ...+ (–1)n Cnx2n–1
                                                                                                          B=–       1               2
                                                                                                                                  t 1
                                                                                                                                                  dt = – A
                                                                                                                                 1 
      C1                                                                                                  value of f(e2) – f      2  is
(n  1) (n  2)
                +                                                                                                               e 
                                                                                                                                
                                                                                                          (A) 0             (B)         (C)                              (D) 2
                                       C2                                                                                       2
                                                  .........
                                 (n  2) ( n  3)                                                                           x    tan 1 ( t )
                                           sin 
                                                                                                   Sol.[C] f(x) 
                                                                                                                        1           t
                                                                                                                                              dt
                                                     t dt
Q.6        If       A        =         1          1 t2
                                                                       and             B      =
                                                                                                          f
                                                                                                            1
                                                                                                               
                                                                                                                             
                                                                                                                                 1/ x        tan 1 ( t )
                                                                                                                                                          dt
                                                                                                            x                  1               t
                cos ec           dt                                                                      put t = 1/u
           1               t (1  t 2 )
                                                     then           the       value           of                   dt = –1/u2 du
                                                                                                                                          1
                                                                                                                                   tan 1    1 
                                                                                                          f(1/x)  =             x         u    2  du
                A B
                   A              A2                 B                                                                          1    1/ u
                                                                                                                                                 u 
            e e               B2                    1 is
              1             A  B2
                             2
                                                   1                                                                                                            1
                                                                                                                                                          tan 1  
                                                                                                          f(1/x)                             –             x    u =             –
           (A) sin
                       sin 
                             (B) cosec              (C) 0                     (D) 1
                                                                                                                                                        
                                                                                                                                                        1      u
                                  t dt
Sol.[C] A =         1         1 t2
                                                                                                               x   cot 1 ( u )
                         cos ec            dt                               1                             1                   du
           B =         1             t (1  t ) 2       Put t =
                                                                             z
                                                                               , dt = –                                u
                                                                                                                             x   cot 1 ( t )
               1
                                                                                                                   =–
                                                                                                                        1           t
                                                                                                                                              dt
               dz
            z2                                                                                                                            x      tan 1 t  cot 1 t
                                       1
                                                                                                          f(x) – f(1/x) =
                                                                                                                                        1                t
                                                                                                                                                                     dt
                                           dz                                                                                                                x     1
           B=      1
                       sin 
                                      z2                                                                                                                =
                                                                                                                                                             1 2  dt
                                                                                                                                                                     t
                               1    1                                                                                               
                                1  2                                                                   f(x) – f(1/x) =               log(x)
                               z z                                                                                                  2
Corporate Office: CP Tower, Road No.1, IPIA, Kota (Raj.), Ph: 0744-2434159                                                                    DEFINITE INTEGRATION                 12
                                                                                                               2                                                  2
                                               logee2 = 
                                                                                                                                                                 e
                                                                                                                               2
          f(e2) – f(1/e2) =                                                                                                                                            t2
                                                                                                                    2t 2 e t
                                                                                                                                                     2
                                                                                                           =                       dt = ( te t )12 –                        dt
                                             2
                                                                                                                1                                                  1
                                                                                                                                   = 2e4 – e – a
               1
Q.4           1
                   [ x[1  sin x ]  1] dx                                 is ([·] denotes
                                                                                                                  y                           x2
                                                                                                                                                     sin t          dy
        greatest integer function)
                                                                                                                  cos t                       
                                                                                                                               2
                                                                                               Q.8         If                      dt =                    dt. Then    is
        (A) 2       (B) 0         (C) 1        (D) None                                                           0
                                                                                                                                                       t            dx
                                                                                                                                                 0
Sol.[A] –1 < x < 0         0 < 1 + sin  x < 1
                                                                                                           equal to -
          [x [1 + sin  x] + 1] = 1
                                                                                                                      2 sin x
                         [1 + sin  x] = 0                                                                 (A)                                                                   (B)
                                                                                                                      x cos y
          0<x<1                               1 < 1 + sin x < 2
          [1 + sin  x] = 1                                                                                           2 sin x 2
                                                                                                                      x cos y
          [x [1 + sin  x] + 1] = 1
               1                               1                                                                      2 sin x 2                                   2 sin x 2
           1dx              2             0 dx            = 2[ x ]10 = 2                               (C)
                                                                                                                      x cos y 2
                                                                                                                                                         (D)
                                                                                                                                                                  cos y 2
                                                                                               Sol.[A]      
                                                                                                            0
                                                                                                                [ t ]dt        =        
                                                                                                                                        0
                                                                                                                                            [ t ]dt           +          [ t ]dt
                                                                                                                                                                       [x]
                                                                                                                                                                                          =
                    2
                    e
                         x2
Q.2       If                  dx              =         a,    then          the   value   of
                    1                                                                          [x]
                                                                                                 t dt
                                                                                                   0
          e4
           
           e
                    n ( x ) dx is-
                                                                                                                [ x ]{ x }                          [x]                    [x]
          (A) e – e 4
                                                             (B) e – a 4                                             
                                                                                                                      [x]
                                                                                                                           [ t ] dt          =           
                                                                                                                                                         0
                                                                                                                                                             t dt      –      [ t ] dt
                                                                                                                                                                             0
          (C) 2e4 – a                                        (D) 2e4 – e – a
                        e4                                                                         [x]
Sol.[D] Let I =         e
                                     n ( x ) dx.                                              =        {t} dt
                                                                                                       0
          Put n x = t  dx = 2t e
                                 2                            t2       dt
Corporate Office: CP Tower, Road No.1, IPIA, Kota (Raj.), Ph: 0744-2434159                                                                  DEFINITE INTEGRATION                          13
                                         1            1                               1
         {x} [x] = [x] .
                                         2
                                           i.e. {x} =
                                                      2                        Q.6     | 3x  1 | dx equals-
                                                                                      0
                       1               1            1                                 (A) 5/6                         (B) 5/3
      thus 3 < x = n +   < 15 i.e. 3 –   < n < 15 –
                       2               2            2                                 (C) 10/3                        (D) 5               [A]
          n can take 12 values.
                                                                                      2
         No. of solutions is 12.                                                                       x
                                                                               Q.7            3 x  x
                                                                                                               dx is equal to-
                                                                                      1
          / 4                                                                        (A) 2/1                         (B) 3/4
            tan
                       2
Q.1                         x dx equals-                                              (C) 1/2                         (D) None of these   [C]
           0
         (A) /4                             (B) 1 + (/4)
                                                                                      
         (C) 1– (/4)                        (D)1– ( /2)                [C]                   x sin x
                                                                               Q.8     1  cos 2 x dx           equals-
                                                                                      0
                                 e
                                     1                                                (A) 0                           (B) /4
Q.2      The value of               x
                                       dx -                                           (C)     2/4                    (D) 2/2            [C]
                                 1
         (A)                                (B) 0
                                                                                      / 2
         (C) 1                               (D) log (1+e)               [C]                      dx
                                                                               Q.9            1  cot x
                                                                                                         equals-
                                                                                          0
                      1                                                                                                 
               e tan        x                                                         (A) 1                           (B)
Q.3        1 x2               dx equals-                                                                                4
          0                                                                                    1                          
                                                                                      (C)                             (D)                 [B]
         (A) 1                               (B)    e/2   +1                                  2                          2
         (C) e/2 – 1                        (D) None of these           [C]
                                                                                      1
                                                                                                       dx
          / 4
                         sec x       2
                                                                               Q.10    ( x 2  2 x  2) 3        =
                                                                                      0
Q.4             (1  tan x ) ( 2  tan x )
                                            dx equals-
                                                                                           3  8                                      1
           0
                                                                                      (A)                                        (B)
                            2                                                               32                                          4
         (A) loge                                               (B) loge 3
                            3                                                         (C) 0                           (D) None of these [A]
                 1      4                                  4
         (C)       loge                       (D) loge                                 3
                 2      3                                  3                                  x 2 sin x
                        [D]
                                                                               Q.11          1 x6
                                                                                                            dx equals-
                                                                                      3
                                                                                      (A) 4                           (B) 2
                                                                                      (C) 0                           (D) None of these   [C]
                     2
                    x , when 0  x  1
Q.5      If f(x) =                     , then
                   
                    x , when 1  x  2
                                                                                      1
          2
           f ( x ) dx equals-
                                                                               Q.12   (       1  x  x 2  1  x  x 2 ) dx equals-
                                                                                      1
          0
                                                                                      (A) 1                           (B) 0
              1                                   1
         (A)    (4               2 – 1)       (B)     ( 4 2 + 1)                      (C)        2                    (D) 2               [B]
              3                                   3
         (C) 0                               (D) does not exist [A]
                                                                                      2
                                                                                        cos
                                                                                                   4
                                                                               Q.13                    x dx equals-
                                                                                       0
Corporate Office: CP Tower, Road No.1, IPIA, Kota (Raj.), Ph: 0744-2434159                                      DEFINITE INTEGRATION       14
        (A) 3/8                         (B) 3/4                                               1    1    1              1 
                                                                    Q.20      lim                            .....     
        (C) 3/2                         (D) 3            [B]               n 
                                                                                                 n n 1 n  2           3n 
                                                                             equals-
         2
                   sin 2                                                    (A) log 2                      (B) log 4
Q.14       a  b cos            d equals-                                 (C) 0                          (D) loge3                [D]
          0
        (A) 1                            (B) 2
        (C) /4                          (D) 0             [D]      Q.21      lim
                                                                             n 
                                                                               12            22                r2               1 
         400                                                                  3     3
                                                                                           3    3
                                                                                                    .....   3    3
                                                                                                                      .....       
                                                                              1  n     2 n               r n               2n 
Q.15              1  cos 2 x dx is equal to-
                                                                             =
              0
                                                                             (A) (1/2) log 3          (B) (1/3) log 2
                          (A) 400       2
                                                                             (C) 3 log 2              (D) (1/2) log 2          [B]
                          (B) 800       2
                          (C) 0                                                   m   m   m           m
                                                                    Q.22     lim 1  2  3  .....  n = ……; [m > –
                          (D) None of these                [B]               n 
                                                                                        n m 1
                                                                             1]
                                                                                    1
                           1000                                              (A)                            (B) 0
                                   x [ x ]                                       m 1
Q.16    The value of          e              dx is -                        (C) (m +1)                     (D) None of these        [A]
                              0
                  e1000  1                    e1000  1                                                  1     1    1
        (A)                              (B)                        Q.23     The limit of the sum           +     +      +
                   1000                          e 1                                                     n   n 1 n  2
                                               e 1                             1           1
        (C) 1000(e – 1)                  (D)               [C]                      +……..+    , when n is indefinitely
                                               1000                           n 3         3n
                                                                             increased
                                                                             (A) n 3          (B) 0
         /2
                                                                             (C) n 2          (D) None of these [A]
Q.17       log cos         x dx equals-
          0                                                                            2
                                                                                                dx
        (A) (/2) log (1/2)              (B) log 2                 Q.24     If a <     10  3 cos x       < b then the ordered
        (C) –log 2                      (D) 2log 2       [A]                          0
                                                                             pair
         / 2                                                                (a, b) =
           sin
                    7
Q.18                    x cos x dx equals-                                        2 2                        
          0                                                                  (A)    ,                     (B)  , 
                                                                                  13 7                        3 2
        (A) 1/7                          (B) 1/8
        (C) /16                         (D) /14          [B]               (C) (0, )                     (D) None of these        [A]
                                                                             If a
         / 2                                                                     1
                                                                                       x2
Q.19       sin x dx equals-
                    5                                               Q.25     If   e        ( x   ) dx  0 then-
          0                                                                       0
                                                                                                       f (cos
                                                                                                                 2
                                                                       Q.36   Let         I1   =                     x ) dx ,       I2     =
                      1                                                                               0
Q.31    If In =           xn e–x dx for n  N, then I7 – 7I6 =               2                                     
Corporate Office: CP Tower, Road No.1, IPIA, Kota (Raj.), Ph: 0744-2434159                           DEFINITE INTEGRATION                  16
                                    x                                                                  1        5     7 
                                     (n                                                               an 2  2 a  2 b 
                                               2
        f(x) =1 + x +                              t  2nt ) dt where f             (D)           2           2
                                    1
                                                                                                  a b                    
                                                                                                      [A]
        (x) vanishes is
        (A) e–1                                 (B) 0
        (C) 2e–1                                (D) 1 + 2e–1            [D]                                                                        3
                                                                               Q.5   If y = (x)[x] where x = [x] + (x), then                            ydx =
                      3n                                                                                                                           0
                                        n
Q.38      lim
         n                       2
                                         n2
                                                   is equal to                       (A) 2/3                   (B) 5/6          (C) 1           (D) 11/6 [D]
                   r  2 n 1 r
                          2                                      3
        (A) log                                 (B) log                        Q.6   If the tangent to the graph of the function
                          3                                      2                   y = f (x) makes angles of /4 and /3 with the
                      2                                    3                         x-axis at the points x = 2 and x = 4 respectively,
        (C) log                                 (D) log                 [B]
                      3                                    2                                                           4
                                                                                     then the value of                      f '(x) f "(x) dx =
                      1                              1                                                                 2
                                         2                   2
                    2 x
Q.1     If  + 2  x e   dx =  e  x dx , then the                                  (A) 0                     (B) 2            (C) 3           (D) 1         [D]
                      0                              0
        value of  is -                                                                                                                  
                                                                                                    x 2                                       ax 2
        (A) e                                   (B) 1                          Q.7   If       e               .dx =          , then      e            dx , a >
        (C) 0                                   (D) 1/e                 [D]                   0                            2              0
                                                                                     0 is-
                               n 4                                                                                                     
                                        ex ex  3                                    (A)                                        (B)
Q.2     The value of                        ex  2
                                                         dx is-                                    2                                    2a
                               n 3
                                                                                                  2                                  1        
                  4                                                               (C)                                        (D)
        (A)                                     (B) 4 –                                            a                                  2        a
                   2                                  2                                                        [D]
                                                    2
        (C) 2 –                                (D)                     [A]
                                                     2                         Q.8   Let a, b, c be non zero real number such that
              4                                      4                               1
Q.3     If     f ( x ) dx  4 and                       [3 – f(x)] dx = 7,                     (1 + cos8x) (ax2 + bx + c)dx
             1                                      2                               0
                                        1                                                2
        then the value of                    f (x) dx is-                           =            (1+cos8x)(ax2+ bx + c)dx, then the
                                        2                                                 0
        (A) 2                                   (B) – 3                              quadratic
        (C) – 5                                 (D) none of these       [C]          equation ax2 + bx + c = 0 has-
                                      1   1                                        (A) No root in (0, 2)
Q.4     If for non-zero x, af(x) + bf   =   – 5                                    (B) At least one root in (0, 2)
                                      x   x
                                        2                                            (C) A double root in (0, 2)
        where a  b then                     f(x) dx = ........                     (D) Two imaginary roots                                                  [B]
                                        1
Corporate Office: CP Tower, Road No.1, IPIA, Kota (Raj.), Ph: 0744-2434159                                             DEFINITE INTEGRATION                      17
        (A) 1                           (B) 0                                                       x
                                                                                                        log t                          1
        (C) 2                           (D) none of these             [B]     Q.16   If f(x) =       1 t           dt, then f(x) + f   = k(log
                                                                                                                                       x
                                                                                                    1
          
                x log x                                                              x)2;then k equals to-
Q.10       (1  x 2 ) 2     dx -
          0                                                                          (A) 1                               (B) 1/2
        (A) 0                           (B) 1                                        (C) 1/4                             (D) none of these         [B]
        (C) 1/2                         (C) none of these             [A]
                                                                                                x
Q.11    Let f(x) be a continuous function on [0, a] such                      Q.17   f(x) =            t(t – 1)(t – 2) dt takes on its minimum
        that f (x) f (a – x) = 1 where a > 0, then                                              0
         a                                                                           value when
              dx
          1  f (x) =                                                               (A) x = 1, 2                        (B) x = 0, 1
         0                                                                           (C) x = 0, 2                        (D) none of these         [C]
        (A) 0                           (B) a
        (C) a/2                         (D) none of these             [D]                       1
                                                                              Q.18   If p =            tan–1x dx and
                                                                                                0
                                              
Q.12    If In =         e–x.xn–1.dx    then        e–x    xn–1   dx is                   1
                     0                          0                                    q =           cot–1(1 – x + x2) dx then the value of
        equal to -                                                                          0
                                               1                                      p
        (A)  In                        (B)      .In                                    is
                                                                                      q
                                               
                                                                                     (A) 1/4             (B) 1/2         (C) 1/8        (D) 1      [B]
                In
        (C)                             (D) n.In                     [C]
                n                                                                     / 2
         
              ( 2 x  3) sin x                                                Q.19                  cos 2 n 1 x  cos 2 n 1 x dx, n  N -
Q.13          1  cos 2 x
                                      dx -                                             / 2
         0
                                                                                            2                                   4
                                                                                    (A)                                 (B)
        (A) ( + 3)                     (B) ( – 3)                                      n 1                                2n  1
                    2                                                                (C) 0                               (D) none of these         [B]
        (C) ( + 3)                    (D) none of these             [A]
                                                                                                               1
                           16  / 3
Q.14    The value of           | sin x | dx        is -
                                                                              Q.20   The value of                    [x [1 + sin x] + 1] dx is,
                                                                                                              1
                              0
                                                                                     where [ ] denotes greatest integer function -
        (A) 21           (B) 16/3       (C) 32/3           (D) 21/2 [D]
                                                                                     (A) 3                   (B) 2
                                                                                     (C) 8                   (D) 1                 [B]
Q.15    The tangent to the curve y = f(x) at the point
        with abscissa x = 1 form an angle of /6 and at
        the point x = 2 an angle of /3 and at the point                      Q.21   Let f(x) and g(x) be two functions satisfying
        x = 3 an angle of /4. If f '' (x) is continuous,                            f(x2) + g(4 – x) = 2x3 ; g(4 – x) + g(x) = 0, then
                                  3                           3                                           4
        then the value of             f ''(x) f '(x) dx +         f ''(x)          the value of                 f(x2) dx =
                                  1                           2                                           4
        dx is                                                                        (A) 128                             (B) 64
                4 3 1                      3 3 1                                   (C) 256                             (D) none of these         [C]
        (A)                             (B)
                     3 3                      2
                                                                                                              / 2
            43 3                                                                                                     cos x
        (C)                             (D) none of these             [C]     Q.22   The value of                        x
                                                                                                                                dx is equal to -
              3                                                                                             / 2 1  e
                                                                                     (A) 0                               (B) 1
Corporate Office: CP Tower, Road No.1, IPIA, Kota (Raj.), Ph: 0744-2434159                                           DEFINITE INTEGRATION           18
          (C) 2                          (D) none of these            [B]              / 2
                 
                               dx
                                                                                                  [f(x) + f(–x)] [g(x) –g(–x)] dx is-
                                                                                       / 2
Q.23      If      25 cos 2 x  36 sin 2 x         = m, then m is -
                                                                                                                                              [IIT-1990]
                 0
                                                    1                                                                             [IIT-2000]
         [x] is the integral part of x. then         f ( x ) dx               (A)
                                                                                     3
                                                                                                (B)
                                                                                                      5
                                                                                                                  (C) 3           (D) 5    [B]
                                                    1                               2                2
         is:
                                                      [IIT-1998]
                                                                                             
                                                                                             e
                                                                                                cos x
                                                                                                      sin x            for | x |  2
         (A) 1                          (B) 2                           Q.17   If F(x) =                                            . Then
                                                                                             
