Limit
Limit
Q.2       Lim { 3       ( n  1) 2  3 ( n  1) 2 }
          n 
         (A) 0            (B) 1           (C) 2       (D) 3    [A]
          Lim  Lim
Q.3       m  n  
1  n 1n  2 n  n 2 n  3n  n 3n  4 n  ...  n (m  1) n  m n     
                                                                       
                               m2                                      
                                                                       
         is equal to
                1                 1             1             1
         (A)              (B)             (C)          (D)      [A]
                2                 3             4             5
          Lim
Q.4       x 0 
                     (– n ({x} + | [x] | )){x} is-
         (Here {x} & [x] are respectively fractional part & greatest integers of x)
         (A) 0                  (B) e1
         (C) n 2               (D) n ½              [D]
                                 1 3        1                    1
                   [13 x ]        [ 2 x ]  [33 x ]  ........  [ n 3 x ]
Q.6       lim                    2          3                    n          is –
          n                          2    2              2
                                      1  2  .......  n
         (Where [.] denotes the greatest integer function)
                                  2x                        x
         (A) x            (B)             (C) 0       (D)     [A]
                                   3                        6
Q.7      Suppose you have two linear functions f and g shown below.
                                  f(x)
                                         (0, 6)
                     (x, f(x))                g(x)
                                         (0, 3)
                                  (x, g(x))
               (a, 0)            x       O
                          f (x)
         Then Lim               is -
                   x a   g(x )
        (A) does not exist
        (B) not enough information
        (C) 2
        (D) 3                                      [C]
Sol.[C] This problem requires a geometrical argument :
                                f (x )    xa       g( x )                 f (x)     6
Method.1 By similar triangles,         =         =         , and therefore         =   =2
                                  6       0a          3                   g ( x )   3
Corporate Office: CP Tower, Road No.1, IPIA, Kota (Raj.), Ph: 0744-2434159                  LIMIT   1
                                                       f (x )
Method.2 lim
              f (x)
                      = lim
                               a = lim slope of f = 6 = 2
         x a g ( x )   x a g( x ) x a slope of g  3
                                                       a
         This problem is a nice preview of L'Hospital's Rule
                                                                                    1/ x
                                                                        f (1  x ) 
Q.8      Let f: R  R be such that f(1) = 3 and f '(1) = 6, Then, lim                    is equal to
                                                                  x 0  f (1) 
                                                                1/ x
                    f (1  x )  f (1) 
          = lim 1                     
            x 0          f (1)        
                               f ( x 1) f (1)
                     lim
         =           x 0           x f (1)
                e
                       1        f ( x 1) f (1)
                           lim
         =           f (1) x 0        (x)
                e
                      f '(1)                      f (1  x )  f (1)           
         =            f (1)                 xlim                     f ' (1) 
                e                            0           x                    
         = e6/3 = e2
                      4 3 2
Q.9      If xlim{( x  ax  3x  bx  2
 x 4  2 x 3  cx 2  3x  d ) }
Sol.       lim ( x 4  ax 3  3x 2  bx  2 )
          x 
 x 4  2 x 3  cx 2  3x  d )
                    4    3    2
                 ( x  ax  3x  bx  2)
         = lim 
           x       4    3    2
                 x  ax  3x  bx  2
                                             ( x 4  2 x 3  cx 2  3x  d ) 
                                                                              
                                                                              
                                             x  2 x  cx  3x  d 
                                                   4       3      2
                                                                              
                          3
                (a  2) x  (3  c) x
                                       2
          lim 
          x    4      3     2
                x  ax  3x  bx  2
Corporate Office: CP Tower, Road No.1, IPIA, Kota (Raj.), Ph: 0744-2434159                               LIMIT   2
                                                      
                                   ( b  3) x  ( 2  d )
                                                      
                                                      
                               x  2 x  cx  3x  d 
                                 4     3    2
                                                      
         Clearly, the degree of the polynomial in the
         numerator is 3 and that of denominator is 2.
         Therefore, for the limit to be finite, we must have,
                       a–2=0a=2
                     1                  5     
Q.10     If f(x) =    f ( x  1)              and f(x) > 0 for all x  R, then xlim
                                                                                    
                                                                                       f(x) is
                     3             f ( x  2) 
                 2                              5
         (A)                            (B)
                 5                              2
         (C)                           (D) does not exist   [B]
                           lim f ( x  1) lim f ( x  2)  I
                           x                x 
                               1                  5     
         Since, f ( x )        f ( x  1)             
                               3             f ( x  2) 
                                                             
                          1                         5        
          xlim
              
                 f (x)      lim f ( x  1)                 
                          3  x              lim f ( x  2) 
                                              x            
                    1    5
                I =  I    3I2 = I2 + 5
                    3    I
                                                     5
                2I2 = 5                 I=           
                                                     2
                                                                                                     100 x   99 sin x  
Q.11     The                                  value                   of                         lim                      
                                                                                                 x 0   x   x  
                                                                                                        sin
         where [ ] represents the greatest function is-
         (A) 199      (B) 198 (C) 0           (D) 197 [B]
Sol.     We know that
                             x           sin x
                                > 1 and       < 1 for x  0
                           sin x           x
                           100 x           99 sin x
                                > 100 and          < 99
                           sin x              x
                                 100x   99 sin x  
                          lim                   
                           x 0  sin x 
                                           x 
                       = xlim
                           0
                              (100 +98) = 198
Corporate Office: CP Tower, Road No.1, IPIA, Kota (Raj.), Ph: 0744-2434159                                       LIMIT      3
                  
                   12          3        52         7          
                                                               
Q.12     The lim        3
                                  2
                                            3
                                                      2
                                                          .... equals -
             x  1  x     1  x     1  x     1  x         
                                                              
                 5                10                            5     21
         (A)             (B)                            (C)     (D)                     [B]
                 6                 3                            6     3
              
               1
                  2
                            3        52         7          
                                                           
Sol.     lim        3
                              2
                                        3
                                                  2
                                                      ....
         x  1  x     1  x     1  x     1  x         
                                                          
                
                1  5  9  .... 3  7  11  ..... 
                  2   2     2
                                                     
         = lim            3
                                           2        
           x       1 x            1 x           
                                                    
                     x                          x              
                
                
                     (4k  3)
                    k 1
                                        2
                                                 (4k  1) 
                                                k 1
         = xlim                                               
             
                          1 x3                     1 x2      
                                                               
                                                               
                    x             x                     x               x        x   
                16
                   k 1
                          
                         k 2  24
                                  k 1
                                       k             9
                                                        k 1
                                                                    4    k  1 
                                                                        k 1   k 1
           lim
         = x                                                                      
                            1 x3                                        1 x2       
                                                                                     
                                                                                     
                 16 x ( x  1)( 2 x  1)
                                          12x ( x  1)  9 x
                            6
         = lim 
           x 
                                    1 x3
                
                
                                                     2 x ( x  1)  x 
                                                                     
                                                         1 x2        
               32       10
         = –      +2=     .
                6        3
Q.13 Let the sequence < bn> of real numbers satisfy the recurrence relation :
                    1        125 
         b n 1         2b n  2  , bn 0, then nlim b n is equal to -
                    3         b n               
                                                                2
         (A) 0            (B)          (C) 5             (D)     [C]
                                                                3
                                              
         Then, bn +1 =
                             1     2b n  125 
                             3              2 
                                            bn 
                                  
                                                                   
                 lim           1           125 
                                 2 lim b 
                 n  bn + 1 = 3  n  n      2 
                                                        lim b n 
                                                       n      
                          1      125 
                b=          2b  2 
                          3       b 
Corporate Office: CP Tower, Road No.1, IPIA, Kota (Raj.), Ph: 0744-2434159                      LIMIT   4
                    b 125
                     = 2               b3 = 125  b = 5
                    3  b
          (A) 0                        (B) 1
          (C) 2                        (D) None of these       [C]
Sol.      Let sinx = t
                    