                                                                                                    2                  otherwise
         (C) 0                          (D) –1/2                  [A]
                                                                                3
Q.12     If for a real number y, [y] is the greatest integer                     F( x ) dx =                                     [IIT- 2000]
         less than or equal to y, then the value of the                        2
                                                                               (A) 0            (B) 1             (C) 2           (D) 3    [C]
                     3 / 2
         integral             [2 sin x] dx is -      [IIT 1999]
                                                                                            e
                                                                                                  x
                      / 2                                              Q.18   Let f(x) =             ( x  1)( x  2) dx . Then f
         (A) –                         (B) 0                                  decreases in the interval-        [IIT 2000 Scr]
         (C) – 2                     (D) /2                   [C]          (A) (–, –2)            (B) (–2, –1)
                                                                               (C) (1, 2)              (D) (2, +)          [C]
         3 / 4
                  dx
Q.13          1  cos x
                         is equal to:                 [IIT-1999]                                                          x
          / 4                                                          Q.19   Let f : (0, )  R and F(x) =               f (t)   dt .
                                              1                   1                                                       0
         (A) 2          (B) –2          (C)           (D)     –
                                              2                   2            If F(x2) = x2 (1 + x). Then f(4) equals-
                        [A]                                                                                         [IIT-2001]
                                                                               (A) 5/4      (B) 7       (C) 4       (D) 2 [C]
           
                   cos 2 x
Q.14              1 a x
                               dx, a > 0                 [IIT Scr.                                        1/ 2
                                                                                                                                 1 x 
                                                                      Q.20   The         integral                [ x ]  n         dx
                                                                                                                                 1 x 
         2000]                                                                                           (1 / 2 ) 
Corporate Office: CP Tower, Road No.1, IPIA, Kota (Raj.), Ph: 0744-2434159                              DEFINITE INTEGRATION                20
                   1                                                               1
         (C) ±                               (D) 0 and 1              [A]                   1 x
                   2                                                        Q.26           1 x
                                                                                                 dx equal to -
                                                                                   0
                                                                                   [IIT Scr.2004]
Q.22     Let T > 0 be a fixed number. Suppose f is a
                                                                                                      
         continuous function such that for all x  R;                              (A)         + 1 (B)   –1                         (C) 1 (D) 
                                                                                             2         2
                                              T
                                                                                                   [B]
         f(x + T) = f(x) .If I =               f ( x ) dx , then the
                                              0                                    0
                       3 3T
                                                                            Q.27           [x3 + 3x2 + 3x + 3+ (x + 1) cos (x + 1) dx =
                                                                                   2
         value of             f (2 x ) dx         is-
                                                                                                                               [IIT Scr.2005]
                             3
                              [IIT-2002]                                           (A) 4             (B) 0            (C) –1       (D) 1 [A]
              3                                                                         1
         (A)    I                            (B) I                                                                                              
                                                                                        t
                                                                                             2
              2                                                             Q.28                 f ( t ) dt  1  sin x ;         0 x           ,
                                                                                   sin x                                                        2
         (C) 3I                              (D) 6I                   [C]
                                                                                            1 
                     1                                                             then f     is -
Q.23     (m, n) =  t m (1 + t)n dt, then m, n =?                                         3
                     0                                                             [IIT Scr.2005]
                                                         [IIT Scr. 2003]                           1
                                                                                   (A) 3             (B)  (C) 1       (D) 3 [A]
                                 n I ( m 1, n 1)                                                 3
         (A) I ( m, n )             .                                      Q.31   Let f be a non-negative function defined on the
                                m 1 m 1
                                  1 I ( m 1, n 1)
         (B) I ( m , n )            .                                                                                x
                                m 1 m 1                                          interval        [0,     1].   If      1  (f ( t )) 2 dt    =
                                                                                                                      0
                                 2n    n.I ( m 1, n 1)
         (C) I ( m , n )            
                                1 m       m 1
                                                                                   x
                                 2n    n. I ( m 1, n 1)
                                                                                    f ( t ) dt ,
         (D) I ( m , n )            
                                1 m        m 1                                   0
                       x 2 1                                                            1   1       1 1
                                    2                                              (A) f   <   and f   >
Q.24     If f(x) =              e  t dt . Then f(x) increase in-                       2   2       3   3
                         x2
                                                         [IIT-2003]                      1 1       1 1
                                                                                   (B) f   > and f   >
         (A) (–2, 2)                         (B) No value of x                           2 2       3   3
         (C) (0, )                          (D) (–, 0)         [A]                     1           1 1
                                                                                               1
                                                                                   (C) f   <   and f   <
              t2
                                                                                         2   2       3   3
                                         2
Q.25     If    x f ( x ) dx = 5             t5 for t > 0, then f (4/25)
                                                                                         1   1       1 1
              0                                                                    (D) f   >   and f   <                                    [C]
                                                                                          2
                                                                                             2       3   3
         is equal to -                                    [IIT Scr.2004]
                   2                                 2
         (A) –                (B) 0          (C)             (D) 1    [C]
                   5                                 5                              1
          possible value of k is –
                                                                                                       1                               / 4
          (A) a                    (B) 1 – a                                                                1        1
           (C) 1 + a               (D) a – 1                                            Q.9       If   0
                                                                                                            x
                                                                                                              cot 1  dx =
                                                                                                                     x                 f ( x ) . cosec 2x
                                                                                                                                        0
Sol.[C]
                                                                                                  dx then f (x) =
                                             1/ 2                                                 (A) x                          (B) 2x
                     
Q.4       If 0 < x <
                     2
                       then                    cot x        d (cosx) =
                                                                                        Sol.[B]
                                                                                                  (C) 0                          (D) x/2
                                             3/2
              1 2                                 1 3                                 Q.10      If
          (A)                                  (B)
                2                                    2                                                           1    x 1   x        1     x
                                                                                                  f (x)           tan  tan  ..... n tan n  ...
              1 3                                 1 2                                                          2    2 4   4       2     2
          (C)                                  (D)
                2                                    2                                                      /2
Sol.[B]                                                                                           then        f ( x )dx has the value –
                                                                                                             6
                                                                                                  (A) n2/3                      (B) n3/2
                                                                                                  (C) n3/                      (D) n2/
                                                                                        Sol.[B]
Corporate Office: CP Tower, Road No.1, IPIA, Kota (Raj.), Ph: 0744-2434159                                                  DEFINITE INTEGRATION            22
                                                                      x                     Q. 10     The      number            of   values      of    x       satisfying
Q.11      Let f : (0, )  R and g(x) =                            0
                                                                          t   f(t) dt. If
                                                                                                           2[ x 14]  x                  {x}
                                             f (r          2
                                                                ) is –
                                                                                                       0
                                                                                                                 dx 
                                                                                                                2           0        
                                                                                                                                   [ x  14] dx ,    is
                               2x  1                                                                 (A)  ( 2  1 )                      (B)  ( 2  1 )
Q.1       If       x    4
                              2x 3  x 2  1
                                                          dx          =        A      n
                                                                                                      (C)  ( 2  2 )                       (D)  ( 1  2 )
                                                                                            Sol.[A]
                                                                                                                     /2
           x 2  x 1
                                C then the value of A can be
                                                                                            Q.5       If I10 =      0
                                                                                                                             x 10 sin x dx       , then I10 + 90 I8 is
           1 x2  x
                                                                                                      (A) 10(/2)6                     (B) 10(/2)9
          (A) 1                              (B) 1/2                                                  (C) 10(/2)8                     (D) 10(/2)7
          (C) –1/2                           (D) –1                                         Sol.[B]
                                                                                                                                   2 n 1 / 2
Sol.[C]                                                                                                                                                     x 
                                         dx
                                                                                            Q.6       The value of                      (sin x )  2  dx            is
Q. 8      The value of         0     1  2 tan x
                                                  is                                                                                  – 2n
Corporate Office: CP Tower, Road No.1, IPIA, Kota (Raj.), Ph: 0744-2434159                                                         DEFINITE INTEGRATION                  23
                                     2                                                        (A) I1 > I3 > I2          (B) I3 > I1 > I2
                                                              x
         =                2n          (sin x )              2
                                                                dx                +           (C) I1 > I2 > I3          (D) I3 > I2 > I1
                                     0                                                Sol.[A] sinx < x  x  (0, )
                                                                                              so, cos(sin x) > cosx, so I1 > I3
         1/ 2
                                 x                                                            and sin sinx > sinx
              (sin x )         2
                                   dx                                                                      / 2                                   / 2
             0                                                                                    so        
                                                                                                            0
                                                                                                                sin(sin x )dx >                     (sin x )dx
                                                                                                                                                   0
                 2n  1                                                                          / 2                                      /2
         =
                       2
                      sin t                                   t               2
                                                                                                       sin(cos x )dx >  (cos x )dx I
                                                                                                       0                                      0
                                                                                                                                                                    2   >
         we define I1 =             
                                    0
                                        cos  f(sin  + cos2) d                                 = Li(x) then the value of b is –
                                                                                                  (A) e2
                                                                                                                            (B) 2
         and
                 /2                                                                              (C) n2                                                  (D) –n 2
         I2 =         sin 2 f(sin  + cos2)d, then                                Sol.        (C)
                                                                                                                  3
                   0                                                                                       1     1    
         (A) I1 = I2                         (B) I1 = –I2                             Q.6         If I =   x     
                                                                                                                  
                                                                                                             sin   x 
                                                                                                                   x    dx, then I equals :
                                                                                                     1/ 3
         (C) I1 = 2I2                        (D) I1 = –2I2                                     (A) 3 /2              (B)  + 3 /2
                                                                                              (C) 0                 (D) None of these
                  2                                                                                      1
Sol.[A] I1 =
                   cos  f(sin + cos2) d
                  0
                                                                                      Sol. [C] Put x =
                                                                                                          t
                                                                                                  1/ 3
                                                                                                                            1           1 
                  2                                                                          I=        t sin  t  t    t 2  dt
                   2 sin  cos  f(sin + cos ) d
                                                          2
        I2 =                                                                                          3
                                                                                                 1/ 3
                  0                                                                                           1     1
                                         1                                                   =           sin   t  dt
                                                                                                               t    t
                                          f (t  1 – t
                                                                  2
        Let sin = t, then I1 =                                       ) dt.                       3
                                         0                                                        =–II=0
                            1
Corporate Office: CP Tower, Road No.1, IPIA, Kota (Raj.), Ph: 0744-2434159                                                            DEFINITE INTEGRATION                  24
                              4
              = 2 0 {4 x 3  g ( 4  x )}dx                                                                1                  1
                                                                                                     (A)              (B)               (C) 3           (D)       3
                                                                                                            3                      3
                                              /2         3
                                                      sin x cos x
Q.8      Value of I =
                                                   sin 4 x  cos 4 x
                                                                           dx is equal                 1
                                                                                                       t
                                          0                                                                  2
                                                                                           Sol.[C]               f ( t )dt  1 – sin x                         {given}
         to                                                                                          sin x
(A) /8 (B) /4 Differentiating both sides w.r.t. x using Newton
                                                                              1
                                                                                                              1 
         – 3t + 2)dt, 1  x  3. Then the range of f(x) is -                                         Now, f     = 3.
                                                                                                              3
                                        1 
         (A) [0, 2]               (B)   , 4
                                        4                                                                                                                   x
              1 
                                                                                           Q.5       If ƒ is a continuous function such that                   ƒ( t )
        (C)   , 2            (D) None of these                                                                                                             0
              4 
Sol.[C] f(x) = x(x 2 – 3x + 2) = x (x – 1) (x – 2). The                                             dt   as |x|  , then for all k  R, equation
        sign scheme for f(x) is as shown in figure.
                      f(x)  0 in 1  x  2 and f(x)  0                                                      x
        in 2  x  3                                                                                  2 2
                                                                                                     kx +         ƒ( t ) dt – a = 0 (a > 0) has -
                      f(x) is decreasing in [1, 2] and                                                         0
        increasing in [2, 3]
                                                      2                                              (A) all roots in (–, 0)
                                                       x(x
                                                                 2
          min. f(x) = f(2) =                                         3x  2) dx                    (B) all roots in (0, )
                                                      1
                                                                     2                               (C) odd number of roots in (–, 0) and odd
                                        x4     1       
                                      =     
                                              x3  x 2  =                                          number of roots in (0, )
                                         4     4      1
         max. f(x) = the greatest among [f(1), f(3)]                                                 (D) None of these
                                                                                                                                   x
              –                       +                          –            +            Sol.[C] Let g(x) = k x +      2 2
                                                                                                                                    f ( t )dt  a      … (1)
                          0                          1                    2                                                        0
                          1                                                                                                    x
                           x(x
                                          2
         f(1) =                                3x  2)dx  0                                        Since, a > 0 and           f ( t )dt            as x  ± 
                          1                                                                                                    0
                          3
                                                                                                                      (given)
                           x(x
                                          2
         f(3) =                                3x  2)dx  2
                          1                                                                                                0
                                         1 
          max f(x) = 2, so the range =  ,2 .
                                                                                                      g(0) = 0 +           f ( t )dt  a = –a < 0
                                                                                                                           0
                                         4 
                  1
                                                        1                                          and g() =  +  – a =  > 0
Q.3      If       
                  t 2 (f(t)) dt = (1 – sin x), then f 
                                                        3
                                                            is
                                                                                                     also, g(–) =  +  – a =  > 0
              sin x
Corporate Office: CP Tower, Road No.1, IPIA, Kota (Raj.), Ph: 0744-2434159                                                         DEFINITE INTEGRATION               25
         Hence, g(x) = 0 has odd number of roots in                                     9
                                                                                   =      .
         (–, 0) and odd number of roots in (0, ).                                     2
                         x                                                                           2
                                        1                                                                     1
Q.6      Let ƒ(x) =         t sin
                                        t
                                          dt . Then the number of          Q.2     Evaluate :          sin        (sin x) dx -
                         0                                                                           / 2
 / 2  / 2
                                                                                   (sin x) dx
                                 Y                                                                                  2
                                                                                   +       sin 1 (sin x) dx +       sin
                                                                                                                              1
                                                                                                                                   (sin x) dx
                           3         ƒ(x) = max {2, –x, 2, 2 + x}                       0                            
                                                                                                 1                       1    
                                                                                   = –                           +                     –
                             1                                                                   2 2 2                      2   2
                                                        X
                 –1          O              1
                                                                                    1    
                      1                                                                
                                                                                    2    2
         Therefore              max {2 – x, 2, 1 + x} dx = Area
                      1                                                                    2
                                                                                   =–          .
         of shaded region                                                                   8
             1                                                                                       2
         =     (2 + 3) × 1 + 1 × 2
             2                                                             Q.3     Evaluate :         max {x + |x|, x – [x]} dx, where
                                                                                                    2
                  0                                     2                                         x0     t  –1
                                                                                        When                      
          =        max {0, x – [x]} dx +  max {2x, x –                                          x  /4  t  0 
                  2                                    0
                                                                                                       0
                                                                                                                    dt
          [x]}dx                                                                        Then I =        9  16(1  t 2 )
                                                                                                       –1
          the graph of ƒ(x) = max {x + |x|, x – [x]} is
                                                                                                                          0
          shown as in figure                                                                                                        dt               1
                                                                                                                     =         25  16 t   2
                                                                                                                                                =
                                                                                                                                                    16
                                                                                                                          –1
                                                                                         0
                                                                                                  dt
                                                                                           5 2
                                                                                        1          2
                                                Y                                              t
                                            4                                                4
                                                                                                                                            0
                                                                                                                                5       
                                            1                                                        1    1                       t    
                                                                                                       .                        4       
                                                                                                  = 16      5 ln                        
                                                                                                         2.                      5
                                                                          X                                 4 
                                                                                                              
                                                                                                                                   t    
                                                                                                                                         
                       –2            –1     O       1       2                                                                   4        1
                                                                                                                 1           1
                                                                                                           =        ln 1  ln 
                                                                                                                 40          9
                                2
          therefore              max {x + |x|, x – [x]} dx = Area                                         =
                                                                                                                 1
                                                                                                                    {0 + ln 9} =
                                                                                                                                 1
                                                                                                                                    2 ln 3
                                –2                                                                               40              40
          of shaded region                                                                                       1
                                                                                                           =        ln 3.
                       1          1                                                                            20
                   = 2   1  1 +   ×2×4
                        2         2                                                                   /3
                                                                                                        /4
                   = 5.
                                                                                                                               1    3
                                /4                                                     (A)                 (3     3 – 4) +       ln  
                                        (sin x  cos x )                                      12 3                              2    2
Q.4       Evaluate :                   (9  16 sin 2 x )
                                                          dx -
                                    0
                                                                                                                               1    2
                                                                                        (B)                 (3     3 – 4) +       ln  
                   1                                                    1                     12 3                              2    3
          (A)         ln 2                                      (B)        ln
                   20                                                   20
                                                                                                                               1    3
          4                                                                             (C)                 (3     3 – 2) +       ln  
                                                                                              12 3                              2    2
                   1
          (C)         ln 3                                      (D) None of             (D) None of these
                   20
                                                                                                  /3
          these                                                                 Sol.[A] Let I =         x cosec     2
                                                                                                                         x dx
                        /4                                                                       /4
                                 (sin x  cos x )
Sol.[C] Let I =                 (9  16 sin 2 x )
                                                   dx                                   Integrating by parts taking x as first and cosec2 x
                            0
                                                                                        as second function, we have
Corporate Office: CP Tower, Road No.1, IPIA, Kota (Raj.), Ph: 0744-2434159                                         DEFINITE INTEGRATION              27
                                                          /3                                    (C) (–2, 2)                                (D) No where
                                                           
                                            /3
           I = x (– cot x)                           +         cot x dx
                                            /4
                                                                                                              x 2 1
                                                          /4                                                                2
                                                                                       Sol.[B] ƒ(x) =                 e – t dt
                     1                   /3                                                               x2
               = –  .    + ln | sin x |
                    3  3 4                 / 4                                                                       e – ( x 2 1) 2  e – ( x 2 )2 
                                                                                                                                                       
                                                                                                  ƒ(x) = 2x                                          
                                 3      1 
                =–     +   +  ln     ln
                   3 3   4        2        2                                                                                   4
                                                                                                                                       1 2 x 2 )                2
                                                                                                                                                                      1
                                                                                                               = 2x e – ( x                          [1 – e 2 x            ].
                                                                   1    3                     Now ƒ(x) > 0 for x  (– , 0).
                    =                   (3          3 – 4) +          ln   .
                        12 3                                        2    2                                            1
                                                                                                                        t
                                                                                                                                 m
Q.6        Let ƒ(x) be a function satisfying ƒ(x) = ƒ(x)                              Q.8       If I (m, n) =                        (1 + t)n dt ; m, n  R, then
                                                                                                                        0
           with ƒ(0) = 1 and g(1) and g(x) be a function
                                                                                                 I (m, n) is -
           that satisfies ƒ(x) + g(x) = x 2. Then the value of
                                                                                                            n
                                                                                                 (A)            I [(m + 1), (n – 1)]
                                    1                                                                      1 m
           the integral              ƒ (x) g(x) dx is -                                                    m
                                    0                                                            (B)            I [(m + 1), (n – 1)]
                                                                                                           n 1
                            e2 3                                      e2   3
           (A) e +                                       (B) e –        –                                  2n   n
                             2   2                                     2   2                     (C)           –     I [(m + 1, n – 1)]
                                                                                                           1 m 1 m
                            e2 5                                       e2   5
           (C) e +             +                          (D) e –         –                                 2n   m
                             2   2                                      2   2                    (D)           –     I [(m + 1, n – 1)]
                                                                                                           1 m 1 n
            1                                         1
                                                     e
                                                           x                                                        1                                  1
Sol.[B]         ƒ( x ) g(x) dx =                                   (x2 – ex) dx
                                                                                                                       t m (1 + t)n dt =               (1  t )
                                                                                                                                                                       n m
                                                                                       Sol.[C] I (m, n) =                                                                  t    dt
            0                                         0
                                                                                                                    0                                  0
          [ƒ(x) = ex satisfies ƒ (x) = ƒ(x) and ƒ(0) = 1]
                                                                                                                                            [Integrating by Parts]
                1                           1
                                                                                                                                                           1
                x          exdx –  e
                        2                           2x
           =                                              dx                                                             2n     n                                          n 1
                0                           0
                                                                                                                =
                                                                                                                        m 1
                                                                                                                             –
                                                                                                                               m 1
                                                                                                                                                            (1  t )             tm
                                                                                                                                                           0
                                         1                                         1
                                                                       e 2x                  +1
                                                                                                      dt
                                          (2 x ) e
                                1
           = x 2e x             0   –                          x
                                                                   dx –       
                                                                         2 
                                                                              
                                                                                                                             2n
                                         0                                         0
                                                                                                                                    n
                                                                                                                    =            –      I [(m + 1), (n –
                                               1                                                                          m 1   m 1
           = e – 2  xe
                   
                        x
                              – e    1
                                        0
                                                      x
                                                          dx  –
                                                             
                                                                 1 2 1
                                                                 2
                                                                   e +
                                                                       2                         1)].
                                               0            
                                                                                                  
                                                                                                           2 x (1  sin x )
           = e – 2 [e – (e – 1)] –
                                   1 2 1
                                     e +
                                                                                       Q.9                 1  cos 2 x
                                                                                                                                       dx is -
                                   2     2                                                       –
         dx                    …(1)                                                                    = I1 + I2.
                                                                                                                       1
                                                        x sin x                                        Put x =            in I2 and adjust the limits
         Now               I            =                         2
                                                                           dx              =                            t
                                                0 1  cos              x
                                                                                                                        1    1  1
                                                                                                                          log .     dt
                                                                                                                             t  t 2 
                                                                                                                    0                                                    1
                                                                                                                       t                                                      t log t
         
              (   x ) sin(   x )
                                2                             dx                                       I2 =                       1 
                                                                                                                                                    2            =        (1  t 2 ) 2
               1  cos (   x )                                                                                    1                                                    0
          0                                                                                                                   1     
                           
                                                                                                                                   t2 
                               (   x ) sin x
                   =           1  cos 2 x
                                                                   dx                                  dt
                           0
                                                                                                                    1
                                                                                                                            x log x
               
                        sin x
                                                        
                                                                 x sin x                               I2 = –        (1  x 2 ) 2            dx = –I1
         I=     1  cos
               0
                                2
                                    x
                                            dx –         1  cos 2 x
                                                         0
                                                                                  dx                                0
                                                                                                       Hence I1 + I2 = 0.
                           