          if x       , t1
                    2
                       t  (t) t
          so lim
                t 1 1  t  nt
using L Hospitals
                 1  t t (1  log t )
              lim
          = t 1              1
                       1
                              t
                                            1
                  t t (1  log t ) 2  t t  
          = lim                              t  = +2
            t 1                1
                              2
                               t
                  xe x  n (1  x )
Q.15       lim                          is equal to-
          x 0           x2
               3         2
          (A)        (B)               (C) 0           (D) 1   [A]
               2         3
Sol.      Use expansion.
                              e1/ x  e 1/ x
Q.16      Let f(x) = g(x)                       and x 0 where g is a continuous function. Then xlim
                                                                                                   0
                                                                                                      f(x) exists if
                              e1/ x  e 1/ x
          (A) g(x) is any polynomial
          (B) g(x) = x + 4
          (C) g(x) = x2
          (D) g(x) = 2 + 3x + 4x2
               e1 / x  e 1 / x          1  e 2 / x
Sol.[C]    lim                  = lim                  = 1 and
          x 0 e
                1/ x
                       e 1 / x   x 0  1  e
                                                 2 / x
               e1 / x  e 1 / x          e2 / x  1
           lim 1 / x            = lim                 = –1. Hence
          x 0 e       e 1 / x x  0  e 2 / x  1
          lim f ( x ) exists if g(x) = x or g(x) = x2.
          x 0
Corporate Office: CP Tower, Road No.1, IPIA, Kota (Raj.), Ph: 0744-2434159                                             LIMIT   5
                                                        
Q.17      If fr() =  cos            2
                                               i sin        ×
                                 r                       r2 
                     2        2                
                  cos 2  i sin 2  ….  cos  i sin 
                     r         r          r       r
          then nlim
                 
                    f n () equals
                                                                 = e ( i / 2)(11 / r )
                                        2
                         = e ( i / r       )[ r ( r 1) / 2 ]
                                                
                         = ei/2 = cos   + i sin   = i
                                       2         2
Q.18      Let
                                                                                           
          f(x)= nlim
                   {sinx + 2sin x + 3sin x +...+ n sin x}. If x  n +
                                 2        3             n
                                                                                             , n  I, then
                                                                                           2
                                                                 1
              lim                                2                         is equal to :
          x  / 2    [(1 – sin x )                  f ( x )] x –1
                                                             sin
          (A) 1                                          (B) 0
          (C) e                                          (D) e2
                           sin x
Sol.[C] f(x) =
                     (1 – sin x ) 2
                                                   1
                lim
          Now x                     2         sin x –1
                   / 2 [(1 – sin x ) f ( x )]
                                                     1
          =       lim
                x  / 2      (sin x ) sin x –1
                         sin x –1
          =        lim                =e
              e x / 2 sin x –1
Corporate Office: CP Tower, Road No.1, IPIA, Kota (Raj.), Ph: 0744-2434159                                   LIMIT   6
                   2 sin x  1 sin x   n (1  sin 2 x )
         = lim                ×      ×
              x  0 sin x        x         sin 2 x
                                                         sin 2 x
                                                  ×              × 2 = 2n2
                                                           2x
                                                                                                 1
         then nLim
                  f(n) =
                                    x      x               x         x    x                  
                            1  sin  sin  ......  sin        sin sin 2 ...... .....1
                                      2       2               n          2
                                          2               2              2                   
         =
              Lim        e                                    x
              x 0
                                        x                  x 
                           sin x   sin  2                      
                               2       2   ....... sin  2 n  
                           x                                  x 
         =                
                                         x
                                                                     
              Lim        e                                           
              x 0
                1 1         1 
         =        2 ..... n 
                 2 2       2 
              e
                                                  1/ 2
         Sum of infinite G.P. =                      1       =e
                                                  1
                                                 e 2
                                                         
        (A) 0                                    (B)
                                                         2
        (C) 3                                    (D) None of these            [C]
Q.23    If     f(x) = x2 + bx ; 0  x  1
                    = 3 – ax2; 1 < x  2
        such that lim
                  x 1
                       f(x) = 4, then ordered pair (a, b) is given as-
        (A) (1, 5)                               (B) (1, 7)
        (C) (–1, 3)                              (D) None of these            [C]
                  1        x          2           1           1
Q.24      lim
         x 0    x   5   0    e t       dt –
                                                 x   4
                                                         
                                                             3x 2
                                                                    is equal to
Corporate Office: CP Tower, Road No.1, IPIA, Kota (Raj.), Ph: 0744-2434159                            LIMIT   7
        (A) 1       (B) 3/5 (C) 1/2                       (D) 3/10
Sol.[D] Applying L'Hospital Rule
               x
                    t2
          3  0 e         dt  3x  x 3  0 
                                                  
                          x5
                                                 0
                          2
          lim 3e  x  3  3x 2
         x 0
                              5x 4
                                     2
         =
              3     lim e
                          x
                              1  x 2  0 
                    x 0
              5              x4         0
                                     2
           3 lim e  x (2 x )  0  2 x
         =
           5 x 0         4x 3
                           2
           3 2 lim  e  x  1  0 
         =  ·                      
           5 4 x 0      x2       0
                                             2
           3 2 lim 1  e  x    3
         =    x  0      2
                             =
           5 4       (x )     10
Q.25    A particle begins at the origin and moves 2 units to right and reaches P 1 then 1 unit up and reaches P2, 1/2 unit right
                                             1
         and       reaches           P3,               unit   down         to   reach   P4   &   1/8   unit   right   to   reach
                                             4
         P5 and so on. If Pn = (xn, yn) then nlim P is
                                                n
        (A) (4, 6)                         (B) (8/3, 4/5)
        (C) (4/5, 2)                       (D) (4, 3)
                       1 n 
                   21    
                          4 
Sol.[B] nlim
           n
              x =     = 8/3
                           1
                        1
                           4
                           1  
                                  n
                     
                   1 1        
         lim yn =        4  
                                     = 4/5
        n 
                           1 
                       1      
                           4 
        (8/3, 4/5)
                                                 2
Q.26     lim f ( x ) , where 2 x  3 < f(x) < 2 x  5x , is
         x 
                                x                x2
        (A) 1             (B) 2            (C) –1         (D) –2     [B]
                 4   2        2    
Q.27    If lim  x  x  1  ax  b   0 then
           x                     
        (A) a = 1, b = – 2                 (B) a = 1, b = 1
                                     1
        (C) a = 1, b =                    (D) None of these         [C]
                                     2
Corporate Office: CP Tower, Road No.1, IPIA, Kota (Raj.), Ph: 0744-2434159                                                 LIMIT   8
          Lim
Q.28                [1 + (cos x)cos x]2 is equal to
         x
              2
        (A) Does not exist        (B) 1
        (C) e                     (D) 4
         Lim
Sol.[D] x    [1 + (cos x)cosx]2
              2
                  Lim
         y=               (cos x)cos x
              x
                      2
                        Lim
         log(y) =                  (cos x) log cos x
                        x
                             2
                           Lim        log(cos x )
         log (y) =                              (/) L'hospital
                        x              sec( x )
                                2
                        Lim             1         sin x
         log(y) =                         ×–
                        x            cos x    sec x tan x
                             2
              Lim
         =               – cos x = 0
             x
                   2
            y = e0 = 1
         Now limit is (1 + 1)2 = 22 = 4
               2 2  (cos x  sin x )3
Sol.[D] f(x) =                         (0/0)
                      1  sin 2 x
         L'Hospital Rule
          lim
                  f(x)
         x
              4
            lim                  3(cos x  sin x ) 2 (  sin x  cos x )
         = x              –
                  4                           2 cos 2 x
            lim  3(cos x  sin x ) 2 (cos x  sin x )
         = x 
               4 2(cos x  sin x ) (cos x  sin x )
            lim
              3
         = x   × (cos x + sin x)
           4 2
         3  2       3
        =      =
         2   2       2
                                                                          S3n                   2n
                                                                                                       f (r )
Q.30    If Sn denote the sum of first n terms of an A.P. and f(n) =
                                                                       S2 n  S n
                                                                                  , then nLim
                                                                                                      n
                                                                                                              is equal to
                                                                                                r 1
        (A) 6               (B) 3           (C) 2        (D) 0
                  3n
Sol.[A] S3n =        [2a + (3n – 1)d]
                   2
Corporate Office: CP Tower, Road No.1, IPIA, Kota (Raj.), Ph: 0744-2434159                                                  LIMIT   9
                  2n
           S2n =       [2a + (2n – 1) d]
                   2
                 n
           Sn =      [2a + (n – 1)d]
                 2
                       n
           S2n – Sn =     [2a + (3n – 1)d]
                       2
              S3n
                      = 3 = f(n)
           S2 n  S n
                            2n
                    1                              2n 
                         n
           S = xLim
                 
                            f (r )        = nLim
                                              
                                                 3     =6
                            r 1                       n 
Q.31 If  and  are the roots of the quadratic equation ax2 + bx + c = 0, then
            Lim        1  cos(cx 2  bx  a )
           x 1 / 
                                                     =
                                2(1  x ) 2
                     c   1                   c   1
           (A)                      (B)           
                    2    
                       