                                    sin x                                                                                           2
          2I =                                            dx                                                                             [ x 2 1]
                           0 1  cos x
                                                    2                                          Q.11    The value of                 x                  dx, where [x] is the
                                                                                                                                    0
                       
                               sin x                                                                  greatest integer less than or equal to x is -
         
               2
                        1  cos 2 x dx                                                                (A) 2                                       (B) 8/3
                       0
                                                                                                       (C) 4                                       (D) None of these
          From (1),
                                                                  
                                                                                               Sol.[D] For x  [0, 2], x + 1  [1, 5], we must break
                                                                                                                                        2
                                                                                                                                                                              x
                                                                                                                                                                                      4
                                                                                                       =  x dx                   x 2 dx           x dx +
                                                                                                                                                        3                                 dx
                                                                                                        0                  1                                              3
         = –2  –   = 2.                                                                                                                            2
                4 4
                                                                                                             1   1 3/2       1           1
                                                                                                      =       +   [2 – 1] +   [9 – 4] +   [32 –
                                                             x log x                                         2   3           4           5
Q.10     The value of integral                           (1  x 2 ) 2          dx is -
                                                        0                                              35/2]
         (A) 1                                           (B) 0                                              469   1 3/2 1 5/2
                                                                                                       =        +   2 –   3 .
         (C) 2                                           (D) None of these                                  60    3     5
Corporate Office: CP Tower, Road No.1, IPIA, Kota (Raj.), Ph: 0744-2434159                                                                  DEFINITE INTEGRATION                                29
                                  3                                                             1     m ( m  2)
Q.12      The value of             {| x  2 | [ x ]} dx, where [x]                   (C)
                                                                                               1 m
                                                                                                    ,
                                                                                                        m 1
                                                                                                                                            (D)
                                  –1
          denotes the greatest integer less than or equal to
          x is -                                                                         m
                                                                                             ,m–2
          (A) 5       (B) 7       (C) 4        (D) 3                                    m 1
           3                                    0
                                                {| x  2 | [ x ]} dx
                                                                                               e
Sol.[B]        {| x  2 | [ x ]} dx =
                                                                                                (log x )
                                                                                                            m                                 e
           –1                                  –1
                                                                               Sol.[A] Im =                          dx = x (log x ) m        1
                                                                                               1
               1
                                                                                                                                 e
          +     {| x  2 | [x ]}dx +                                                                                     – m  (log x )
                                                                                                                                                  m 1
                                                                                                                                                           dx
               0
                                                                                                                                 1
2                                 3
                                                                                       =                    e                         –                         m
                                 
    {| x  2 | [ x ]}dx + {| x  2 | [ x ]}dx
1                                 2
                            0                                                                           e           e                   
                                                                                         x (log x ) m 1  ( m  1)  (log x ) m  2 dx 
                       =     (2 – x  1)dx +                                                           1                               
                           –1                                                                                       1                   
1                                                    2                                 = e – me + m (m – 1) Im–2 = (1 – m) e + m (m – 1) Im–2
   ( 2 – x  0)dx +                                 (2 – x  1)dx +                          Im
0                                                    1                                 So          + m Im– 2 = e. Thus K = 1 – m and L =
                                                                                              1 m
           3
            ( x – 2  2)dx                                                             1
                                                                                          .
           2                                                                            m
                            0                    1                     2
                       x2                  x2                     x2                                    16
          =     x                + 2x                  + 3x –            +                                          1
                        2
                             –1
                                            2
                                                    0
                                                                   2
                                                                       1
                                                                               Q.14    The value of      tan                        x 1   dx is -
                                                                                                        1
           x2
                   3                                                                           16                               4
                                                                                       (A)         +2            3         (B)     –2            3
            2                                                                                   3                                3
                   2
                    1       1                                                              4                                 16
          = –   1   +  2   + (6 – 2) –                                          (C)       +2        3              (D)      –2               3
                     2        2                                                              3                                  3
                         
                                                                               Sol.[D] Integrating by parts, the given integral is
              1                                                                      equal to
           3  
              2                                                                                                         16
                                                                                                                                 x                1
                                                                                                                           
                                                                                                                 16
                                                                                       x tan–1         x 1           –
                                                9                                                                1
                                                                                                                                 x     4 x            x 1
                                           +      – 2 = 7.                                                                 1
                                                2
                                                                                       dx
                            e
                                                         I m I m2                                       16
          Given Im =  (log x )
                                        m
Q.13                                           dx. If             =e                    16    1                       dx
                            1                             K    L                       =
                                                                                          3
                                                                                            –
                                                                                               4
                                                                                                                         x 1
                                                                                                             1
          then values of K and L are -
                                                                                                                 3
                                                                                              16     1                4 t (1  t 2 )
          (A) 1 – m,
                     1
                                           (B)
                                                1
                                                    ,m
                                                                                       =
                                                                                               3
                                                                                                  –
                                                                                                     4                      t
                                                                                                                                     dt (         x = 1 +
                     m                         1 m                                                              0
                                                                                       t 2)
                                                                                              16                                     16
                                                                                       =         –(    3 +             3 )=             –2               3 .
                                                                                               3                                      3
Corporate Office: CP Tower, Road No.1, IPIA, Kota (Raj.), Ph: 0744-2434159                                       DEFINITE INTEGRATION                           30
                                                                                                                      /2
Q.15       The value of                  [2 sin x ] dx, where [ . ]                =                    2n              (sin x  cos x )dx +
                                      0                                                                                 0
                                                                                                                                     (Property 8)
                   [ 2 sin x ]dx                                                              3 / 4
                                                                                                            dx
           5 / 6
                                                                                          =             1 – cos x
                              /6            /2             5 / 6                               / 4
           =                       0 dx +        1 dx +         1 dx +                          3 / 4
                                                                                                              1         1     
                                0            /6             /2
                                                                                    2I =                                   dx =
                                                                                                          1  cos x 1  cos x 
                                                                                                     /4
                
                                                                                                                       3 / 4
                 0 dx                                                                                                      
                                                                                                                                     2
                                                                                                                                              dx
           5 / 6
                                                                                                                        /4     1  cos 2 x
                      5      2                                                                           3 / 4
           =      –   +    –   =    .                                                             = – 2 cot x  / 4 = 4. Hence I = 2.
                2   6    6   2    3
                                                                            Q.3     Let ƒ be a positive function and
Q.1        The value of the integral                                                                          k
           n  t                                                                   I1         =               x ƒ( x (1  x )) dx,          I2   =
                   (| cos x |  | sin x |) dx is -                                                        1 k
                0                                                                        k
Corporate Office: CP Tower, Road No.1, IPIA, Kota (Raj.), Ph: 0744-2434159                                         DEFINITE INTEGRATION            31
                   k                                      k                                                      
                                                                                                                          sin x
          =              ƒ((1  x )) dx –                   x ƒ((1  x ) x )                   2I = 4                 2          dx
                  1 k                               1 k                                                        0 1  cos x
1 / 2 1 1 t  11  t
          -
                                                                                                 t ]11
          (A) –1/2                                (B) 0
          (C) 1                                   (D) 2 log (1/2)                                                                            
                                                                                                         = 2 [tan–1 (1) – tan–1 (–1)] = 2   
              1/ 2                                            1/ 2
                                                                                                                                            4 4
                            1 x 
Sol.[A]        
                [ x ]  log
               
                                   dx =
                             1 x 
                                             [ x ]dx                                                    = 2 ×
                                                                                                                          
                                                                                                                            = 2.
        1 / 2                           1 / 2
                                                                                                                          2
                                1 x                                                   Q.6       The value of the integral
          (since log                 is an odd function)
                                1 x
                                                                                                  1/ 2                      2              2
                                                                                                         x 1     x 1 
                      0                    1/ 2                     0
                                                                                                    x  1    x  1   2 dx is -
          =               [x] dx +          [ x ] dx =  (–1)                   dx             1 / 2
                  1 / 2                    0                   1 / 2
                                                                                                                      4                              4
                                                                                                 (A) 2 log                           (B) 4 log
                   1                                                                                                  3                              3
          =–         .
                   2                                                                                             4
                                                                                                 (C) log           (D) None of these
                                                                                                                3
                   2 x (1  sin x )
Q.5                  1  cos 2 x
                                             dx is -                                              1/ 2
                                                                                                         x 1 x 1
                                                                                                                                      2
                                                                                     Sol.[B]                   
                                                                                                         x 1 x  1
                                                                                                 1 / 2
                      2                                                   
          (A)                    (B) 2           (C) zero          (D)
                                                                           2                             1/ 2
                       4                                                                                             x 1 x 1
              
                                                                                                 =                      
                                                                                                                     x 1 x 1
                                                                                                                               dx
                   2 x (1  sin x )                                                                  1 / 2
Sol.[B]              1  cos x    2         dx
                                                                                                     1/ 2                            1/ 2
          –                                                                                                         4x                         4x
                                                    
                                                                                                 =              x 12
                                                                                                                             dx  2            2
                                                                                                                                               x 1
                                                                                                                                                         dx
                            2x                                x sin x                                1 / 2                            0
          =        1  cos 2 x            dx + 2     1  cos 2 x         dx
                                                                                                 (integrand is an even function)
               –                                   –
                                                                                                         1/ 2
                                                                                                                4x 
          I=0+4
                                 x sin x dx
                             1  cos 2 x                                                        = –2          2   dx
                            0                                                                                0  x 1 
                       
                           x sin x dx                                                               4x                        1 
                                                                                                        0 in the interval  0,  
          I=4          1  cos 2 x                                                                x2 1                      2 
                       0
                                                                                                                                   3
                           (   x ) sin x                                                       = –4[log (1 – x2) ]10/ 2 = – 4  log  = 4 log
          I=4              1  cos 2 x
                                                                                                                                    4
                       0
                                                               
                                       sin x                            x sin x                  4
           I = 4            1  cos 2 x dx – 4  1  cos 2 x                                   .
                                                                                                 3
                             0                                  0
          dx
Corporate Office: CP Tower, Road No.1, IPIA, Kota (Raj.), Ph: 0744-2434159                                                      DEFINITE INTEGRATION          32
          n2                                                                                    2[ x ]                              2[ x ].1
Q.7           [      x ] dx is equal to -                                            Sol.[A]         ( x  [ x ])dx =                  ( x  [ x ])dx
              0                                                                                      0                                  0
                                                                                                                                    1
                   n ( n  1)( 4n  1)
          (A)
                            6
                                                                 (B)                                                       = 2[x]    ( x  [ x ])dx
                                                                                                                                    0
                        
          9
                                                                                                         1 cos 2 t
                      x dx
          4
                                                                                                I1 =                   x ƒ {(2 – x)} dx and
                                                                                                          sin 2 t
                                                             n2
                                                                                                      1 cos 2 t
                                            + …. +                     x dx
                                                           ( n 1) 2
                                                                                                I2 =         2
                                                                                                                        ƒ{x(2 – x)} dx. Then I1/I2 is -
                                                                                                          sin t
                                                                                                             
                                                                                 
          
          
                                                                         2       2
                              2, if 4  x  9.....; ( n  1), if ( n  1)  x  n    Sol.[B] I1 =                      x ƒ {(2 – x)} dx
                                                                                                          sin 2 t
                      1               4                  9
                  =      0dx +          1 dx +          2 dx         + ….                                  1 cos 2 t
                      0               1                  4                                           = I1 =                 (2 – x) ƒ(x(2 – x)) dx = 2 . I2 –
                                                                                                                  sin 2 t
                                                           n2
                                                  +           (n  1) dx                       I1
                                                        ( n 1) 2
                                                                                                                            I1
= 1(4 – 1) + 2(9 – 4) + ….. + (n – 1) [n2 – (n – 1)2]                                            2I1 = 2I2                   = 1.
                                                                                                                            I2
= – (12 + 22 + 32 + …. + n2) + n3
                                                                                                                    
                                                                                                                            x sin x
= n3 –
       n ( n  1) ( 2n  1)
                            =
                              n ( n  1) ( 4n  1)
                                                   .
                                                                                      Q.10      Evaluate :           1  cos 2 x dx
                6                      6                                                                            0
                                                  2[ x ]                                                 2                                 2
                                                                                                (A)                                   (B)
Q.8       The value of the integral                 ( x  [ x ])dx             is                        2                                 8
                                                    0
                                                                                                         2
          -                                                                                     (C)                                   (D) None of these
                                                                                                          4
                                                   1
          (A) [x]                           (B)      [x]                                                      
                                                                                                                        x sin x
                                                   2                                  Sol.[C] Let I =          1  cos 2 x           dx                  … (1)
          (C) 3[x]                          (D) 2[x]                                                          0
Corporate Office: CP Tower, Road No.1, IPIA, Kota (Raj.), Ph: 0744-2434159                                                    DEFINITE INTEGRATION           33
                                                                                     1
                 (   x ) sin(   x )
         =           2
                                                    (By     Prop.                =     (1  x )              x99 dx
             0 1  cos (   x )                                                      0
                                                                                      1
         IV)
                                                                                       (x
                                                                                                  99
                                                                                 =                       x100 ) dx
                                                                                     0
                 (   x ) sin x
         =          1  cos 2 x
                                                    … (2)
                                                                                 =
                                                                                       x100
                                                                                            
                                                                                              x101
                                                                                                                 1
             0                                                                         100    101
                                                                                                                 0
         Adding (1) and (2), we get                                                     1       1
                                                                                     =      –
                     
                               sin x
                                                                                       100    101
        2I =         1  cos 2 x dx                                                =
                                                                                          1
                                                                                              .
                     0
                                                                                       10100
         Put cos x = t                                                                               – / 6
         When x = 0  t = 1                                                                                           dx
               x =   t = –1
                                                                    Q.12     Evaluate :                             tan 2 n x
                                                                                                      / 3 1 
                              –1
                                   dt
          2I = –             1 t2                                        (A)
                                                                                       
                                                                                                                        (B)
                                                                                                                               
                              1                                                        6                                      12
                 1
                         dt                                                            
         =       1 t2                                                     (C)
                                                                                       3
                                                                                                                        (D) None of these
               –1
                                                                                                   / 6
         =  tan–1 t
                              1                                                                                  dx
                              1                                    Sol.[B] Let I =                           tan 2n x
                                                                                                   / 3 1 
         =  {tan 1 – tan (–1)}
                         –1          –1
                                                                                     /3
         =  {2 tan–1 1}                                                                                    dx
                                                                             =                      (tan (– x )) 2 n
                                                                                                                                         (By Prop.
                                                                                    /6 1 
          I =  tan–1 1 =  .
                               4                                             X)
                                                                                     /3
                              2                                                                       cos 2n x dx
         Hence I =
                               4
                                 .                                           =               (sin 2 n x  cos 2n x )
                                                                                                                                 … (1)
                                                                                     /6
                              1
                                                                             and
Q.11     Evaluate :            x (1 – x) 99
                                               dx
                              0                                              I                                                                  =
                   1
         (A)                                        (B)
                 10100
                                                                                                     
                                                                             /3         cos 2n    x dx
           1                                                                                    3 6    
         11000                                                                 2 n     2n    
                                                                              / 6 sin    x   cos    x 
                   1                                                                   3 6            3 6   
         (C)                                        (D) None of
                 10010                                                       (By Prop. V)
         these                                                                        /3
                                                                                                        sin 2n xdx
                         1                                                       =               cos 2n x  sin 2 n x
                                                                                                                                            … (2)
Sol.[A] Let I =              x (1 – x)99 dx                                          / 6
Corporate Office: CP Tower, Road No.1, IPIA, Kota (Raj.), Ph: 0744-2434159                                       DEFINITE INTEGRATION           34
                                                                                It is clear from (1), (2) and (3) we get
         I=        .
                 12                                                                                   b
                                                                                                          |x|
                         199                                                                             x
                                                                                                              dx = |b| – |a|.
                                       1  cos 2 x 
                                
                                                                                                      0
Q.13     Evaluate :                                 dx -
                                            2      
                            –                                                                    1
                                                                                                      sin t
         (A) 200            (B) 400           (C) –200        (D) –400   Q.1     Given             1 t        dt = , find the value of
                                                                                                  0
                    199                                                             4
                                     1  cos 2x                                              sin( t / 2)
Sol.[B] Let I =                    
                                          2
                                                  dx
                                                                                             4  2  t
                                                                                                           in terms of  -
                     –                                                          4 2
                    199                                                         (A)                                (B) – 
                =              | sin x | dx                                     (C) 2                              (D) None of these
                                                                       Sol.[B] Let
                                                                                          4
                                                                                                      sin( t / 2)
                 = (199 – (–1))               | sin x |     dx                  I=                  4  2  t
                                                                                                                  dt
                                             0                                            4 2
         ( | sin x | is periodic with period )                         =        (4                     –          (4         –       2))
                                
                                                                                            ( 4  (4  2)) t  4  2 
                 = 200           sin x dx                                        1    sin 
                                                                                                        2
                                                                                                                         
                                                                                                                          dt
                                0
                                                 
                                                                                     4  2  ((4  (4  2) t  4  2)
                 = 200 (– cos x) 0                                                0
                 = 200 (1 – (–1)) = 400.                                                  1
                                                                                               sin( t  1)
                            b
                                                                                 =2            (4  2t )
                                                                                                           dt
                                |x|                                                       0
Q.14     Evaluate :             x
                                    dx, a < b -                                       1
                                                                                          sin( t  1)
                                                                                      
                            a
                                                                                 =                    dt
                                                                                           (2  t )
         (A) |a| – |b|                        (B) |b| + |a|                           0
                                                                                      1
         (C) |b| – |a|                        (D) None of these                           sin(1  t  1)
                    b
                                                                                 =        2  (1  t )
                                                                                      0
                        |x|
Sol.[C] Let I =         x
                            dx                                                   (By Prop. IV)
                    a                                                                 1
                                                                                           sin(  t )
         Case I : When 0 < a < b
                                                                                 =         (1  t )
                                                                                                      dt
                                                                                      0
                    b                    b                                                1
                            x                                                                  sin t
                                                                                         1 t
                                                              b
         then I =             dx =            1 . dx = x      a   =b–a           =–                        dt
                            x
                    a                    a                                                0
Corporate Office: CP Tower, Road No.1, IPIA, Kota (Raj.), Ph: 0744-2434159                                      DEFINITE INTEGRATION      35
                                                                                                                               
             5                          5 
                                                  3                                      (A)   – ln 2                    (B)       – ln 4
         =       | sin x | dx +
                                               | sin x |        dx                          2                                   2
              0
                                          5                                                 
                                                                                         (C)   – ln 2                    (D) None of these
                                         /3                                                4
         = 5  | sin x | dx +                  | sin x |       dx                                 1
                                                                                                               1
              0                               0                                  Sol.[A] Let I =    cot             (1 – x + x2) dx
         (By Prop. XIII & XV)                                                                      0
         ( | sin x| is periodic with period )                                                    1
                                                                                                               1
                                        /3                                                   =    cot             (1 – x (1 – x)) dx
         =5          sin x dx +             sin x dx                                             0
                  0                       0                                              (0  x < 1)
                                                           /3                                    1
         = 5 (– cos x)                  (  cos x )
                                                                                                               1            1        
                       1     21
                                   0                        0
                                                                                               =    tan                              dx
                                                                                                                       1  x (1  x ) 
                                                                                                   0
         = 5 (1 + 1) –  1 =    .
                        2    2                                                                   1
                                                                                                                      x  (1  x ) 
                                                                                                               1
                              1
                                   ln x
                                                        1
                                                                ln (1  x )
                                                                                               =    tan                              dx
                                                                                                                       1  x (1  x ) 
Q.3      Show that             (1  x )       dx = –              x
                                                                            dx                     0
                                                                                                   1
                              0                         0
                                                                                                               1
                      2                                                                        =    (tan            x  tan 1 (1  x )) dx
             
         =–                                                                                        0
              12                                                                                                                                        =
              2                                  2                                      1                          1
         (A)                                  (B)                                                1                             1
              12                                   6                                      tan         x dx          tan           (1  (1  x ))dx
                                                                                          0                          0
               2                                     2                                 (From property)
         (C) –                                (D) –
                6                                     12                                              1
                                                                                                                1
                          1
                               ln x                                                            = 2  tan             x dx
Sol.[D] Let I =              (1  x )
                                       dx                                                             0
                          0                                                              Integrating by parts taking unity as the second
         Integrating by parts taking ln x as first function,                             function, we have
         we have                                                                                                     1             
                                                                                                         1                x
                                                                                                                                      
                                                  1                                                               1
                                                      ln (1  x )                             I = 2 [tan x . x ]0              dx 
         =  lnx.ln (1  x ) 0 –                 
                                          1                                                                                   2
                                                                  dx                                                 0 1 x
                                                                                                                                    
                                                           x                                                                       
                                                  0
                                                                                                               1  2                     1
                          1
                              ln (1  x )                                                        = 2   [ln | 1  x ]0 
         I=0–                     x
                                          dx                                                         4 2               
                          0                                                                                       1       
                      2   3   4                                                                = 2   ln 2 
             1  x  x  x  x  ....                                                               4 2     
                                     
         = –        2   3   4
                                       dx                                                                
             0           x                                                             Hence I =          – ln 2.
                                                                                                        2
              1                                                                                           1
                  x x2   x3        
         = – 1  
                 2  3
                       
                         4
                             ....  dx
                                   
                                                                                 Q.5     Evaluate :         [ x[1  sin x ]  1] dx,            where
            0                                                                                            1
                                                        1                                [.] is the greatest integer function -
                 x2 x3 x4        
         = –  x  2  2  2  ...                                                      (A) 2                    (B) 1
                2   3   4        0                                                   (C) 3                    (D) None of these
                                                                                                   1
                  1   1   1        
         = – 1  2  2  2  ...                                             Sol.[A] Let I =    [ x[1  sin x ]  1] dx,
               2     3   4                                                                       1
                      2
                  
         =–          .
                  12
                               1
                                        1
Q.4      Evaluate :             cot          (1 – x + x2) dx -
                               0
Corporate Office: CP Tower, Road No.1, IPIA, Kota (Raj.), Ph: 0744-2434159                                          DEFINITE INTEGRATION                36
                            0                                                                                                                     2
                                                                                                         1        3
                                                                                                   = a2         – a (0 – 1) – 20 = 2a + a –
         =                     [ x[1  sin x ]  1] dx                               +
                                                                                                         12 4                                 3
                            1
         1                                                                                         20.
                                                                                                   Thus the given inequality is (2a2/3) + a – 20  – a2/3
          [ x[1  sin x ]  1] dx                                                                i.e. a2 + a – 20  0  – 5  a  4
         0
         Now [1 + sin x] = 0 if –1 < x < 0                                                        Since a is a positive integer so a = 1, 2, 3, 4.
                                                                                                                           x
         and [1 + sin x] = 1 if 0 < x < 1
                                                                                                                            cos t
                                                                                                                                        2
                                                                                                                                            dt
                       0                  1                                                Q.8     The value of xlim
                                                                                                                  0
                                                                                                                                                 is -
         I=            1 . dx +  [ x  1] dx                                                                            0
                                                                                                                                   x
                    –1                    0
                     1                                                                             (A) 1                        (B) 0
         =1+1            dx                                                                       (C) – 1
                                                                                                                      x
                                                                                                                                (D) 2
                        0
                                                                                                                       cos t
                                                                                                                                2
         =1+1=2                                                                            Sol.[A] Let ƒ(x) =                       dt and g(x) = x. Then
                                  2                                                                                   0
                                          [ x 2 1]
Q.6      The value of             x                  dx, where [x] is the                         ƒ(0) = g(0) = 0.
                                  0
                                                                                                    xlim
                                                                                                             ƒ( x )  lim ƒ( x )
        greatest integer less than or equal to x is -                                                   0 g ( x ) = x 0 g( x )
        (A) 2                   (B) 8/3
                                                                                                                                        x
        (C) 4                   (D) None of these
                                                                                                                                         cos t
                                                                                                                                                     2
                                                                                                                                lim                      dt
Sol.[D] For x  [0, 2], x2 + 1  [1, 5], we must break                                                                        x 0 0                         = xlim
                                                                                                                                                                  0
        [0, 2] = [0, 1]  [1, 2 ]  [ 2 , 3 ]  [
                                      2                                                                                                          x
                                                2
                                                     1]                                                     2
              3 , 2]. Hence  x
                                [x
                                                           dx                                       cos x .1  cos 0.0
                                      0                                                                       1
                   1                                       2
                      [ x 2  1]                                                                            cos x 2
                   x                                                                              = xlim
                                                                      2
                                                                           1]
         =                       dx            +               x[x              dx    +
                                                                                                       0
                                                                                                                      = cos 0 = 1.
                   0                                       1                                                   1
             3
                      2
                                                                                           Q.9     The least value of the function
                x [ x  1] dx                                                                                    x
             2                                                                                     F(x)   =        (3 sin u  4 cos u ) du                   on   the
                                                                 2                                                0
                                                                             2
                                                                          [ x  1]
                                                           +     x                   dx           interval (5/4, 4/3] is -
                                                                  3
                                                                                                                             54 3
             1     1                1           1                                                  (A) 3/2 –      3 /2          (B)
         =      +      [23/2 – 1] +   [9 – 4] +   [32 –                                                                           2
             2     3                4           5
                                                                                                       74 3                  94 3
         35/2]                                                                                     (C)                  (D)
                                                                                                            2                     2
             469      1 3/2 1 5 / 2
         =         +      2 – 3        .                                                   Sol.[D] We have F(x) = 3 sin x + 4 cos x. Since sin x
              60      3          5                                                                 and cos x assume negative values in the third
Q.7      If a is a positive integer, then the number of                                            quadrant, we have F(x) < 0 for all x  (5/4,
         values of a satisfying                                                                    4/3) so F(x) assumes the least value at the
                                                                                                   point x = 4/3. Thus the least value is
         / 2
                    cos 3x 3                                                                                 4 / 3
                 a 
                    4
                             cos x   a sin x  20 cos x 
                             4                                                                   F(4/3) =        (3 sin u  4 cos u )du
             0
                                                                                                                   0
              a2                                                                                                           4 / 3
        dx       are -                                                                            = (–3 cos u + 4 sin u ) 0
               3
                                                                                                                 4         4
        (A) one              (B) two                                                               = –3 cos         + 4 sin    – (–3)
        (C) three            (D) four                                                                             3          3
Sol.[D] The L.H.S. of the above inequality is equal to                                                 9   4 3   94 3
                                                                                                   =     –     =       .
              sin 3x 3                                                                               2    2      2
         a2          sin x                         – a cos x – 20
              12     4      
                    /2
         sin x      0
Corporate Office: CP Tower, Road No.1, IPIA, Kota (Raj.), Ph: 0744-2434159                                                DEFINITE INTEGRATION                      37
Q.10     The difference between the greatest and the                                                   1 cos2 t
                                                                x                    Sol.[B] I1 =             (2  x )ƒ((2  x )(2  (2  x )))
         least value of the function F(x) =                      ( t  1) dt                              sin 2 t
                                                                0                              dx
        on [2, 3] is -                                                                                 1 cos 2 t
        (A) 3                    (B) 2
        (C) 7/2                  (D) 3/2
                                                                                                   =          (2  x )ƒ(x (2  x )) dx
                                                                                                           sin 2 t
Sol.[C] Differentiating the given function, we get
                                                                                                                              1 cos 2 t
                             dx                  d0
        F(x) = [t + 1]t = x
                             dx
                                  – [t + 1]t = 0
                                                 dx
                                                     =x+                                                              =   2         ƒ( x (2  x )) dx
                                                                                                                                    2
                                                                                                                                                              –
                                                                                                                               sin t
        1.
                                                                                               1 cos2 t
        This is positive for all x  [2, 3], so F is an
        increasing function in this interval. Therefore its                                             x ƒ( x (2  x )) dx
                                                3                                                  sin 2 t
         greatest value is F(3) =                ( t  1) dt and its                             = 2I2 – I1
                                                                                               Therefore, 2I1 = 2I2 and so I1/I2 = 1.
                                                0
                                           2                                                                      102
                                                                                                                              1
         least value is F(2) =                ( t  1) dt, so that the              Q.13      Evaluate :             [tan        x ] dx, where [·] denotes
                                           0                                                                         0
         required difference between these values is                                           the greatest integer function less than or equal to
          3                       2                                                            x-
                                                               7
           ( t  1)       dt –    ( t  1)            dt =
                                                               2
                                                                 .                             (A) 102 – tan 2
                                                                                               (C) 101 – tan 2
                                                                                                                       (B) 102 – tan 1
                                                                                                                       (D) None of these
          0                       0
                                                                                               102
                                                                             1                                1
Q.11     The mean value of the function ƒ(x) =
                                                                     x x2
                                                                                     Sol.[B]        [tan            x ] dx
                                                                                                   0
         on the interval [1, 3/2] is -                                                              tan 1                           102
         (A) log (6/5)           (B) 2 log (6/5)                                               =          [tan 1 x ] dx +              [tan
                                                                                                                                                 1
                                                                                                                                                      x ]dx
         (C) 4                    (D) log 3/5                                                          0                            tan 1
                                               b                                                              102
                                1
Sol.[B] Mean value =
                               ba              ƒ( x )dx                                      = 0 + 1.            1.dx
                                               a                                                              tan 1
                                             (Property 14)                                     = 102 – tan 1.
                                      3/ 2
                          1                         1                                                                 n
         =
                      3 / 2 1                 2
                                               x x
                                                         dx          =           2
                                                                                                                       [ x ]dx
                                       1
                                                                                                                      0
         3/ 2                                                                        Q.14      Evaluate :                           , where [x] and {x}
               1      1                                                                                             n
               x  x  1  dx
                                                                                                                     {x}dx
             1
                                                                                                                      0
                                  3/ 2
         = 2 (log x – log (x  1) 1 = 2 [log (3/2) – log                                       denotes the integral part and fractional part
                                (5/2) – (log 1 – log 2)]                                       function of x and n  N -
         = 2 log (6/5).                                                                        (A) n                 (B) n – 1
Q.12     For any t  R and ƒ a continuous function, let                                        (C) 2n                (D) None of these
                 1 cos 2 t                                                                                   n
         I1 =         x ƒ( x (2  x ))dx                                                                      [ x ]dx
                      2
                  sin t                                                                                      0
                                                                                     Sol.[B] Let I =         n
                          1 cos 2 t
         and I2 =              ƒ( x (2  x ))dx then                    I1/I2 is                             {x}dx
                                                                                                              0
                           sin 2 t
         equal to-
         (A) 2                               (B) 1
         (C) 4                               (D) None of these
Corporate Office: CP Tower, Road No.1, IPIA, Kota (Raj.), Ph: 0744-2434159                                                DEFINITE INTEGRATION                38
         =                                                                                              e
                                                                                                         (log x )
                                                                                                                           m                                      e
          1              2                 3                        n             Sol.[A] Im =                                  dx = x (log x)m                   1
                                                                                                                                                                          – m
                                         
              [ x ]dx  [ x ]dx  [ x ]dx  ...                       [ x ]dx
                                                                                            e
                                                                                                        1
          0              1                 2                     n 1
                                                                                                                   m 1
                                       1                                                     (log x )                    dx
                                       
                                      n {x}dx                                               1
                                       0                                                                                                         m =        e         –
                    2             3                             n                                            e                               e    
                                                                                             x (log x ) m 1  ( m  1) (log x ) m  2 dx   
                                 
              0  1. dx  2 dx  ...  ( n  1)                  dx                                         1                                    
                    1             2                            n 1                                                          1                    
         =                            1                                                     = e – me + m (m – 1) Im–2 = (1 – m) e + m (m – 1) Im–2
                                      
                                  n . x dx
                                                                                            So
                                                                                                         Im
                                                                                                             + m Im – 2 = e. Thus K = 1 – m
                                       0
                                                                                                        1 m
          0  1  2  3  ...  ( n  1)
                                                                                                             1
                         1                                                                  and L =            .
                     n.                                                                                      m
                         2                                                                                                                                 1              1
           ( n  1) n                                                             Q.2       A function ƒ is defined by ƒ(x) =                              r 1
                                                                                                                                                                  ,           <
                                                                                                                                                       2              2r
         =
               2      = (n – 1).                                                                            1
               n                                                                            x              r 1    , r = 1, 2, 3…. then the value of
                                                                                                        2
               2                                                                            1
Q.15     Find the mean value of x (a – x) over the range
         (0, a) -
                                                                                             ƒ( x )            dx is equal -
                                                                                            0
               a2                  a2                                                       (A) 1/3                (B) 1/4          (C) 2/3            (D) 1/3
         (A)                  (B)
                3                   6                                                       1                                           2 ( r  1)
                                                                                                                                                           1
         (C)
               a
                              (D) None of these
                                                                                  Sol.[C]    ƒ( x ) dx                   =                          2   r 1
                                                                                                                                                                  dx          =
                                                                                            0                                    r 1    2r
               6
                                                                                                
                             a                                                                          1
                                                                                             2 r 1               [2 – (r – 1) – 2–r]
Sol.[B] Mean value =            x (a  x )dx                                               r 1
                             0                                                                                                
                                  ( a  0)                                                  =    2  2( r 1)             –    2  2r 1
                                                                                                    1                           1
                                  a
                          1                                                                                         
                                                                                                                                                     1
                                   (ax  x
                                                    2
                        =
                          a
                                                        ) dx                                = (22 – 2)              2  2r         =2.         .
                                                                                                                                                  1  1/ 4
                                                                                                                                                           =
                                  0                                                                                  1                        4
                             1        2        3   
                                                        a                                    2
                                   ax         x                                               .
                        =                                                                 3
                             a     2
                                               3   
                                                    0
                                                                                  Q.3       If ƒ : R  R, g : R  R are continuous
                          1       
                                  a
                                     3
                                         a3    
                                                a
                                                    2
                                                                                            functions then the value of the integral
                        =                  0     .                                         / 2
                          a        2
                                         3    
                                                  6
                        e
                                                   I   I
                                                                                                  [(ƒ( x )  ƒ( x ))(g( x ) – g( x ))]dx
                         (log x )                                                           / 2
                                      m
Q.1      Given Im =                        dx . If m + m 2
                        1                           K    L                                is -
         = e then values of K and L are -                                                 (A) 1       (B) 0       (C) –1      (D) 
                                                                                  Sol.[B] Let F(x) = [ƒ(x) + ƒ(–x)) (g(x) – g(–x)) so
                   1             1                                                        F(–x) = (ƒ(–x) + ƒ(x)) (g(–x) – g(x)) = – F(x)
         (A) 1 – m ,        (B)      ,m
                  m             1 m                                                                         /2
         (C)
              1
                  ,
                    m ( m  2)
                                     (D)
                                                                                            Hence                ƒ( x ) dx = 0. (using Property 11).
             1 m    1 m                                                                                    / 2
                                                                                  Q.4       Given f an odd function periodic with period 2
           m
                ,m–2                                                                                                                      x
          m 1                                                                              continuous  x and g(x) =                     ƒ( t )dt , then -
                                                                                                                                          0
                                                                                            (A) g(x) is odd function
Corporate Office: CP Tower, Road No.1, IPIA, Kota (Raj.), Ph: 0744-2434159                                                    DEFINITE INTEGRATION                            39
         (B) g(2n) = 1
         (C) g(2n) = 0                                                                 x ( t  1), when x  t
         (D) None of these                                                            
                         x2                                                          t ( x  1), when t  x and t is continuous function
Sol.[C] g(x + 2) =        f (t)        dt                                                               1
                          0                                                          If g(x) =            f ( t ) G(x,      t)dt, then which is
          2                x 2                             x                                            0
             f ( t ) dt +      f ( t ) dt = g(2) +         f ( t ) dt             incorrect
                                                                                     (A) g(0) + g(1) = 0                 (B) g(0) = 0
          0                  2                              0
          g(x + 2) = g(2) + g(x)  g(x) is periodic with                            (C) g(1) = 1                        (D) g  (x) = f(x)
                                                                                                                                     1
         period 2
                             2                          1                    Sol.[C] G(0, t) = 0 for t  0 so g(0) =                  f (t)        . 0 dt
         Also, g(2) =         f ( t ) dt           =    f ( t ) dt     +
                                                                                     =0
                                                                                                                                     0
                             0                          0
          2                                                                          G(1, t) = t . (1 – t) = 0 for t < 1.
           f ( t ) dt                                                                                       1
          1                                                                          Hence g(1) =             f ( t ) . 0 dt = 0
                                             1                  0                                            0
                                    =           f ( t ) dt +      f (t)                                   x                            1
                1                                                                                       +     f ( t ) (t – 1) dt – xf (x) (x – 1)
         +           then the greatest value of b – a is -                                                   x
              f (x )                                                                                         1                   1
                                                                                             sin 2 t
         1  lim tan 1 f 2 ( x )  lim tan 1 f 2 ( x )
 b–a          
                                   x a                                                   1 cos 2 t
         2 x b                                        
           
                                                                                        =          (2  x ) f(x(2 – x)) dx = 2 . I             2   – I1
       =       .                                                                               sin 2 t
         24
                                                                                                         I1
Q.8    Let                                                                           2I1 = 2I2             = 1.
       G(x, t) =                                                                                         I2
Corporate Office: CP Tower, Road No.1, IPIA, Kota (Raj.), Ph: 0744-2434159                                        DEFINITE INTEGRATION                     40
                      1        x2                                                                       6 x (1  5x12 )                        6 x (1  5x12 )
           lim
Q.10      x 0
                   x3
                                   sin        t dt is equal to -                          (A)
                                                                                                         (1  x12 ) 2
                                                                                                                                      (B)
                                                                                                                                                  (1  x12 ) 2
                                  0
                 1                         2                  1               2                          6 x (1 – 5x12 )
          (A)                     (B)                 (C) –           (D) –                (C) –                                                         (D) None of
                 3                         3                  3               3                              (1  x12 ) 2
                               x2                                                          these
           lim        1
Sol.[B] x 0 3
            x
                                     sin      t dt                                                                           x3
                                                                                                                                    dt
                                  0                                               Sol.[A] We have, ƒ(x) =                       1 t4
                       x2                                                                                                      1
          = xlim        sin               t dt  0    
                                                 form 
                                                                                                      1 
                                                                                            ƒ(x) = 
                                                                                                                       d
                                                                                                                         (x 3 ) =
                                                                                                                                     1
              0                                 0                                                       4        .
                       0
                                                                                                     1  t  t  x 3 dx          1  x12
                                   x3                                                      . 3x2
           x     2
                                                                                                                   (1  x12 ) . 2 x – x 2 .12x11 
                                                    
            sin                 t dt  0 at x  0                                       ƒ(x) = 3                                           
          
            0                                       
                                                                                                                          (1  x12 ) 2          
                                                       d                                                     6 x (1  x12 – 6 x12 )
                 [sin                  t ]t  x 2 .      (x 2 )                            ƒ(x) =
          = xlim
              0                                      dx        . (1)                                                 (1  x12 ) 2
                                                2
                          3x                                                                                 6 x (1 – 5x12 )
                 (sin x ) ( 2 x )   2                                                      ƒ(x) =
          = xlim                  =                                                                               (1  x12 ) 2
              0         2          3
                     3x                                                                              d                         e sin x   
          Hence (B) is the correct answer.                                        Q.13     Let         F(x) =                            ,x>0
                                                                                                    dx                         x         
                  x2                                                                                                                     
                                   1
                    (tan               t ) 2 dt                                                    4
                                                                                                         3
                                                                                                    x
                                                                                                                          3
                   0                                                                       If                 e sin x dx = F(k) – F(1), then one of
Q.11       lim                                        is equal to -                                 1
          x 0         x4
                                                                                          the possible values of k is -
                        sin            t dt
                                                                                          (A) 15       (B) 16      (C) 63       (D) 64
                       0
                                                                                            d             sin x
          (A) 1                   (B) –1              (C) –1/2        (D) 1/2                           e
                                                                                  Sol.[D]      F(x) =           ,x>0
                  x2                                                                       dx              x
                                   1
                    (tan               t ) 2 dt
                                                                      0     
                                                                                          On integrating both sides of above equation, we get
           lim 0                                                       form                             e sin x
Sol.[D]
          x 0         x4                                             0     
                                                                                          F(x) =
                                                                                                          x dx                       …(1)
                        sin            t dt                                                             4
                                                                                                             3 sin x 3
                                                                                                                                          4
                                                                                                                                              3x 2         3
                       0                                                                   Also,            x
                                                                                                               e       dx =                  x   3
                                                                                                                                                      e sin x dx
                                               d                                                         1                                1
                      [(tan 1 t ) 2 ]t  x 2 .  (x 2 )                                                                                             = F (k) – F (1)
          = xlim
                                              dx
              0                                                                           Let              x3 = z                               3x2 dx = dz
                                             d
                           [sin t ]t  x 4 . ( x 4 )                                                         64 sin z
                                                                                                                  e
          [Using L Hospital's Rule]
                                            dx                                                             z
                                                                                                                               dz = F(k) – F(1)
                                                                                                              1
                 (tan 1 x 2 ) 2 .2 x                                                      Using equation (1), we get
          = xlim
              0
                              sin x 2 .4 x 3                                                          [F(z) ]164 = F(k) – F(1)
                                                      2                                    F(64) – F(1) = F(k) – F(1)
            1 lim  tan 1 x 2      sin x 2  1
                                                .
          =                                                                                k = 64.
            2 x 0  x 2            x2  2
                                                                                         Hence (D) is the correct answer.
          Hence (D) is the correct answer.                                        Q.14     If ƒ(x) is continuous for all real values of x, then
                          x   3                                                                 n       1
Q.12      If ƒ(x) =        1 t4
                                      dt
                                               , then ƒ(x) is equal to -                   ƒ (r – 1 + x) dx is equal to -
                                                                                            r 1 0
                           1
Corporate Office: CP Tower, Road No.1, IPIA, Kota (Raj.), Ph: 0744-2434159                                                     DEFINITE INTEGRATION                41
                      n                                       1                                                        2
                                                                                                                                    n2              1 
                                                                                                           lim  1  n
          (A)            ƒ( x ) dx                     (B)      ƒ( x ) dx                     Q.1       n               3
                                                                                                                              
                                                                                                                                         3
                                                                                                                                            ...       is
                      0                                       0                                                 n (n  1)     ( n  2)           8n 
                       1                                                1
                                                                                                          equal to -
          (C) n  ƒ( x ) dx                             (D) (n – 1)      ƒ( x ) dx
                       0                                                0                                         3                                        1
              n       1                                                                                   (A)                                  (B)
                                                                                                                  8                                        4
Sol.[A]     ƒ (r – 1 + x) dx
           r 1 0                                                                                                 1
                  1                          1                             1
                                                                                                          (C)                                  (D) None of these
                                                                                                                  8
          =     ƒ (x) dx +  ƒ (1 + x) dx +  ƒ (2 + x)                                                     1
                  0                          0                             0                                        n2            n2              1 
          dx                                                                                    Sol.[A] nlim
                                                                                                          
                                                                                                                
                                                                                                                          3
                                                                                                                            
                                                                                                                                       3
                                                                                                                                          ...      
                                                   1                                                          n (n  1)     ( n  2)           8n 
                                   + …. +           ƒ (n – 1 + x) dx                                   n2             n2         n2                n2 
                                                   0                                            = nlim
                                                                                                    