                                              2    
                                                  
                                                        
                    c   1
           (C)                      (D) None of these
                       
                                  c
            Lim        2 sin 2      ( x  1 / )( x  1 / )
           x 1 /                2
                                 2 2 ( x  1 /  ) 2
                 2                           c 
                 sin  ( x  1 / )(x  1)                        2
 Lim         1                               2                 2 c
                                                     ( x  1 / )
             2                              2 
x 1 / 
                                                                      4
                 ( x  1 /  )(x  1 / ) c  
                                          2  
                 
            Lim         1       c2                      c 1     1
           x 1 /                (1 /   1 / ) 2 = 2     
                       2       4                                  
              1              2                       n  
Sol.[B]           2
                                  2
                                        ......         2
         1 n              1 n                    1 n 
            1
        =               × (1 + 2 + ..... + n)
             1 n 2
               1   n (n  1)            n                 1
        =               .      =                =
          1 n      2
                         2         2(1  n )       2 [(1 / n )  1]
                 1           2                   n 
         nlim
             
                      2
                                2
                                     ......         
                1 n       1 n               1 n2 
                      1               1
        = nlim
             2 [(1 / n )  1]
                                 =–
                                       2
                   [ x ]2  sin[ x ]
                                                    for [ x ]  0
Q.34    If f(x) =         [x]
                           0                        for [ x ]  0
                  
        where [x] denotes the greatest integer less than or equal to x, then xlim
                                                                               0
                                                                                  f(x) equals:
        (A) 1                               (B) 0
        (C) –1                              (D) None of these
Sol.[D] As              x                      0             –         (i.e.,   approaches   0   from   the   left),
         [x] = –1,
        Thus, xlim
                0
                   f(x) does not exist.
         lim        1  cos 3 x
Q.35     x 0
                                 is equal to
                   x sin x cos x
        (A) 2/5             (B) 3/5         (C) 3/2           (D) 3/4
                    1  cos 3 x
Sol.[C] xlim
          0
                                = lim
                   x sin x cos x x 0
Corporate Office: CP Tower, Road No.1, IPIA, Kota (Raj.), Ph: 0744-2434159                                     LIMIT    11
         (1  cos x ) (1  cos 2 x  cos x )
                   x sin x cos x
                1      1
Q.36     lim sin x  tan x is equal to
         x 0
                   x3
        (A) 2         (B) 1              (C) –1       (D) 1/2
             sin 1 x  tan 1 x                      0     
Sol.[D] xlim
          0
                                                       form 
                          x   3                       0     
                      1                  1
                                  
        = xlim
            0      1 x   2          1  x 2 (L Hospital rule)
                           3x 2
             1 lim 1   1  x 2  1  x 2 
        =                                  
             3 x 0 x 2 (1  x 2 ) 1  x 2 
                                           
          1 lim 1  (1  x 2 ) 2  (1  x 2 )            1              
        =                                    .                         
          3 x 0 x 2  (1  x 2 ) 1  x 2      (1  x )  1  x 2
                                                      2                 
          1 lim       x 2 (3  x 2 )               1
        =                               .
          3 x 0 x 2 (1  x 2 ) 1  x 2 (1  x 2 )  1  x 2
             1 3 1
        =       =
             3 2 2
             f (2h  2  h 2 )  f ( 2)
Sol.[B] hlim
          0   f (h  h 2  1)  f (1)
               f ( 2h  2  h 2 )  f (2) h ( 2  h )
        = hlim                           ×
            0
                    2h  2  h 2  2       h (1  h )
                (h  h 2  1)  1
         ×
             f (h  h 2  1)  f (1)
                       2h                   1          1
        = f(2) × hlim
                    0     ×                      =6×2×   =3
                           1 h           f ' (1)       4
Corporate Office: CP Tower, Road No.1, IPIA, Kota (Raj.), Ph: 0744-2434159   LIMIT   12
        Note that L Hospital rule is not applicable in this case.
                             |x|
Q.38    The value of lim         is -
                          x0 x
        (A) 1                         (B) 2
        (C) 3                         (D) Does not exist     [D]
                       2
                      x  1 , x  1
Q.39    If f(x) =                              then the value of lim
                                                                  x 1
                                                                       f(x) is -
                      3x  1 , x  1
                      