                                                                                                                 3
                                                                                                                                         ...              
                  1                           2                        3                                (n  0)     (n  1) 3 (n  2) 3         (n  n ) 3 
          =          ƒ (x) dx +                  ƒ (x) dx +           ƒ (x) dx +                                                                      1
                  0                           1                        2                                   n                                   n
                                                                                                                     n2                            1
                           r                                      n                             = nlim
                                                                                                        (n  r ) 3              = nlim
                                                                                                                                             n . 1  r 3
          …. +              ƒ (x) dx + ….. +  ƒ (x) dx.                                                r 0                                 r 0
                                                                                                                                                         n
                          r 1                                 n 1
                  n                                                                                 1                                              1
                                                                                                         dx         1           1 1  
          =          ƒ (x) dx.                                                                 =        3 = 
                                                                                                                
                                                                                                                          2
                                                                                                                             = –    1 =
                                                                                                                                  2 4  
                  0                                                                               0 (1  x )   2(1  x )  0
          Hence (A) is the correct answer.
                               /2
                                        sin( 2n  1)                                                       3
Q.15      I1(n)            =              sin x
                                                     dx,                       I2(n)        =
                                                                                                           8
                                                                                                             .
                                   0
                                                                                                          Hence (A) is the correct answer.
          / 2                                                                                  Q.2       If Sn
                      sin 2 nx
                     sin 2 x
                                       dx, n  N, then-
                                                                                                =
              0
          (A) I2(n +1) – I2(n) = I1(n)                  (B) I2(n +1) – I2(n) = I1(n + 1)
                                                                                                           1                  1                       1                                1        
          (C) I2(n +1) + I1(n) = I2(n)                  (D) I2(n +1) + I1(n+1) = I2(n)                                                                           ....                       
                                                                                                           2n           4n 2  1             4n 2  4                           3n 2  2n  1 
Sol.[B] I2(n)                  –                 I2(n             –            1)           =
                                       / 2
                                                                                                 lim
                                                 sin ( 2n  1) x                                n 
                                   =                sin x
                                                                 dx
                                         0
                                                                                                          
                                   = I1(n)                                                                       1                       1                          1                                1
                                                                                                                                                                                 ... 
                                                                                                                     2                   2        2                2         2                  2
                                                                                                               4n        0         4n       1               4n        2                 4n        (n  1
                                    I2(n+1) – I2(n) = I1(n+1).
                                   Hence (B) is the correct answer.                                                                        n 1
                                                                                                                                                               1
                                                                                                                               = nlim
                                                                                                                                   
                                                                                                                                           
                                                                                                                                           r 0        ( 2n ) 2  r 2
Corporate Office: CP Tower, Road No.1, IPIA, Kota (Raj.), Ph: 0744-2434159                                                            DEFINITE INTEGRATION                             42
                                                    n 1
                                                                1                        Hence (B) is the correct answer.
                              =
                                      1 lim                           2   ·                      /4
                                                    r 0       r 
                                      2 n                                                           tan       x dx, then nlim
                                                                                                             n
                                                           1                Q.4       In =                                 
                                                                                                                                 n [In + In             + 2   ]
                                                               2n                                  0
                                                                                         equals -
           1
                                                                                                 1
           n                                                                             (A)               (B) 1                (C)         (D) zero
                                                                                                 2
                   1
                               1
            1                                     1          x
                                                                  1                                       /4
                                                    . 2 sin 1  =                                          tan
                                                                                                                      n
          =        0        x
                                      2   dx =                                 Sol.[B] In + I n + 2 =                      x (1  tan 2 x )dx
            2            1                      2          2 0
                                                                                                            0
                            2
                                                                                                                /4
                                                                                                                  tan
                                                                                                                            n
                                                                                                           =                    x sec 2 x dx
           
             .                                                                                                   0
           6
                                                                                                                 1
                                                                                                                 t
          Hence (B) is the correct answer.                                                                             n
                                                                                                           =               dt , where t = tan x
           100                                                                                                  0
Q.3               (sin 4 x  cos 4 x )dx is equal to -
                                                                                                                                        1
          100                                                                                                     In + In + 2 =
                                                                                                                                      n 1
          (A) 100                         (B) 150 
                                                                                                                      lim
          (C) 200                         (D) None of these                                                          n  n [In + In + 2]
           100                                                                                                                   1            n
                                                                                                           = nlim n.                 = nlim
Sol.[B]           (sin 4 x  cos 4 x )dx =                                2                                                  n 1       n 1
          100 
                                                                                                                                 n
          100                                                                                             = nlim               1  = 1.
                                                                                                                         n 1  
               (sin 4 x  cos 4 x )dx                                                                                          n 
            0
                                                                                                           Hence (B) is the correct answer.
          (integrand is given)
                                                                                         
                                                                                             x 3 cos 4 x sin 2 x
                
                2
                  ( 200)                                                       Q.5           2  3x  3x 2
                                                                                                                            dx is equal to -
          =2                                                                             0
                     (sin x  cos x )dx = 2 . 200
                                  4           4
                     0                                                                           2                  2               2           2
                                                                                         (A)               (B)                  (C)          (D)
                                              /2                                                16                  8                 4           32
                                               (sin
                                                       4
                                                           x  cos 4 x )                              
                                                                                                          x 3 cos 4 x sin 2 x
                                               0
                                                                               Sol.[D] Let I =            2  3x  3x 2
                                                                                                                                        dx
          dx                                                                                          0
                                                                                             
    4       4                                                                                 (   x ) 3 cos 4 (  x ) sin 2 (  x )
sin x  cos x is a periodic function of period 2 
                                                  
                                                                                         =            2  3(   x )  3(  x ) 2
                                                                                                                                                        dx
                                                                                             0
                 / 2           /2
                                                                                     =
          = 400 
                 0      
                       sin 4 x           
                                     cos 4   x  dx 
                                           2     
                                 0
                                                                                         
                                                                                             ( 3  3 2 x  3x 2  x 3 ) cos 4 x sin 2 x
                       /2
                                                           3. 1                                                 2  3x  3x 2
                                                                                                                                                             d
          = 800             sin 4 x dx = 800 .
                                                           4 .2
                                                                ·
                                                                  2
                                                                    =                    0
                         0
                                                                                         x
          150 .
Corporate Office: CP Tower, Road No.1, IPIA, Kota (Raj.), Ph: 0744-2434159                                            DEFINITE INTEGRATION                   43
                                                                                                                                                            
                   (  3  3 2 x  3x 2 ) cos 4 x sin 2 x                                          = log 2 – 2 [x – tan–1 x ]10 = log 2 +
          =                           2
                                        3x  3x             2
                                                                                  dx –                                                                       2
                                                                                                                                                               – 2.
               0                                                                                                                                 4               4
                                                                                                     y=            log 2     –2   = elog 2 .               =            .
          I                                                                                                     e            2                   e 2             2e 2
                                                                                                                                      /2
                          
                               ( 2  3x  3x 2 ) cos 4 x sin 2 x
                                                                                                                                          sin
                                                                                                                                                 2m
                                                                                                                                                       xdx
           2I =                               2                    2
                                               (  3x  3x )
                                                                                                     The value of mlim
                                                                                                                                      0
                          0                                                              Q.7                                      /2
                                                                                                                                             2 m 1
          dx                                                                                                                          sin             x dx
                                       /2                                                                                           0
                                            cos
                                                      4
                   I =  .                               x sin2 x dx = 2 .                         (A) 0                               (B) 1/2
                                           0
                                                                                                     (C) 2                               (D) None of these
              3 .1.1                                                                                                                /2
                       .
                                                                                                                                        sin
                                                                                                                                                 2n
              6 . 4 . 2 2                                                                Sol.[D] We know that I 2n =                                  x dx
                                                                                                                                       0
                   2
          =          .                                                                                   2n  1   2n  3         1   
                   32                                                                                =           ×        × ….. ×   ×   ,
                                                                                                           2n      2n  2         2   2
          Hence (D) is the correct answer.                                                           /2
                                                                                                               2 n 1                2n      2n  2
                                                                              1/ n       I2n + 1 =    sin              x dx =             ×        ×…×
           lim 1  1 1  2 .....1  n                                                                               2n  1   2n  1
                        2          2              2
Q.6                                                                                                   0
          n  
                    n 2   n 2        n 2 
                                                                                                      2
                                                                     is equal to -                      and
                                                                                                      3
                         4                                   4              4
          (A)            2                        (B)          2     (C)                                                     2m
                   2e                                     e                   e 2                    Also, I2m + 1 =               I2m – 1.
                                                                                                                            2m  1
                                                4
                              (D) 2             2
                                                                                                     For all x  (0, /2), sin2m – 1 x > sin2m x > sin2m + 1 x
                                           e
                                                                                                     Integrating from 0 to /2, we get I2m – 1  I2m  I2m + 1
Sol.[D]
                                                                           1/ n                                            I 2 m –1     I 2m
                   2       2         2                                                       Whence                                   1
Let y = nlim  1  1 1  2 .....1  n                                                                               I 2 m 1   I 2 m 1
           
                 n 2  n 2     n 2 
                                                                                                                        ... (i)
           log
                                                                                                                I 2m 1    2m  1
          y=                                                                                         Also                =        .
                                                                                                                I 2 m 1    2m
               2            2               2 
 lim 1 log1  1   log1  2   ... log 1  n                                                            I 2m 1         2m  1
n  n         2          n 2          n 2                                                  Hence mlim          = mlim        = 1.
         n                                                                                             I              2m
                                                                                                                  2 m 1
                                  n                                1
                 1                        r2                                                         From (i) and using sandwitch theorem we have
          = nlim
                           n2
                         n r 1
                                log  1                       =
                                                                     log (1        +
                                                                   0
          x2) dx                                                                                         lim        I 2m     = 1.
                                                                                                      m       I 2 m 1
                                                 1
                                                               2x
          = [x log (1 + x2) ]10 –                 x . 1 x2             dx
                                                 0
                              1
                                                1        
          = log 2 – 2          1  1  x 2  dx
                              0
Corporate Office: CP Tower, Road No.1, IPIA, Kota (Raj.), Ph: 0744-2434159                                                        DEFINITE INTEGRATION                    44
                                                                                 1   1                                           x
                                                                                                                                   1
                                                                                                                                           
Q.8       A function ƒ is defined by ƒ(x) =                                        , r <                             = sin–1           =     .
                                                                              r 1                                               2 0       6
                                                                            2       2
                                                                                                                                                b
          x
                          1
                                  , r = 1, 2, 3, …… then the value of
                                                                                                           Q.10      Find the value of           sin xdx by first Principle
                          r 1                                                                                                                  a
                      2
                                                                                                                     rule -
                                                                                                                     (A) cos a – cos b                  (B) sin a – sin b
           1                                                                                                         (C) cos b – cos a                  (D) sin b – sin a
           ƒ( x ) dx is equal -                                                                           Sol.[A] Here ƒ(x) = sin x & nh = b – a from the
           0
                                                                                                                   definition,
          (A) 1/3                 (B) 1/4              (C) 2/3                  (D) 1/3                                  b                                 n 1
           1                                             2  ( r 1)
                                                                                                                       sin x dx =         Lim h
                                                                                                                                           h 0             sin(a  rh)
                                                                                1                                        a                                 r 0
Sol.[C]    ƒ( x ) dx                  =                                  2   r 1
                                                                                         dx =
                                                                                                                     = Lim  h {sin a + sin (a + h) + sin (a + 2h)
           0                                   r 1       2 r                                                         h 0
                                                                                                                     + … + … + sin (a + n – 1h)}
              
                          1                                                                                                         nh
           2 r 1                [2–(r–1)– 2–r]                                                                                sin
                                                                                                                                      2 sin  a  (n  1)h 
          r 1                                                                                                       = Lim
                                                                                                                       h 0 
                                                                                                                            h
                                                                                                                             sin   h              2 
          =     2  2( r 1)              –     2  2r 1                                                                         2
                  1                              1
                                                                                                                                ba
                                      
                                       2  2r
                                                                        1    1                                                  sin 2 
          = ( 2 2 – 2)                                 =2.                .
                                                                        4 1 1/ 4
                                                                                  =
                                                                                                                       Lim                 sin a  b  a  h 
                                      1                                                                              = h 0 h                                  
                                                                                                                                sin h                2     
           2                                                                                                                         2
             .
           3                                                                                                                                                                 Lim
                                                                                                                     =                                                       h 0
Q.9       The nlim S if
                 n                                                                                                     h
                                                                                                                         2.
                                                                                                                         2 sin  b  a  sin  a  b  a  h 
Sn                                                                                              =
                                                                                                                        h         2                   2
                                                                                                                     sin                                      
            1                     1                        1                                    1                       2
                                                                       ... 
           2n                                                                                                                       ba      ba 
                              4n 2  1                4n 2  4                         3n 2  2n  1                 = 2 . 1 . sin       sin     
                                                                                                                                    2         2 
          is -
                                                                                                                     = cos a – cos b.
          (A) /2                 (B) 2                (C) 1                    (D) /6
                                                                                                                                            b
                                                                                                                                            x
                                                                                                                                                    2
Sol.[D] nlim S
           n
                                                                                                           Q.11      Find the value of                  dx by first principle rule -
                                                                                                                                            a
= nlim
                                                                                                                            1 3 3                           1 3 3
                                                                                                                     (A)        (a – b )                (B)     (b – a )
                                                                                                                              3                               3
                                                                                                                              1 3 3
                                                                                                                   (C)        (a – b )                (D) None of these
                                                                                                                            2
           1             1                     1                           1                           1        
                                                                                     ...                     
           n         40                  4 1/ n        2
                                                                        4  4 / n2
                                                                                                           Sol.[B]
                                                                                                               2    Here ƒ(x) = x 2, nh = b – a from the definition,
                                                                                                       n 1 
                                                                                                   4       
             
                                                                                                      n         b                              n 1
                                  n 1                                      1                                               x 2 dx = Lim h
                                                                                                                                      h 0           (a  rh) 2
                              1                       1                                dx                                                           r 0
          = nlim
              
                                                                       =   
                                                                                                                     a
                              n   r 0      4  (r / n ) 2                  0        4  x2
Corporate Office: CP Tower, Road No.1, IPIA, Kota (Raj.), Ph: 0744-2434159                                                                  DEFINITE INTEGRATION                  45
                             n 1                                                                                                       Lim
                    h 0 
                  = Lim h  (a 2  2ahr  h 2 r 2 )                                                                                      n 
                             r 0
                                                    =   Lim    h             
                                                                                    n                          n                                    n
                                                        h 0                                                                                               .
                                                                                          2                                     2
                                                                             
                                                                              (3  4 n )          2 (3 2  4 n )                       3 (3 3  4 n ) 2
         
         
           n 1      n 1     n 1 
                                   2                                        = nLim
           a  2ah  r  h  r 
                2           2                                                    
         
         r  0      r 0     r 0  
                                    
                                                          Lim h              
                                                                                    n                                      n                             n
                                                   =      h 0                                                                            
                                                                                            2                                          2
                                                                              1(3 1  4 n )                   2 (3 2  4 n )                       3 (3 3  4 n
                                                                                                       n
         
          2        ( n  1) n   h 2 ( n  1) n (2n  1) 
                                                                                                                               n
         a n  2ah
                       2
                               
                                            6
                                                         
                                                         
                                                                                         = nLim
                                                                                                             r (3 r  4 n ) 2
                                                                                                   r 1
                                        Lim                                              =                                              Lim
                 =                       h 0
                                                               h                                                                        n 
          2                           ( nh  h ) ( nh ) ( 2nh  h ) 
         a (nh )  a (nh )(nh  h )                                        n
                                                                                           1
                                                    6                                            2
                                                                             r 1    r   r    
= Lim                                                                             n   3    4 
  h 0                                                                               n   n    
                                                                                                  
                                                                                              1
          2                                    ( b  a  h ) (b  a ) ( 2(b  a )  h ) =                dx
         a (b  a )  a (b  a )(b  a  h ) 
                                                                  6
                                                                                                 x (3 x  4) 2
                                                                                            0
                                          (b  a )3                                      Put 3     x +4=t
         = a2 (b – a) + a (b – a)2 +
                                              3                                    3                            dx          2
                                                                                       dx = dt                              dt
             (b  a ) 2                                                           2 x                               x       3
         =           {b + ab + a2}
                3                                                                        when x = 0  t = 4
             1 3 3                                                                                x=1t=7
         =     (b – a ).
             3                                                                                             7                                    7
                                                                                                   2           dt           2  1
Q.12     Find the limit, when n   of                                                   P=
                                                                                                   3        t2         =      
                                                                                                                            3  t              4
                                                                                                           4
                 n                   n
                          +
          (3  4 n ) 2        2 (3 2  4 n ) 2                                                    2 1 1 
                                                                                         =–           
                     n                         1                                                  3 7 4
         +                      2
                                    + ... +
               3 (3 3  4 n )                 49n                                             2 1 1   2    3
                                                                                         =         =   .    =
                1                              1                                              3 4 7   3   38
         (A)                          (B)
               12                             13
                                                                              1
              1
         (C)                          (D) None of these                      14
             14
                                                                                                            1
Sol.[C] Let P =                                                                          Hence P =            .
                                                                                                           14
                                                                                                                        ( n!)1 / n
                                                                    Q.13     Find the limit, when n   of
                                                                                                                            n
Corporate Office: CP Tower, Road No.1, IPIA, Kota (Raj.), Ph: 0744-2434159                        DEFINITE INTEGRATION                          46
                                    1                1                                            (8.6.4.2) (3.1)
         (A) e            (B)           2
                                               (C)           (D) e2                    =                                                       . 1 (from walli's
                                    e                e                                          (13.11 .9.7.5.3.1)
                     (n!)1 / n                                                         formula)
Sol.[C] Let P = nLim
                  
                                        n                                                    128
                                                                                       =          .
                                            1/ n                                            15015
                     Lim  n !                                      Lim
                     n  
         =                 n                           =            n                                                 n            n
                                n                                                                                                        C
                                                                             Q.15      Show that : nLim
                                                                                                                        n r (r r 3)             =e–2
                                                                                                                         r 0
                                     1/ n
          1. 2 . 3 ... n                                                             (A) e – 1                                (B) 2 – e
         
          n . n . n ... n          
                                    
                                   
                                                                                       (C) e – 2                                (D) None of these
                                                         1/ n
                 1  2  3   n                                                      1
         = nLim 
                    ...  
                                                                                                   r2                   1
                                                                             Sol.[C]  x                  dx =
                      n  n  n   n                                                                             r 3
                                                                                            0
                                        1/ n
                 n  r                                                                                  n                               1
         = nLim
                
                                                                                                                              1
                                 
                      r 1  n  
                                                                                        nLim
                                                                                                                n
                                                                                                                       Cr .
                                                                                                                              n   r    .   x
                                                                                                                                                 r2
                                                                                                                                                       dx
                                                                                                          r 0                             0
         Taking logarithm then                                                                 1
                                                                                                                   x 
                                                                                                              n       r
                                                                                x . Lim  C r .   dx
                                                                                                     2           n
                                 n
                   1                        r 
       ln P = nLim
                        n
                                 ln n                                                     0
                                                                                                       n 
                                                                                                            r 0   n 
                                r 1
                                                                                            1                                  n
                                                                                                                        x          
                                                                               x . Lim 1 
                 1                                                                                 2
                                                                                                                                      dx
             =    lnx dx                                                                   0
                                                                                             
                                                                                                          n            n          
                                                                                                                                      
                 0
                                                                                                1
                                                                               x e dx
                                            1                                                      2 x
             = (1n x . x – x)                                                                   0
                                            0
                                                                                           = {x2 (ex) – (2x) (ex) + 2ex} 10                         (By
             = –1–0
             = –1                                                                      successive method)
Corporate Office: CP Tower, Road No.1, IPIA, Kota (Raj.), Ph: 0744-2434159                                              DEFINITE INTEGRATION                  47
          / 4                                                                     =2–        2
            sec
                           7
Q.54                            sin3d=
              0
                                                                                    4
        (A) 1/12                                (B) 3/12
        (C) 5/12                                (D) None of these        Q.68      {
                                                                                   0
                                                                                            x }dx =
Sol.[C] Do your self.
                                                                                                                 2                  7                17
                  e                                                                (A) 1            (B)                    (C)                (D)
Q.55         1/ e
                      | log x |     dx =                                                                         3                  3                 3
                                                                                                                              