        (A) 1                         (B) 2
        (C) 3                         (D) Does not exist      [B]
Q.40     Lim (1 – x + [ x – 1] + [1 – x]) where [x] denotes greatest integer but not greater than x
         x 1
        (A) 1                         (B) –1
        (C) 0                         (D) Does not exist      [B]
                1/ x
          Lim e      1
Q.41      x 0
                        =
                1/ x
               e     1
        (A) –1                        (B) 1
        (C) 0                         (D) Does not exist     [D]
                                  1
Q.42    If f ( x )  3          1 /(1 x )
                                              then-
                           1 7
        (A)    Lim f(x) = 3
               x 1
        (C) Lim
            x 1
                 f(x) = 4
        (D) Lim
            x 1
                 f(x) does not exist                         [D]
        (A) 0                         (B) 1
        (C) Does not exist            (D) None of these      [C]
                        cos –1 x       0
Q.44      lim                         ,   =
         x  1           x 1           0
                                               1
        (A)                          (B)
                                               2
         (C)      2                  (D)                   [C]
Corporate Office: CP Tower, Road No.1, IPIA, Kota (Raj.), Ph: 0744-2434159                            LIMIT   13
                      cos θ  sinθ
          lim
Q.45          π              π     =
         x 
              4          θ
                             4
        (A)       2                       (B) 1
        (C) 2                             (D) Does not exist    [A]
                  x3  x 2 1
Q.46     lim                      =
         x      x3  x2 1
        (A) 0                             (B) 1
        (C) 2                             (D) Does not exist    [B]
                  x4  x2 1
Q.47     lim                      =
         x      x5  x 2 1
        (A) 0                             (B) 1
        (C) 2                             (D) Does not exist    [A]
                      3x 5  x 2  13
Q.48     lim                              =
         x      x 4  7 x 2  17
        (A) 0                             (B) 2
        (C) infinite                      (D) None              [C]
                      x 3  2x  1
Q.49      lim                         =
          x  1      x 5  2x  1
        (A) 2/3           (B) 1/3         (C) 4/3       (D) 5/3 [B]
                      2 sin 2 x  sin x  1
Q.50      lim                                       =
         x
                 2 sin 2 x  3 sin x  1
              6
               sin 3 x  x 3
Q.51     lim                 =
         x  0 (sin x  x )
                  x 3  7x 2  15x  9
Q.52     lim                      =
            x 4  5x 3  27x  27
         x 3
            2           2         1
        (A)        (B)        (C)                       (D) 1   [B]
            3           9         9
                  m
                      x 1
Q.53     lim                 , (m  n) ; m, n  I
         x 0 n       x 1
        (A) mn                            (B) m/n
        (C) n/m                           (D) None      [C]
Corporate Office: CP Tower, Road No.1, IPIA, Kota (Raj.), Ph: 0744-2434159   LIMIT   14
Q.54     lim  x 2  1  x 2  1  =
         x  0                    
        (A) 0                   (B) 1
        (C) 2                   (D) None               [A]
                    (1  x 2 )    (1  x )
Q.55     lim                                   =
         x 0             3
                    (1  x )      (1  x )
        (A) 0            (B) 1         (C) 2           (D) 4    [B]
                      x  2a      x      2a
Q.56      lim                                      ,   a>0=
         x  2a               2       2
                              x  4a
        (A) 2a                         (B) 2 a
        (C) 1 / 2 a                                    (D)     a [C]
                  2 x  sin 1 x
Q.57     lim                       =
         x 0 2 x  tan 1 x
                          1
        (A) 3        (B)               (C) 0           (D) 1    [B]
                          3
              1   1
Q.58     lim     2 log (1 + x) =
         x 0 x  x
                       1
        (A) 1      (B)       (C) 0                     (D) 2    [B]
                       2
               sin x
         Lim e        1  sin x
Q.59     x 0
                                 =
                      x2
                               1
        (A) 1            (B)           (C) e1/2        (D) e    [B]
                               2
              log e {1  tan( x  a )}
Q.60     lim                           =
         x a        tan( x  a )
        (A) 0            (B) 1         (C) 2           (D) 3    [B]
              cos(x / 2)
Q.61     lim              =
         x 1   1 x
        (A) 0            (B)          (C) /2         (D) 2 [C]
              (cos ) x  (sin ) x  1
Q.62     lim                            , x  (0, /2)
         x 2           x2
        (A) sin2 n (sin )
        (B) cos2  n (cos )
        (C) cos2  n (cos ) – sin2 n (sin )
        (D) cos2  n (cos ) + sin2 n (sin )                [D]
Q.63      lim (1  k / x ) mx =
          x 
        (A) ek                         (B) e
        (C) emk                        (D) None                 [C]
Corporate Office: CP Tower, Road No.1, IPIA, Kota (Raj.), Ph: 0744-2434159   LIMIT   15
                            x
               x 
Q.64     lim                   =
         x   1  x 
                                 1
        (A) e              (B)           (C) 0        (D) 1   [B]
                                 e
              log e (a  x )  log e a
Q.66     lim                           =
         x 0            x
        (A) a                            (B) a2
        (C) a–1                          (D) Does not exist   [C]
                log e (1  7 sin x )
Q.67     lim                         =
         x 0          sin x
        (A) 3                            (B) 7
        (C) 0                            (D) Does not exist   [B]
                tan x  sin x
Q.68     lim                         =
         x 0          x3
             1                               1
        (A)                              (B)
              2                               4
        (C) e                            (D) Does not exist   [A]
               tan x
         Lim e        ex
Q.69     x 0
                          =
                  tan x  x
        (A) e                            (B) 1
        (C) 0                            (D) Does not exist   [B]
                  o
Q.70     Lim sin x is equal to
         x 0
                       x
        (A) 0                            (B) 
                                                