                                                                                    1                       4
        (A) e–1 – 1                             (B) 2 (1–1/e)                                                                                 2   2
        (C) 1 – 1/e                             (D) None of these        Sol.[C]    
                                                                                    0
                                                                                            x dx +
                                                                                                            1
                                                                                                                     x – 1 dx =
                                                                                                                                              3
                                                                                                                                                +
                                                                                                                                                  3
                                                                                                                                                    (8 –
Sol.[B] Do your self.
                                                                                   1) – 3
                                                                                        7
                                                                                   =
           1
                                                                                        3
          x
                      17                                                                           1
Q.56                       cos 4 x dx is equal to -
                                                                                                   e
                                                                                                            x2
                                                                         Q.69      For f(x) =                    dx
          1
                                                                                                   0
        (A) –2                                  (B) 2                                          1
                                                                                              e
                                                                                                    x2
        (C) 0                                   (D) 1                              (A) 0                   dx  1                            (B)      1      
                                                                                               0
Sol.[C] Do your self.
                                                                                   1
                                                                                   e
                                                                                        x2
                                                                                             dx  e 2
          / 2
                               ( x )                                              0
Q.57                 ( x )  (  / 2 – x )
                                              dx is equal to-                                 1                                          1
                                                                                                                                        e
                                                                                                        2
                                                                                                                                              x2
              0                                                                    (C) 1         e x dx  e (D) 0                               dx  e 2
                                                                                              0                                          0
          (A) /4                               (B) /2
                                                                         Sol.[C] For 0  x  1  e  e           0         x2       e
                                                                                                                                     1
          (C)                                  (D) None of these
                                                                                                            1
Sol.57    [A] Do your self.
                                                                                                            e
                                                                                                                     x2
                                                                                    e0 (1 – 0)                          dx  e1(1 – 0)
                                                                                                            0
Q.58                                                                                          1
                                                                                              e
                                                                                                        2
                                                                                                    x
                                                                                   1                      dx  e
                           1  2
                                     2      2
                                                   r             1 2                         0
          lim                    3      ...  3      ....                              e2                                 2
          n  13          n 3
                                  2 n 3
                                                r n 3
                                                                2n                                dx                              ex
                                                                        Q.70      If I1 =        log x
                                                                                                         & I2 =                 
                                                                                                                                1
                                                                                                                                    x
                                                                                                                                       dx then -
          equals-                                                                             e
Q.67       
           0
                  [ x 2 ] dx =
                                                                                                        a
                                                                                                                          g( x )
          (A) 2                                 (B) 2 +         2        Q.71      The integral          f ( x )  f (a – x )                vanishes if -
          (C) 2 – 2                             (D) 0                                                   0
          =        0 dx + 1.dx                 +     2.dx
                  0                 1                   2
=( 2 –1) + 2 (1.5 – 2 )
Corporate Office: CP Tower, Road No.1, IPIA, Kota (Raj.), Ph: 0744-2434159                                       DEFINITE INTEGRATION                         48
                                 a
                                             g( x )                                                                                  1 x m 1
Sol.[C] I            =           
                                 0
                                     f ( x )  f (a – x )
                                                                 then      I   =                                                      .
                                                                                                                                     x m 1
                                                                                                                                              dx
                                                                                                                        1
                                                                                                              n
                                                                                                                        x
                                                                                                                             m
                                                                                            =0–                                  .(log x ) n –1 dx
            a                                                                                                m 1       0
                      g (a – x )
           0
                 f ( x )  f (a – x )                                                       =–
                                                                                                n
                                                                                                    Im,n–1
                                                                                               m 1
                                                                                                                                                2
                             a
                                 g ( x )  g (a – x )                                                   x                    cos x           ex
          2I =              
                             0
                                 f ( x )  f (a – x )                              Q.62     If f(x) = sin x                   x2            sec x
                                                                                                      tan x                    1              2
                                 a                                                                            / 4
                             1       g ( x )  g (a – x )
         I=
                             2   
                                 0
                                     f ( x )  f (a – x )                                   Then                 f ( x )dx      =
                                                                                                             –/ 4
                                                                                           (A) 0                                         (B) 1
         = 0 (vanishes) if –g(x) = g(a – x)
                                                                                           (C) 4                                         (D) None of these
                                                                                   Sol.[A] f(x) is odd function
Q.72    The value of
                                                                                                         / 4
                                              
                                                                                                             f ( x )dx
            2                              –2
                 1 x         1– x                                                                                    = 0.
           pn 
            
         – 2
                  1 – x
                           qn 
                                 1  x
                                           r  dx
                                              
                                               
                                                                                                        –/ 4
                                                                                                /2
        depends on -                                                                                            cos 
        (A) p                                       (B) q                          Q.41             
                                                                                                    0        4 – sin 2 
                                                                                                                             d is equal to -
        (C) r                                       (D) q & p
           2                              –2                                                                                             
                1 x          1– x                                                    (A)                                      (B)
Sol.[C]    
           
        – 2
            pn 
                  1 – x
                         
                         
                            qn 
                                  1  x
                                             dx
                                              
                                               
                                                                                                            2                               6
                                                                                                                                           
                         2                               2                                  (C)                                      (D)
                  1 x           1– x                                                                   3                               5
         = p   n 
                  1– x 
                         dx–2q n        dx +
                                    1 x               
             –2                –2                                                  Sol.[B]sin  = t cos  d = dt
                                                                                                1
            2                                                                               
                                                                                            0
                                                                                                    dt /        22 – t 2    = [sin–1(t/2)]01  /6
          –2
              dx
                                                                                   Q.42     Suppose f is such that f(– x) = – f(x) for every
         = p × 0 – 2q × 0 + 4 = 4                                                                                                 1
                                                                                            real                x     and        0
                                                                                                                                         f ( x )dx  5 ,     then
                                                                                                        0
                         1                                                                         –1
                                                                                                            f ( t )dt is equal to -
                         x
                                 m          n
Q.73    Im,n =                       (nx ) dx                                              (A) 10                                   (B) 5
                         0                                                                  (C) 0                                    (D) – 5
               n                                              n                                 0
        (A) –
               m
                 Im,n–1                             (B) –
                                                             m 1
                                                                  Im,n–1           42.[D]      –1
                                                                                                        f ( t )dt put                       t=–udt=–du–
              n 1
        (C) –      Im–1,n–1                         (D) None of these                           0
               m                                                                               1
                                                                                                     f (– u )du
                         1
                         x
                                 m
Sol.[B] Im,n =                       (log x ) n dx
                         0
                                                1    1
                                     x m1 
                                                      n (log x )
                                                                    n –1
         = (log x ) n .                      –                           .
                                    m  1  0
                                                     0
Corporate Office: CP Tower, Road No.1, IPIA, Kota (Raj.), Ph: 0744-2434159                                                  DEFINITE INTEGRATION               49
       1
 0 f (– u )du   f (– x )dx [prop.
                                              1
                                                                                                                       
                                             0                                                                (A)        I1                                   (B) I1
                                                                                                                       2
               b                                  b
                                                                                                                       2
            a
                   f ( x )dx =                   a
                                                       f ( u )du          ]                                 (C)
                                                                                                                       
                                                                                                                         I1                                   (D) 2I1
1 –a
                                                                                                             x=–x
                                              / 2              2 sin x
Q.43        The value of
                                            0         2 sin x  2 cos x
                                                                                  dx is -             f(–x)=f[sin(–x)]=f(sin                                                x)I1=–a+a/2
                                                                                                                  –a
            (A) 2                                              (B)                                           a
                                                                                                                   f (sin x )dx I1 = /2 I2  I1/I2 = /2
Sol.[C]I =         
                       / 2
                              2 sin x / 2 sin x  2 cos x dx ...(1)                                   Q.47     lim
                                                                                                               x 0
                                                                                                                               0
                                                                                                                                         tan          t dt
                                                                                                                                                              is equal to -
                       0                                                                                                                         3
                                                                                                                                             x
                           /2
By prop. I= 0                   2   cos x
                                              /2      cos x
                                                               2   sin x
                                                                              dx..(2) (1)&(2)I=                        2                                            3
                                                                                                              (A)                                             (B)
                                                                                                                       3                                            2
           /4
                                                                                                              (C) 1                                           (D) None of these
                                                                                                                                2
                                                                                                      Sol.[D] xlim
                                                                                                                            x
Q.44
             
                
                       a       
                           xdx           (a + 4), then -                                                      0        0
                                                                                                                                    tan          t dt / x 3 0/0 form
                      0       
                             n                                                                                                                      2
Sol.[B] nlim
          
             1/n          r / n
                            r 1
                                            1  ( r / n ) 2                                           (A) 3                                 (B)
                                                                                                                                                    3
                                                                                                                     1
                                                                                                        (C)                                   (D) 0
              1                                                                                                      3
          0
                  x/     1  x 2 dx           1 + x = t  xdx=tdt 
                                                               2           2
                                                                                               Sol.[C]C2  C2 + C3
                  2
                                                                                               f(x)                                                                           =
          1
                      tdt / t    =         2 –1
Q.53       I1 =            0
                             / 2
                             sin xdx ,                  I2 =           0
                                                                           /2
                                                                                 sin 3 xdx ,   Q.89         
                                                                                                                     sin mx sin nx dx ,             (m  n and m, n are
then - integers) =
Corporate Office: CP Tower, Road No.1, IPIA, Kota (Raj.), Ph: 0744-2434159                                                           DEFINITE INTEGRATION                     51
                 5                  7               8              4                     1
                                                                                                                                       1 
         (A)
                 3
                              (B)
                                    3
                                             (C)
                                                    3
                                                             (D)
                                                                   3
                                                                     [B]   Q.120   If    
                                                                                        sin x
                                                                                                  t2 (f(t)) dt = (1 – sin x), then f 
                                                                                                                                       3
                                                                                                                                           is
                     k
                                                                                   (A) 2                              (B) 0
         I1 =     xf {x (1  x )}dx
                1 k                                                               (C) – 2                            (D) 2                     [A]
                     k
         I2 =
                 1 k
                      f {x (1  x )}dx , where 2k – 1 > 0,                Q.94    2
                                                                                         4                dx
                                                                                                 {( x  2)(4  x )}
                                                                                                                            
         (A) 
                         5
                                             (B) –          (C)
                                                                     5    Q.81    Value of          
                                                                                                     0
                                                                                                          | 5x – 3 | dx = 0 -
                          3                                           3
                                                                                                 1                        13
                              (D) –2        [A]                                   (A) –                              (B)
                                                                                                 2                        10
                                                                                             1                            23
                                                                                   (C)                                (D)                        [B]
                                                                                             2                            10
Corporate Office: CP Tower, Road No.1, IPIA, Kota (Raj.), Ph: 0744-2434159                                        DEFINITE INTEGRATION             52
         /2                                                                                 (A) 2                     (B) – 3           (C) 3              (D) 5     [D]
Q.82                  sin4 x cos2 x dx –
                                                                                                                        
              0                                                                                                                             1    dx
                                                                                   Q.96    The value of                         log  x  
                                                                                                                                            x  1 x 2
                                                                                                                                                          is -
         (A)                                        (B)                                                                    0
             2                                          4                                    (A) log 2                                  (B) log 2
                                                                                           (C) 0                                       (D) None of these [A]
         (C)                                        (D)                       [D]
             8                                          32
                                                                                                              
Q.83     The area bounded by y = x 2, the lines y = 1 and                                                                      e sin x
         y = 2 on the left of y-axis -
                                                                                     Q.97    If I =           
                                                                                                                    e sin x  e sin x
                                                                                                                                               dx, then I equals to -
              4                        4
         (A)     (2 2 – 1)        (B)    (1 – 2 2 )                                                                                                              
              3                        3                                                     (A)                       (B)             (C)               (D)     [A]
                                                                                                         2                                                        4
              2                        2
         (C)     (2 2 – 1)        (D)    (1 – 2 2 ) [C]
              3                        3                                                                          x
                                       2                                             Q.98    If h(x) =                 sin4 t dt, then h(x + ) =
Q.92     The value of                  
                                       1
                                               | [x] – {x}| dx. Where [.]                                         0
                                                                                                 h (x )
         denotes greatest integer function and {.} denotes                                   (A)                                                            (B      h(x).
         fractional part of x =                                                                  h ( )
                      7                    5              1               3                  h()
         (A)                    (B)                 (C)           (D)       [B]
                      2                    2              2               2                  (C) h(x) – h()                             (D) h(x) + h()              [D]
                                                                                                         x
Q.93     Which of the following statement is true                                                                     du                 
                                                    b                     a          Q.111 If                         u
                                                                                                                      e 1
                                                                                                                                    =
                                                                                                                                         6
                                                                                                                                           , then the value of x is
         (I)                                        
                                                    a
                                                          f(x) dx = –     
                                                                          b
                                                                              f(x)
                                                                                             -
                                                                                                     log 2
                            
                                                                                                         x                                     y2
Q.94     If f(n) =                 tann xdx then f(3) + f(1) is -
                                                                                                                                              
                                                                                                                               2
                                                                                     Q.114 If                  3  cos t dt +                       sin t dt = 0 then
                            0
                                                                                                     /3                                       0
                                        1                                 3
         (A) 1                  (B)                 (C) 0         (D)       [B]                  dy
                                        2                                 2                         =
                                                                                                 dx
                  4                             4                                                                                                       1
                                                                                             (A)                                         (B)
Q.95     If       
                  1
                          f(x) dx = 4,          
                                                2
                                                        (3 – f(x)) dx = 7 then                               3  cos 2 x
                                                                                                                                                2 y sin( y 2 )
          2                                                                                                  3  cos 2 x                         3  cos 2 x
                                                                                             (C)                                         (D)                          [D]
         
         1
                      f(x) dx =                                                                              2 sin( y 2 )                           2 y sin( y 2 )
Corporate Office: CP Tower, Road No.1, IPIA, Kota (Raj.), Ph: 0744-2434159                                                         DEFINITE INTEGRATION                 53
                      k                                                                                                      0
Q.115 If I1 =         
                    3 k
                             xf {x (3  x )}dx and                            Sol.[C] I                   =                  [x  [x  [x ]]]dx +
                                                                                                                            –1
                   k
                                                            I1                               1
         I2 =     
                 3 k
                      f {x (3  x )}dx then
                                                            I2
                                                               =
                                                                                              [ x  [ x  [ x ]]]dx
                                                                                             0
             2                       3            1                                                  0
         (A)                     (B)          (C)            (D) 2     [B]
             3                       2            2                                      let I1 =     [x  [x  [x ]]]dx
                                                                                                     –1
Q.38     The value of                                                                    –1  x < 0  [x] = – 1
                                                                                          [x + [x]] = [x – 1] = [x] – 1 = – 2
             3           x                 x 2  1 
                tan –1  2
             –1 
                         x  1
                                   tan –1 
                                                x
                                                       dx
                                                       
                                                       
                                                                                          [x + [x + [x]]] = [x – 2] = [x] – 2 = – 1 – 2 = – 3
                                                                                                     0
         is -
                                                                                          I1 =       – 3.dx
                                                                                                     –1
                                                                                                                         = – 3  x  0–1 = – 3
                  12                                2
                                                                                         1                1
             2                                                                                 2                 3
                                                                                          2 dx >  2 dx  I1 > I2
                                                                                            x        x
         (C)                                  (D)                      [A]           
              3                                   4                                      0                0
                                                                                                     1
                                                                                                          y2
Q.48     For any integer n, the integral                                      Q.97       Let I =     e        dy . Then
                                                                                                     0
             
         
                         2
                 e cos       x
                                 cos3 (2n + 1) x dx has the value -                      (A) 3 < I < e                      (B) 2 < I < e
             0
                                                                                         (C) 3< I < e/3                     (D) 1 < I < e
         (A)                                 (B) 1                                                                                         2
                                                                              Sol.[D] 0 < y < 10 < y2 < 1  e0 < e y < e
         (C) 0                                (D) None of these        [C]
                                                                                                                           1                    1
                                                                                                                           1. dy <
                                                                                                                                                        y2
                                                                                                                                                e
                                                                                                          2
                                                                                          1 < ey < e                                                       dy <
                                                                                                                          0                    0
Q.51     If f() = 2 and               [f ( x )  f ' ' (x )]
                                      0
                                                                 sin x dx =
                                                                                             1
Q.52     
             1
             –1
                  [ x  [ x  [ x ]]]dx ,             where [•] denote        Q.116      The value of           [ x ] dx is
                                                                                                               1
         greatest integer function, is equal to -                                        (A) 1                              (B) 2
         (A) – 2                 (B) – 1      (C) – 3        (D) – 4                     (C) 3                              (D) None of these
                                                                                                     3                     2                    3
                                                                              Sol.       [C] I =      [ x ] dx =          1. dx +              2 dx
                                                                                                     1                     1                    2
                                                                                                 2             3
                                                                                         = x     1
                                                                                                     + 2x      2
                                                                                                                   =1+2=3
Corporate Office: CP Tower, Road No.1, IPIA, Kota (Raj.), Ph: 0744-2434159                                             DEFINITE INTEGRATION                        54
                                                                                                           /a
                                                                                                             sec
                                                                                                                           2
             1                                                                                                                x (x9 – 3x5 + 7x3 – x) +
                 1
Q.16       
           –1
              1  x2
                     =                                                                                    – / a
/a
                                                                                                        sec
                                                                                                                  2
                                                                                                                   x dx
          (A)                   (B)               (C) –             (D)                          – / a
                                     2                   2               3
                                                                                                         /a
                                                                      
                                                                                                           sec            x dx  2[tan x ]0 / 4
                                                                                                                       2
Sol. [B] [tan          –1
                            x ]1–1    =                 –1
                                                    tan (1)–tan (–1)=–1
                                                                        –              odd       +                                                                       =    2
                                                                      4                                 – / a
                                                                                                           
           –  =                                                                                  tan 4 – tan 0 = 2
            4 2                                                                                               
                               / 4
Q.17      Value of               log (1 + tanx) dx =                                                                                                   /3            1
                                0                                                      Q. 9       The value of the integral                          /6     1       tan x
                                     2                                        
          (A)                   (B)               (C) log2 (D)                                 dx is
                                     4                                         8
                                                                                                                                                     
          log2                                                                                    (A)                                      (B)
                                                                                                          3                                           6
                                    / 4
                                                                                                          
Sol. [D] I             =               1og (1
                                      0
                                                             +       tanx)         =              (C)
                                                                                                         12
                                                                                                                                           (D) 0
                                                                                                  /3
/4                                                                                                                  dx                         /3
 
           
           
                    
                     4
                          
      log 1  tan  – x  
                          
                                                                                                   
                                                                                                   / 6 1
                                                                                                                      sin x                     
                                                                                                                                                                cos x
                                                                                                                                                          cos x        sin x
 0                                                                                     Sol. [C]                                        =    /6
                 / 4                                                                                                 cos x
                                     1 – tan x                                                  dx
          =         1og
                   0
                                    1          dx
                                     1  tan x                                                     
                                                                                                     –     
                       / 4                                          / 4                           3 6
                                            2                                                     =     = 12
                                                                      1og                          2
                                                                               2
          =                    1og                  =                              –
                                       (1  tan x )
                           0                                              0
                                                                                                                                                                  2
           / 4                                                                        Q.10       The value of the integral                                          x [x]     dx
               
                                                                                                                                                                0
                   log (1  tan x )
               0
                                                                                                  ([.]G.I.F) is
                               /4                                                                    7                                               3
                                                                                                  (A)                                      (B)
          2I=                   log 2 .dx =
                                0
                                                        log 2[ x ]0 / 4      I=                     2                                               2
                                                                                                      5
                                                                                                 (C)                                      (D) none of these
               log2                                                                                   2
             8                                                                                     2                               1                              2
Q.19      If            f(x)              =
                                               9        5        3
                                              x – 3x  7 x – x  1
                                                                   then
                                                                                       Sol. [B]   0
                                                                                                       x[ x ] dx               =   
                                                                                                                                   0
                                                                                                                                       x (0) dx                   x.1
                                                                                                                                                                  1
                                                                                                                                                                               dx
                                                    cos 2 x
                                                                                                                 2
              / 4                                                                                    x2      
                                                                                                  =          
           – / 4
                  f ( x ) dx              equal to -
                                                                                                      2
                                                                                                               
                                                                                                               1
Corporate Office: CP Tower, Road No.1, IPIA, Kota (Raj.), Ph: 0744-2434159                                                         DEFINITE INTEGRATION                         55
                  log 3                                                                              =
Sol. [C] I =         
                  – log 3
                          log ( x               1 x 2 )
                                                                     dx.                             
                                                                                                         1
                                                                                                         0
                                                                                                             ( x 3 – 3x 2  2 x ) dx –                    1
                                                                                                                                                              2
                                                                                                                                                                  ( x 3 – 3x 2  2 x ) dx
                             x  1 x 2                 
         f(x) = log                                     
                                                                                                                                           1                              2
                                                                                                        x4                                      x4           
                         log  – x  1                 x2 
                                                                                                           – x3  x 2                               – x3  x2 
         f(–x) =                                                                                    =  4                                       
    f        (x)                    +                f              (–x)=            log                                0 –
                                                                                                                                                  4           1
                                                                    
                          1 x 2                           1 x 2                                             x
          x                    – x                                                               2            x 
                               
         = log {1 + x2 – x2} = log 1 I = 0
                                                                    
                                                                                           Q. 15
                                                                                                        0
                                                                                                               e 2 sin    dx =
                                                                                                                       2 4
                             / 4
                                                                                                     (A) 2                  (B) e              (C) 0              (D) 2       2
                         
                                            n
Q.12     If Un =                    tan         x dx , then Un + Un–2 =                                  2           1    x  1     x
                                                                                                             ex / 2 
                          0
                                                                                                                         sin     cos 
                    1                                                              1       Sol.[C]       0            2    2   2    2  dx
         (A)                                                               (B)                                   
                   n –1                                                          n 1                    2
                                                                                                                 e
                                                                                                                         t
                                                                                                                             (sin t  cos t )
                                                                                                        2                                                dt        t = x/2 dx
                                                                                                                 0
               1                                                                                     = 2 dt
         (C)                                                               (D)
             2n – 1
                                                                                                     =       2    e     t
                                                                                                                             sin t      
                                                                                                                                         0   =    2 ×0 =0
            1
          2n  1
                   / 4                                                                                  / 2                2 sin x
Sol. [A] Un =            tan n x dx                                                       Q.16         0       2 sin x  2 cos x
                                                                                                                                                 dx =
                     0
                  / 4
         =              tan n – 2 x            (sec2 x –1) dx                                                                                                           
               0                                                                                     (A) 2                   (B)                (C)                (D)
              / 4                                                                                                                                     4                  2
            0
                     (tan x ) n – 2 sec 2 xdx                       – Un–2
                                                                                           Sol.[C] Direct Result
                                                             / 4
                       (tan x )                 n –1                 1
                                                        
         Un + Un–2 =  n – 1                             0       = n –1                            lim
                                                                                           Q. 29     n 
              / 2                  cot x                                                                                                                                       1/ n
Q.13         0           cot x                tan x
                                                             dx =                                       1    2    3       n 
                                                                                                     1   1   1  ....1   
                                                                                                        n    n    n       n 
                                                                                
         (A) 1                 (B) –1              (C)                     (D)                       =
                                                                2                4
                                                                                                      e                                               4
Sol.[D] Direct result =                                                                              (A)                                         (B)
                                        4                                                              4                                               e
                                                                                                       2
                                                                                                   (C)                                           (D) none of these
                                     2
                                                                                                       e
Q. 14    The value of              0
                                         | x 3 – 3x 2  2 x |                dx is
                                                                                           Sol.[B] A                                                                                =
             1                                         1                                                                                                                      1
        (A)                                        (B)                                                       1    2          n                                        n
              2                                        4                                              lim 1   1   ..... 1   
                                                                                                     n     n    n          n 
              1
        (C)                                        (D) none of these                                 log A =
             16
Sol.[A] x3 – 3x2 + 2x = 0
        x (x2 – 3x + 2) = 0                     x (x – 2) (x – 1) = 0                                 1      1    2         n  
        x = 0, 1, 2.
                                                                                                     lim  log 1   1   .....1  
                                                                                                     n   n     n    n         n 
                          –                          +                                                    
           –     +
                     0          1                2                                                        1       1         2                   n
          2                                                                                           lim  log 1    log1    .....  log 1 
                                                                                                     n  n       n         n                   n
         | x
                    3
                         – 3x 2  2 x | dx
                                                                                                                     n
                                                                                                                             1                    r 
          0
                                                                                                      lim
                                                                                                     n 
                                                                                                                  n log 1  n 
                                                                                                                 r 1
Corporate Office: CP Tower, Road No.1, IPIA, Kota (Raj.), Ph: 0744-2434159                                                               DEFINITE INTEGRATION                       56
          1                                                                                     Let sinx – cosx = t (cosx + sinx) dx = dt
             log (1  x ) dx                               x log (1  x )10                                           0
                                                                                                                                     dt
    =
          0
              1
                                                 =                                –
                                                                                                =
                                                                                                             2                     1– t 2            =
                                                                                                                                                                2 (sin
                                                                                                                                                                                –1
                                                                                                                                                                                     t ) 0–1
                       1                                                                                                –1
               x  1 x dx
              0                                                                                                                                       
                                                                                                                                                  
                                                                                                                                                                   2
                                        1                                             Q. 32     For any integer n,                                         e sin       x
                                                                                                                                                                           cos 3 ( 2 n  1)
                                            x 1 – 1
                                        
                                                                                                                                                      0
                                                     dx
          = log2 –                            x 1      =                   log 2 –             dx =
                                        0
           [ x – log ( x                  1)]10                                                (A) –1                           (B) 0                    (C) 1                 (D) 
          = log 2 – [1 – log 2] = 2 log 2 – 1                                                                
                                                                                                           e
                                                                                                                       sin 2 x
          log A = log 4 – 1                                                                                                          cos 3 ( 2n  1) x dx
                                                                                      Sol.[B] I =
                                                                            4                             0
                                      log A = log (4/e) A =                                            
                                                                            e
                                                                                                         e
                                                                                                                     sin 2 x (  – x )
                                                                                                =                                                 cos3 {(2n + 1) ( – x)} dx
                  3 / 2                                                                                 0
Q. 30                         [ 2 cos x ]      dx ([.] G. I. F) =                                 
                                                                                                =
                  / 2                                                                                   sin 2 x
                                                                                                   e               {cos3 (2n 1)}( – x) dx
                      5                                           5                                0
          (A)                                      (B) –                                                     
                       3                                            3
                                                                                                             e
                                                                                                                         sin 2 x
                                                                                                                                       cos 3 ( 2n  1)} x dx
          (C) –                                   (D) –2                                      =–
                                                                                                    0
          3 / 2                                                   2 / 3                       =–I                                                       2 I = 0 I = 0
Sol.[B]
              /2
                     [ 2 cos x ] dx
                                                       =            
                                                                   / 2
                                                                        (–1) dx 
               
                                                                                                                                              9
                                                  +           
                                                              
                                                                    (–2) dx 
                                                                                  +
                                                                                                (A) 31       (B) 22
                                                                                                             Y
                                                                                                                         (C) 23                                                 (D) none
          3 / 2
                   (–1) dx                 =
                                                –5
                                                 3
                                                                                                         3
                                                                                                         2
                                                                                                                                                  y=       x
               4                                                                     Sol.[A]            1
                3
                          1                                                                                                                           X
                                                                                                         O            1 4              9
                                         2/3                 2
                      0         /3    /2     4/3       3/2                                  9                                            9
                       –1
                      –2
                                                                                                0
                                                                                                     [              x ] dx +                   2 dx
                                                                                                                                              0
                                                                                                         1                              4                   a
                                                                                                =       0
                                                                                                              0. dx                   1
                                                                                                                                              dx           2dx  18
                                                                                                                                                            4
                                                                                                = (4 – 1) + 2 (9 – 4) + 18
                  /4
                                                                                                3 + 10 + 18 = 31
Q. 31         0
                          (     tan x          cot x )        dx is equal to
                              2                                                                    / 2                     x sin 2 x
          (A)
                              2
                                                   (B)
                                                              2
                                                                                      Q. 34        0                cos 4 x  sin 4 x
                                                                                                                                                                dx is equal to
          (C)
                              3
                                                   (D) none of these                                          2                                                           2
                                                                                                (A)                                                             (B)
                              2                                                                               2                                                            4
          / 4
                      sin x  cos x                                                                          2
Sol.[A]
           0
                             sin x cos x
                                                dx
                                                                      =
                                                                                 2              (C)
                                                                                                             8
                                                                                                                                                                (D) none of these
          / 4
                      sin x  cos x
              0
                                sin 2 x
                                                dx                                    Sol.[C] f (x) =
                                                                                                                                  sin 2 x
                                                                                                                       cos x  sin 4 x
                                                                                                                                4
                               / 4
                                            sin x  cos x
          =
                      2         
                                0       1 – (sin x – cos x ) 2
Corporate Office: CP Tower, Road No.1, IPIA, Kota (Raj.), Ph: 0744-2434159                                                                    DEFINITE INTEGRATION                             57
                             f        (/2         –        x)      =   Q.105   The term independent of 'x' in the expansion of
                                   sin (  – 2 x )
              cos 4 (  / 2 – x )  sin 4 (  / 2 – x )                           1 1/ 3 –1 / 5 
                                                                                                           8
                                                                                  x x           will be :
                         sin 2 x                                                 2              
          =
                   sin 4 x  cos 4 x                                            (A) 5                              (B) 6
                                          /2
                                         sin 2 x
          Question =                  4  
                           4 0 cos x  sin x
                                                   4
                                                                                (C) 7                              (D) 8
                                                                        Sol.[C] Let (r + 1) term
                   divide numberator and deominator by                                                 8 r
          cos4 x                                                                             1                8 r         r
                                                                                Tr + 1 = 8Cr                          .
                             / 2 2 tan x sec 2 x                                           2               x 3          x5
                   =
                      4 0             
                                     1  tan 4 x
                                                     dx
                                                                                for independent of 'x'
                   tan2 x = t 2 tan x sec2x dx = dt
                                                                                   8r   r
               dt                                                                   –   =0
=
  4
          
          0 1 t 2
                       =
                           4
                               [tan –1 t ]0 =
                                                  4
                                                     ×
                                                        2
                                                          =                          3    5
                                                                                        8   r   r
              2                                                                         –   –   =0
                                                                                        3   3   5
              8
                                                                                r=5
                                                                                                               3
                                                                                                 1
              /2                                                               so term is = 8C5   = 7
                                                                                                 2
               sin
                         2
Q.119                        x cos 2 x dx is equal to :
               0                                                                    4
                                                                                     {x}
                                                                                            [x]
                                                                      Q.138                      dx where {.}  fractional function
          (A)                                   (B)                                 1
              16                                    24
                                                                               and [.]  greatest integer function :
          (C)                                   (D) None of these
              8                                                                         13                                  1
              /2                                                               (A)                                (B)
                                                                                        12                                  2
               sin
                         2           2
Sol.[A]                      x cos x dx using gamma function
               0                                                                        15
                                                                                (C)                                (D) None
                  {1.}{1}                                                             12
          =               ×   =
                   4 2     2   16                                                           2                                    3
                                                                                                 ( x  1)1                        ( x  2)
                                                                                                                                               2
                                                                        Sol.[A] I       =                          dx       +                      +
              /2                                                                            1                                    2
                sin
                             10
Q.106                             x (6x9 – 25x7 + 4x3 – 2x)dx equals
              –/ 2
                                                                                    4
          to :
                                                                                  ( x  3)
                                                                                                  3
                                                                                                      dx
                                                                                   3
          (A)                                  (B)
                                                      4                                 13
                                                                                I=
                                                                                       12
          (C)                                   (D) None of these
                     2
Sol.[D] function is odd function                                                   
                                                                                       2 x (1  sin x )
              a                                                         Q.145          1  cos 2 x
                                                                                                        dx
               f ( x ) dx = 0                                                      
Corporate Office: CP Tower, Road No.1, IPIA, Kota (Raj.), Ph: 0744-2434159                                 DEFINITE INTEGRATION                    58
                  
                               2x                        2 x sin x
Sol.[B] I =        1  cos
                  
                                    2
                                            x
                                                    
                                                        1  cos 2 x
                                                                    dx
                                                                                             Q.73     f : R  R, g : R  R are continuous functions.
                                                                                                     The value of integral
                          x sin x
          I = 0 + 2.2          
                        1  cos 2 x
                                    dx                                                                 / 2
                   
                      0
                                                                                                            [f ( x )  f (– x )][g( x ) – g(– x )]dx ,
                                                                                                       – / 2
                           x sin x
          I=4       1  cos
                   0
                                            2
                                                 x
                                                        dx
                                                                                                      is -
                                                                                                     (A) – 1                                   (B) 0
                       (   x ) sin x
          I=4      
                   0
                         1  cos 2 x
                                       dx                                                             (C) 1                                     (D) 
                                                                                                      and
          I = 2  tan                      
                                   1           1
                                        t
                                                1
                                                                                                             / 2
                  
                                                                                                                  sin
                                                                                                                                3
          I = 2                                                                                   C=                            x dx , then -
                 4 4                                                                                               0
                                                                                                     (A) A + B = 0                             (B) A – B = 0
          I = 2 ×           = 2
                           2                                                                          (C) A + C = 0                             (D) A – C = 0
                                                a
                                                                                                                          / 2
Q.71      If a is such that                      x dx  a + 4, then -
                                                0
                                                                                             Sol. [B] A – B =               (sin
                                                                                                                                      2
                                                                                                                                          x – cos 2 x )dx
                                                                                                                           0
          (A) – 2  a  0                                 (B) – 2  a  4                              1  1 
                                                                                                      = . – .  [walli's formula]
          (C) 0  a  4                                   (D) a  – 2 or a  4                         2 2 2 2
          a2
Sol.[B]         a +2  a2 – 2a – 8  8                                                                      1                                   1
           2
           (a – 4) (a + 2)  0  – 2  a  4
                                                                                             Q.75     If     
                                                                                                             0
                                                                                                                 f ( x ) dx = 1,                  xf ( x ) dx
                                                                                                                                                 0
                                                                                                                                                                              = a and
                                                                                                       x
                               x                                                                                 2
                                                                                                                     f ( x ) dx                     =            a2                then
                            cos
                                                4
Q.72      If g(x) =                                 t dt, then g(x + ) equals -
                                                                                                       0
                               0
                                                                                                       1
          (A) g(x) + g()                                 (B) g(x) – g()
                                                                                                        (a – x )
                                                                                                                               2
                                                                                                                                   f ( x ) dx is equal to -
                                                              g(x )                                    0
          (C) g(x) g()                                   (D)
                                                              g ( )                                  (A) 4a2                                   (B)2a2
                                            x                                                      (C) a2                                    (D) 0
                                                 cos                     cos
                                                             4                   4
Sol. [A] g(x + ) =                                              tdt =               tdt                                 1                                               1
                                                                                                                           (a – x )                                       f (x) –
                                                                                                                                           2                          2
                                                0                        0                             Sol.[D]                                 f ( x )dx  a
          x                                                                                                             0                                               0
 cos 4 tdt 1 1
                                                                                                              x.f ( x ) +  x
                                                                                                                                                2
                                                                                                      2a                                           .f ' ( x )
                                                   x                                                        0                            0
               cos                                  cos
                           4                                 4
          =                    tdt +                             tdt = g() + g(x)                    = a2 .1 – 2a. a + a2 = 0
              0                                     0
Corporate Office: CP Tower, Road No.1, IPIA, Kota (Raj.), Ph: 0744-2434159                                                                DEFINITE INTEGRATION                       59
                             /2
                                   sin 2 nx                                                              
 Q.76       If an =          0
                                    sin x
                                            dx then a2 – a1, a3 – a2,                          (A)
                                                                                                         4
                                                                                                                                   (B) 
                                                                                               
                                    2                                                                        x3
Q.77        The value of            [f {g( x )}]
                                                         –1
                                                              f {g(x)}.g'(x)dx,
                                                                                       Q. 93    (1  x 2 )9 / 2           dx =
                                                                                               0
                                    1
                                                                                               (A) 2/35                            (B) 3/35
            where g(1) = g(2) is equal to -                                                    (C) 4/35                            (D) None of these      [A]
                                                                                                                  x
            (A) 0                                (B) 1
            (C) 2                                (D) None of these
                                                                                       Q. 94   Let f(x) =                2  t 2 dt. Then the real roots of
                                                                                                                  1
                                              g ( 2)                                           the equation x2 – f (x) = 0 are
                                                         1
Sol. [A] Let g(x) = t then I =                        f (t)
                                                             , f (t)dt                        (A) ±1                   (B) ±1/ 2
                                              g (1)                                            (C) ±1/2                 (D) 0 and 1                       [A]
             [log f ( t )]gg ((12))       =logf(g(2))–log f (g(1)) = 0
                                                                                                          /4
            [g(1) = g(2)]
                                                                                                              tan
                                                                                                                      n
                                                                                       Q. 95   If In =                     d , then I8 + I6 equals
                                                                                                             0
                      sec 2 x                                                                (A) 1/4                             (B) 1/5
                     
                      2      ƒ( t )dt 
                                                                                              (C) 1/6                             (D) 1/7                [D]
Q.91          lim                       
            x  / 4    2  
                       x –                                                                   
                                                                                                                 dx
                              16                                                     Q.96     [x             ( x 2  1) ]3
                                                                                                                                  =
                8                                                           2                  0
            (A)   ƒ( 2)                                               (B)                      (A) 3/4                             (B) 3/2
                                                                           
                                                                                               (C) 3/8                             (D) None of these      [C]
                2
            (C)   ƒ(1 / 2)                       (D) 4ƒ(2)                      [A]
                                                                                                         d        e sin x
                                                                                       Q.97    Let          F(x) =         , x > 0. If
                                                                                                         dx           x
                                                           / 2
Q.92        If    0     x ƒ(sin x )dx  A               0        ƒ(sin x )dx
, then A is –
Corporate Office: CP Tower, Road No.1, IPIA, Kota (Raj.), Ph: 0744-2434159                                                   DEFINITE INTEGRATION            60
         4
              2e sin      x2                                                                     
                 x
                               dx = F(k) – F(1), then one of the                    (C)
                                                                                                  2
                                                                                                                                    (D)               [D]
         1
                                                                                                             x2
         possible value of k is-
                                                                                                          cos t
                                                                                                                          2
         (A) 8                   (B) 16                                                                                       dt
                                                                            Q.102                                                  is equal to
         (C) 32                  (D) None of these                    [B]            lim                 0
                                                                                     x 0                x sin x
          
                2                                                                           1
Q.81           x  dx is equal to where [] is G . I . F,                         (A)        2
                                                                                                                                    (B) 1
          0
               e 
                                                                                    (C)          1                                  (D) Does not exist   [C]
         (A) 0                               (B) 2/e
                                                                                     
         (C) e2                              (D) n 2                 [D]                            dx
                                                                            Q.103     a
                                                                                     0
                                                                                              2
                                                                                                      x2            7   is equal to
         100 
Q.82
             
             0
                    1  cos 2 x dx                                                 (A)
                                                                                              231  1 
                                                                                                       
                                                                                             2048  a13 
                                                                                                                                    (B)
                                                                                                                                            231  1 
                                                                                                                                                     
                                                                                                                                           2048  a13 
          (A) 0                              (B) 200
                                                                                              231  1                                       232  1 
         (C) 100 2                           (D) 200 2                [D]           (C)                                            (D)              
                                                                                             2047  a13                                    2047  a13 
         
             2
                                                                                                                  [B]
           log sin x dx 
                                                                                     10
Q.83                                                                                           3     x
          0
                                                                            Q.104
                                                                                     10
                                                                                             3  x
                                                                                                     dx is equal to, where [] is G . I . F
                                                                                                                                          40
         (A)   log 2                         (B)  log 2                            (A) 20                                          (B)
             2                                    2                                                                                        n 3
         (C)  log 2                         (D) 0                    [B]                     20
                                                                                    (C)                                             (D) None of these    [B]
         
                                                                                             n 3
Q.84     e
                 cos 4 x .
                             . cos5  2n  1 x dx,  n  I  is                         n 1
Q.86
                               [A]                                                    {x} dx
                                                                                     0
              1           2       3                  n                        and {x} is fractional part of x and n N)
         lim  sin     sin     sin     ........  sin    
         n  n   2n       2n       2n                  2n 
                                                                                                                                             n
         is equal to                                                                (A)              0                              (B)
         (A) 1/                             (B) 2/                                                                                         2
         (C) 2/                            (D) 2                  [B]                n 1 
                                                                                    (C)                                                         (D)
                                                                                         2 
          3
Q.101       sin x  dx
           0
                                     is equal to, where [] is G .I .F .,            n  1                                       [D]
                    3
         (A)                                 (B)                                                 x3
                                                                                    
                     2
                                                                            Q.75                              dx equals -
                                                                                         0    (1  x 2 )9 / 2
Corporate Office: CP Tower, Road No.1, IPIA, Kota (Raj.), Ph: 0744-2434159                                                    DEFINITE INTEGRATION         61
         (A) 2/35                                         (B) 3/35                                          
                                                                                                                     1
         (C) 4/35                                         (D) None of these                       Q.85      
                                                                                                            0
                                                                                                                     2
                                                                                                                       (1  cos 2 x ) dx is equals to -
              sin
                      3
                           t cos t dt  4                                                          Sol.[C] I =            
                                                                                                                         0
                                                                                                                             | cos x | dx             =     cos x dx
                                                                                                                                                           0
                                                                                                                                                                          +
             0
                  2 . 3.1       2                                                                               
         =                   =
                 7 . 5 . 3.1   35
                                                                                                            / 2
                                                                                                                 (– cos x ) dx
                                                                                                           =  sin x  0 –  sin x   / 2 = 1 – ( – 1) = 2
                                                                                                                       / 2          
         15
                              dx
Q.76       ( x – 3)
             8
                                      x 1
                                                   equals
                                                                                                            /2
         (A) log (5/3)                                    (B) log (3/5)
         (C) 1/2 log (3/5)                                (D) 1/2 log (5/3)
                                                                                                  Q.86          | sin x – cos x | dx is equal to
                                                                                                                0
                                                                                                                                                 f ( x ) dx
                                                  4
             1      t –2                                                                        Sol.[C] I =            f ( x ) dx +
         2 . 2  log     
            2       t 23                                                                                          0                         / 4
                                                                                                           =                                      (cos x – sin x ) dx +
                                                                                                                                                 0
         / 2
                               sin x
Q.79         
             0
                    sin x                    cos x
                                                          dx equals
                                                                                                            / 2
                                                                                                                                   (tan
                           / 2
                                                                                                  Sol.[C] In–1 + In+1 =
                                                                                                                                              n –1
                                                                                                                                                       tan n 1 ) d
                                  t sin t dt                       t  – cos t   0 / 2
          I =                                             =                                  +                                   0
                              0
          sin x  0 / 2 = 1
Corporate Office: CP Tower, Road No.1, IPIA, Kota (Raj.), Ph: 0744-2434159                                                                  DEFINITE INTEGRATION          62
                             / 4                                                                           (A) 1/3                               (B) 1/       3
                                 (tan
                                                 n –1
         =                                                sec 2 ) d                       =
                                0
                                                                                                            (C) 3                                 (D)      3
                                /4
          tan n                                 1                                               Sol.[C] Differentiating both sides with respect to x, we
                                          =                                                              have
          n                 0                  n                                                       0 – sin2x f(sin x). cos x = – cos x
          n(In–1 + In+1) = 1                                                                                                              1
                                                                                                             f(sin x) =
            3                                                                                                                           sin 2 x
                                                                                                            [cos x  0 as t  (sin x, sin /2) so x  /2]
            |1 – x
                            2
Q.88                            | dx is equal to
         –2
                                                                                                             f(x) = 1/x2
         (A) 7/3                    (B) 14/3                (C) 28/3             (D) 1/3                                                  1         
                                                                                                            f 
                                                                                                                                                    
                                                                                                                                                      =3
                             –1                                         1                                                                   3       
Sol.[C] I               =       (–1  x 2 ) dx +                          (1 – x 2 ) dx +                                       
                                                                                                                                      log( x  1 / x )
                            –2                                          –1                         Q.91     I1       =            
                                                                                                                                  0
                                                                                                                                         1 x2
                                                                                                                                                            dx      and   I2      =
            3
          (–1  x
                                    2
                                        ) dx                                                                / 2
            1
                                                 –1                                     1
                                                                                                                  log sin 2t dt , then I            1   + I2 is equal to -
                          x3                                              x3                                 0
         =          – x                                  +           x –                 +
                         3 
                                –2                                      
                                                                            3  –1                        (A) (/2) log 2                       (B) – (/2) log 2
                                                                                                            (C)  log 2                           (D) –  log 2
                                    3
               x3                                                                                                      / 2
         – x     
              3 
                     1                                                                             Sol.[A] I1 =            log(tan t  cot t ) dt ,
                                                                                                                          0
                                                                                                                                                                   where x = tan
                2 2 2 2           2                                                                  t
         =           +    +  6   = 28/3                                                                 / 2
                 3  3   3 3       3
                                                                                                            =         log(2 / sin 2t ) dt
                                                                                                                     0
                                                                                                                                                         = (/2) log 2 – I2
                                                                                                             I1 + I2 = (/2) log 2
Q.89
         equals
                                                                                                            (A) 5                                 (B) 4
         (A) (1/2 tan 1)                                    (B) tan 1                                       (C) 3                                 (D) none of these
                                                                                                                      8
         (C) 1/2cosec 1                                     (D) 1/2 sec 1                                                [x 2 ]
                                             n                2                                    Sol.[C] I =       
                                                                                                                 [( x – 10) 2 ]  [ x 2 ]
                                                                                                                                          dx
                                                                                                                                                                              .....
                                                    r     2 r
                                         
                                                                                                               2
Sol.[A] Limit = nlim
                  
                                                      sec                                                  (i)
                                                   n2       n2                                                                8
                                            r 1                                                                       [(10 – x ) 2 ]
                            n                                       2
                                                                                                            I=                      22
                                                                                                                                            dx
                                                                                                                                                                              .....
                           n  sec               2
                                        r                r 1                                                      [ x ]   [( x – 10  )   ]
         = nlim
             
                                                          .                                                    2
                                                        n n                                               (ii)
                         r 1                                                                                                     8
                1
                                                            1
                                                                               1                                                 dx = 6
                 x sec                                       tan x 2                                       2I=                                     I=3
                                2
         =                          x 2 dx =                                     0   = (1/2) tan                                  2
                0
                                                            2
         1
                    1
                                                                1 
                    t
                         2
Q.90     If                  f ( t ) dt = (1 – sin x), then f    
                sin x                                           3
         is equal to
Corporate Office: CP Tower, Road No.1, IPIA, Kota (Raj.), Ph: 0744-2434159                                                                  DEFINITE INTEGRATION                  63
                                           / 2
                                                                                                                                                  
Q.104        If       I1       =             cos(sin x ) dx ,
                                            0
                                                                            I2      =             (A)                      (B) a         (C)
                                                                                                                                                  2
                                                                                                                                                          (D) 2
a a
                                                                                                                                       f ( x )  f ( x )dx
             / 2
                                                                                        Sol.[C] use              f ( x ).dx =
                   sin(cos x ) dx ,
                  0
                                                                                                           a                          0
                                                                                                                                   1/ 2                  1  x 
                      / 2                                                              Q.110     The integral                    1/ 2 [x ]  n 1  x  dx
             I3 =       cos x dx , then
                       0                                                                          equals -
        (A) I1 > I2 > I3         (B) I3 > I2 > I1                                                              1
        (C) I1 > I3 > I2        (D) I3 > I1 > I2                                                  (A) –                                    (B) 0
                                                                                                               2
Sol.[C] sin x < x  x > 0
         sin (cos x) < cos x for 0 < x < /2                                                                                                       1
             / 2                                       /2                                       (C) 1                                    (D) 2 n  
                                                                                                                                                    2
     sin(cos x ) dx
              0
                                                    <    cos x dx
                                                         0
                                                                            I2 <                  1/ 2
                                                                                                                                  1 x
                                                                                                                                                1/ 2
             I3 .... (i)                                                                Sol.[A]               [ x ]  In
                                                                                                                                  1 x
                                                                                                                                       =          [ x ] +0
             Further x  [0, /2] sin x < x and x1, x2  [0, /2]                               1 / 2                                       1 / 2
             x1 > x2  cos x1 < co s x2                                                                1/ 2
              cos x < cos (sin x)                                                                                                                               1
             /2                            / 2
                                                                                                  =         [ x ]  [ x ].dx =                (1)10/ 2 = 
                                                                                                                                                                  2
              cos x dx                          cos x (sin x ) dx
                                                                                                           0
      =                                <                                     I3 <
              0                                 0
                                                                                                            t2                             2 5                 4 
             I1 ..... (ii)
             (i), (ii)  I2 < I3 < I1  I1 > I3 > I2
                                                                                        Q.111     If   0          xf ( x )dx =
                                                                                                                                           5
                                                                                                                                             t , t > 0 then f     
                                                                                                                                                               25 
                                                                                                  =
             1000 n
                                                                                                            2                     5                  2
                                                                                                  (A)                       (B)            (C) –          (D) 1
Q.105         e
              n 1 n –1
                               x –[ x ]
                                          dx is equal to                                                    5                     2                  5
                                                                                                                   t2
                                                                                                                                               2 5
             (A) 1000 (e – 1)                       (B)
                                                          1
                                                             (e – 1)
                                                                                        Sol.[A] By Nh.              xf ( x )dx =              5
                                                                                                                                                 t
                                                        1000                                                       0
                        1                                                                                                     2 4
             (C)           (e1000 – 1)                               (D)                           2t.t2.f(t2) =               .5t
                      1000                                                                                                    5
                1                                                                                                                              2
                   (e1000 – 1)                                                                     f(t2) = t  f(4/25) =                       as t > 0
              e –1                                                                                                                             5
             1000 n                                             1                       Q.112
Sol.[A]      
              n 1 n –1
                             e x –[ x ] dx
                                                        =          e x –[ x ] dx
                                                                                    +
                                                                                                       0
                                                                                                   2 ( x
                                                                                                                 3
                                                                                                                      3x 2  3x  3  ( x  1) cos( x  1)dx
                                                                0
              2
              e
                  x –[ x ]
                                dx +.....+
                                                                                                  is equals to -
              1
                                                              1000                                (A) – 4      (B) 0                       (C) 4          (D) 6
                                                               
                                                              999
                                                                    e x –[ x ] dx
                                                                                    =   Sol.[C]
                                                                                                   0
                                                                                                    ( x  1)
                                                                                                                        3
                                                                                                                             ( x  1) cos( x  1)
                           1
                                                                                                  2
                           
             1000 e x –[ x ] dx
                           0
                                                                                                  let x +1 = t ; dx = dt
                                                                                                   1
                               [ x – [x] is periodic with period = 1]
                                                                                                   t
                                                                                                           3
                           1                                                                                    t. cos dt  0
                           
                                   x                                                              1
                               e       dx
             = 1000                          = 1000 (e – 1)
                           0
                      cos 2 x
Q.109               1 a x
                                       dx , (a > 0) =
Corporate Office: CP Tower, Road No.1, IPIA, Kota (Raj.), Ph: 0744-2434159                                                         DEFINITE INTEGRATION               64
           10         2                                                                                                                          3
Q.113        2n 1 sin 27 x dx +                                                             (A) 0                                        (B)
                                                                                                                                                  4
          n 1
          10                                                                                    (C) 2                                        (D) None of these
                      2 n 1
            2n               sin 27 x dx                                                                 /2
                                                                                                                  4  3 sin x 
          n 1                                                                        Sol.[A] I =            log             
                                                                                                                  4  3 sin x 
          equals -                                                                                          0
 2 n 1 I=–I I0
                     2n
          I1 =        sin
                               27
                                      (  t )(dt )  xt
                                                                                                               1
                                                    dx dt                                                              a sin 2 t      a                    2
                                                                                                                                                                   
                  2 n 1                                                              Q.118      lim
                                                                                                x 0
                                                                                                                
                                                                                                               x       y
                                                                                                                           e       dt 
                                                                                                                                        xy            e sin t dt  =
                                                                                                                                                                   
                  2 n 1                                2 n 1
                                                                                                (A) 1                                        (B) 0
                      sin                                 sin
                                  27                                 27
          =                            dt =                             xdx
                                                                                                                 2                                                       2
                     2n                                  2n                                     (C) e sin            y                       (D) sin 2 y.e sin               y
                       2 n                    2 n 1
                                                                                                       a            a            
                             sin 27 x             sin                                             1                           
                                                             27
           
                                                                                                                2           2
                                                                     x dx = 0         Sol.[C]       h  
                                                                                                x 0 x   e sin t   e sin t dt 
                                                                                                                                  
                      2 n 1                   2n                                                     y           xy           
                                                                                                                     xy
                                                                                                                                  2
                                                                                                                            e sin t dt
                                                                                                                                                                  2
                                                                                                                                                                      ( x  y)
            2a                f (x )                                                                                                                      e sin
Q.114     0         f ( x )  f ( 2a  x )
                                            dx -                                                =
                                                                                                            h
                                                                                                                         y
                                                                                                                                                = h
                                                                                                                                                   x 0           1
                                                                                                                                                                                 =
                                                                                                           x 0                  x
          (A) a               (B) 2a           (C) 1                 (D) 0
                                                                                                    sin 2 y
Sol.[A]                                                                                         e
                                                                                                                 x               1
                                                                                      Q.119
                                                                                                               0 (tan                x) 2
Q.115     If f : R → R and g : R → R are continuous, then                                        lim                                         dx =
             /2                                                                                x                          2
                                                                                                                         x 1
             / 2 (f ( x )  f ( x ))(g ( x )  g( x ))dx
        =                                                                                                                           2             2
                                                                                                (A)                      (B)                 (C)              (D) 
        (A)         (B) 1      (C) –1                               (D) 0                                 4                          2              4
                                                                                                                  x
Sol.[D] (x) = (f(x)+f(–x) (g(x)–g(–x))                                                                                          1
                                                                                      Sol.[C]
                                                                                                                0 (tan               x ) 2 dx
        (–x) = (f(–x)+f(x) (g(–x)–g(x))                                                             h
                                                                                                x 
              = –(x) → f(x) = odd fn                                                                                        x2 1
                 /2                                                                                                         x
                                                                                                                      d                 1
                    ( x )  0                                                                                    dx       (tan          x ) 2 dx
                  / 2                                                                         =                            0
                                                                                                           h
                                                                                                     x                              2x
                              1                              1                                                                2 x2 1
                                      x2                             x3
Q.116     If I1 =         0      2        dx , I2 =     0      2        dx , I3 =
                                                                                                =         (tan 1 x ) 2 x 2  1                          
            2        x2                         2       x3                                                 h
          1                                  1
                                                                                                                                                         
                 2        dx and I4 =               2        dx , then -                             x             x
          (A) I3 = I4                          (B) I3 > I4                                                                                          1                        2
                                                                                                                                                                 
                                                                                                =           h (tan 1  x ) 2 1                             =   .1 =
          (C) I2 = I1                          (D) I1 = I2                                              x                                        x2             2
Sol.[D]
                                                                                                2
                                                                                                 4
            /2           4  3 sin x              
Q.117     0          log
                          4  3 cos x
                         
                                                    
                                                    dx =
                                                                                                                               x log x
                                                                                      Q.148     Value of             0      (1  x 2 ) 2
                                                                                                                                               dx  -
                                                                                                (A) 1                                        (B) 0
Corporate Office: CP Tower, Road No.1, IPIA, Kota (Raj.), Ph: 0744-2434159                                                            DEFINITE INTEGRATION                       65
        (C) 3                                            (D) None of these                          1
                                                                                            =          (b – a)8
Sol.[B] take x = tan                                                                              280
                   /2
                   sin . cos . log tan d                                     Q.83     If for a continuous function f
                    0
                                                                                                 a                                    a
                   n/2
                                                                                                        f ( x )dx  k                  (f ( x )  f (  x ))           dx,
                    
                                                                                                 a                                0
          I=               sin . cos . log cot d
                       0                                                                    then k is
          2I = 0  I = 0                                                                    (A) 0                                         (B) 1
                                                                                            (C) 2                                         (D) –1
                                 2   sin 2 x
Q.149     Value of              2  x    1
                                              dx ,
                                                                                   Sol.[B] use               
                                                                                                                  a
                                                                                                                      f ( x ).dx               
                                                                                                                                                    a
                                                                                                                                                         f (x)    + f(–x)dx
                                      2
                                                                                                               a                                   0
             3 4                                              3 2                                                        / 2
          (A)
             2
               x                                         (B)
                                                              4
                                                                x                           I=
                                                                                                      2
                                                                                                        ×2            
                                                                                                                      0
                                                                                                                                 log sin x.dx                   [P-6]
Q.82      Value of           
                                 b
                                     (x  a )3            (b – x)4 dx is
                                                                                   Q.87         8
                                                                                                         (sin 193 x  x 295 ) dx                   is equal to
                                 a
                                                                                           (A) 0                                          (B) 2(8295 + 1)
               1
          (A)     (b – a)8                               (B) (b – a)     8
                                                                                           (C) 8295 + 2                                   (D) none of these
              280
                                                                                   Sol.[A] odd function
                    1
          (C)          (b – a)9                          (D) none of these
                   280                                                                                                                x
                                                                                                                 1
Sol.[C] odd function                                                                        = 100            0
                                                                                                                     e x  0 dx  100(e  1)
                                                                                                         x log x
                                                                                             
               4
Q.90          2
                   x        6x   dx = …….                                          Q.94
                                                                                                 0    (1  x 2 ) 2
                                                                                                                                   dx =
             32                                      32
          (A)   (3  2 )                     (B)        (3            2)                   (A) 1                                              (B) 0
              5                                       5                                     (C) 3                                              (D) none of these
            16                                                                      Sol.[B] Put x = tan 
        (C)     (3  2 )                     (D) none of these
             5
Sol.[B] Put x  6 – x                                                               Q.95    If                                                 I1                                          =
                                                                                                 1                                     1                                 2
                                                                                                                                                                   
                                                                                                         x2                                    x3                                x2
                                                                                                     2        dx , I 2                    2        dx, I 3                 2        dx
                         2                                                                       0                                  0                                1
            d x
Q.91
           dx x     cos t dt = ……..
                                                                                            and I4 =                1
                                                                                                                      2        3
                                                                                                                          2 x dx ,             then
          (A) 2x cos x2 – cos x
                                                                                            (A) I3 = I4                                        (B) I3 > I4
          (B) 2x cos x 2  cos x                                                            (C) I2 > I1                                        (D) I1 > I2
        (C) 2x cos x2 – cos x                                                       Sol.[D] Do yourself
        (D) none of these
Sol.[B] use NL                                                                      Sol.[B] Do yourself
                   3
Q.92                   x    sgn (sin x) dx = ……..
                                                                                                                                    cos 2 x
               0
                                                                                                                               
          where sgn denotes signum of x.                                            Q.97    The value of
                                                                                                                                 1 a x
                                                                                                                                                        dx, a > 0, is
                    3                                    2 2
          (A)                               (B)                                           (A) /a                                            (B) 2
                    2                                    3
                                                                                            (C) a                                             (D) /2
                    3 2                                                             Sol.[D] Do yourself
          (C)                               (D) none of these
                    2                                                                            1                       dx
Sol.[C]                                                        I               =    Q.98        0       2
                                                                                                     x  2 x cos   1
                                                                                                                                                    =
                                                       2
              0
                   x. sgn(sin x )dx                
                                                             x. sgn(sin x )dx               (A) sin                                           (B)  sin 
                                                                                                                                                                                     
                                                                                            (C)                                                                      (D)                sin
                    3
                                                                                                      2 sin                                                                          2
                 2
                         x sgn(sin x )dx
                                                                                            
          =                                                                                              1                         dx
                                      2                              3
                                                                                    Sol.[C] I =         0   ( x  cos ) 2  sin 2 
              0
                    x.1dx         
                                            x ( 1) dx            2
                                                                         x.(1)dx
                                                                                                                                                                 1
                                                                                                       1       1  x  cos   
               1  2          1               3 2                                                         tan              
          =     (42 – 2) +   [92 – 42] =                                                        sin          sin   0
             2  2             2                2
Corporate Office: CP Tower, Road No.1, IPIA, Kota (Raj.), Ph: 0744-2434159                                                         DEFINITE INTEGRATION                                    67
          =                                                                                              1              x  ( x  1)
                                                                                                =      0
                                                                                                             tan 1
                                                                                                                       1  x ( x  1)
                                                                                                                                      dx
            1       1  1  cos        1  cos  
                 tan                tan                                                           1
          sin          sin                sin                                          =      0
                                                                                                             (tan 1 x  tan 1 ( x  1)) dx
                                                                                                                 1                       1
          =                                                                                     =               0
                                                                                                                     tan 1 x       
                                                                                                                                     0
                                                                                                                                             tan 1 (1  x  1)dx
            1                                                                                 [P-4]
                                                     
                    cot 1  cot     cot 1 (cot )                                                  1
          sin   2              2 2                                                       =2          0
                                                                                                                 tan 1 x dx
                1              
          =              
              sin   2
                                                                                                    2
                              2 sin                                                 Q.103                (sin x  | sin x | ) dx            =
                                                                                                    0
                                                                                              (A) 4                                  (B) 0
                                  e      dt
Q.99      Value of            
                              1/ e     t3  t
                                                is equal to                                   (C) 1
                                                                                      Sol.[A] Do yourself
                                                                                                                                     (D) 8
                          1
          (A)         2
                                                                    (B) e2 – 1
                  e 1                                                                              /2              dx
          (C) – 1                               (D) 1
                                                                                      Q.104        0        1  tan 3 x
                                                                                                                                 =
                      e       dt                    e1    t 
                                               
                                                                                              (A) 0                                  (B) 1
Sol.[D] I =                       2
                                                      2    dt
                   1 / e t ( t  1)             1/ e  t t 1                                (C) /2                                (D) /4
                                                                                      Sol.[D] Do yourself
          =  log t  1e/ e 
                                       1
                                       2
                                         
                                         log( t 2  1)      e
                                                             1/ e   1
                                                                                                    5        x2
Q.100     Value of            
                                  b    x
                                          dx, a < b < 0 is
                                                                                      Q.105
                                                                                                   3    x2  4
                                                                                                                          dx =
                              a       |x|
                                                                                                              15 
        (A) – | a | – | b |                     (B) | b | – | a |                               (A) 2 – loge     
                                                                                                              7 
        (C) | a | – | b |                       (D) | a | + | b |
Sol.[B] Do yourself                                                                                           15 
                                                                                                (B) 2 + loge     
Q.101 Value                                                                      of                           7 
                                                                                                dx is equal to
                          odd             odd
                                                                                                (A) – 4                              (B) 0
           Answer depends on ‘r’
                                                                                                (C) 4                                (D) 6
              1            1    
Q.102        0
                tan 1  2        dx is
                        x  x 1
                                                                                      Sol]      Do yourself
(A) n 2 (B) – n 2 2
                                                       
                                                                                      Q.101     2
                                                                                                         | [ x ] | dx       is equal to
          (C)        + n 2                     (D)       – n 2
                   2                                    2                                       (A) 1                                         (B) 2
              1                     1                                                           (C) 3                                         (D) 4
Sol.[D]      0
                  tan 1
                              1  x ( x  1)
                                             .dx                                      Sol.[D]
Corporate Office: CP Tower, Road No.1, IPIA, Kota (Raj.), Ph: 0744-2434159                                                   DEFINITE INTEGRATION               68
     2                           1                       0                          1                    2
 2
         | [ x ] | dx       2
                                   | [ x ] | dx      1
                                                              | [ x ] | dx        | [ x ] | dx 
                                                                                     0
                                                                                                      
                                                                                                      1
                                                                                                          | [ x ] | dx
                       1                  0              1                2
             =        2
                            2dx          1
                                               dx       0
                                                              0.dx       1
                                                                               dx
             = 2 x   2   x  1  0   x 
                      1          0                       2
                                                          1
             = 2(–1 + 2) + (0 + 1) + 0 + ( 2 –1)
             =2+1+1+=4
Q.
Corporate Office: CP Tower, Road No.1, IPIA, Kota (Raj.), Ph: 0744-2434159 DEFINITE INTEGRATION 69