        (C) 1                            (D)                  [D]
                                               180
1 x
Q.71          1  x  1 x 2 =
         lim        
         x 1 2  x 
Q.72     lim x1 / x =
         x 
        (A) 0                            (B) 1
        (C) 2                            (D) (2)1/2           [B]
Corporate Office: CP Tower, Road No.1, IPIA, Kota (Raj.), Ph: 0744-2434159   LIMIT   16
                           1/ x3
Q.73          tan x                =
         lim        
         x 0   x 
        (A) 0                                (B) 1
        (C) e                                (D) Does not exist      [D]
                                     x
Q.74     Lim                   tan
                                            =
          x 1   (2  x )             2
              x2  x  1
Q.79     lim              (where [x] is greatest integer function  x)
         x     e[ x ]
        (A) 0                                (B) 1
        (C) 2                                (D) Does not exist      [A]
                           1                 1                 1
Q.81     lim [ x ]  2 [ 2 x ]  3 [3x ]  ...  n [nx ] =
         n 
                           12  2 2  32  ...  n 2
          lim
Q.83                [Max (sinx, cosx)]
          x
               4
               1
        (A)                                    (B) 0
               2
        (C) – 1                                (D) 1 /      2                    [D]
Q.88    Let
                                                         2        2                     
        fk () =  cos            2
                                       i sin            cos 2  i sin 2  .... ….  cos  i sin  then Lim  f () =
                                                                                                          n  n
                             k                 k2          k         k               k       k
Corporate Office: CP Tower, Road No.1, IPIA, Kota (Raj.), Ph: 0744-2434159                                                 LIMIT   18
                               
        (A) cos         + i sin                                    (B) cos + i sin
                      2         2
                                                                         
        (C) i cos + sin                       (D) i cos           + sin   [A]
                                                                  2       2
                          sin [ x  ]
Q.89    Let f(x) =                                            where [x] stands for the greatest integer function. Then xLim
                                                                                                                         n
                                                                                                                            f(x) = ?
                                 1  [ x ]2
        (Here n  I) = ?
        (A) Does not exist                      (B) Equals to 0
        (C) Equals to 1                         (D) Equals to –1           [B]
                                           2   
Q.90    If nlim  an  1  n  = b, a finite number then the ordered pair (a, b) is -
                                1 n 
                      
        (A) (1, 1)                              (B) (–1, 1)
        (C) (1, –1)                             (D) None of these          [A]
                      3                 5                     7
Q.91    Let Sn=               +                 +                + ... upto n terms, then lim Sn is -
                      3             3       3                                             n 
                      1           1 2            1  2 3  33
                                                      3
        (A) 2                                   (B) 3
        (C) 4                                   (D) none of these      [B]
100
Q.92            (n  r)          10
                                        =
              r 1
         Lim
         n  n10          10 10
               k
Q.93     Lim n cos n ! 0 < k < 1
         n
                 n 1
        (A) 0                  (B) 1!
        (C) 2!                 (D) None of these                           [A]
                                                                                        Sn 1  Sn
Q.94    If Sn = a1 + a2 + ........ an and Lim an = a, then Lim                                  n     is equal to-
                                                          n                    n 
                                                                                               k
                                                                                               k 1
        (A) 0                 (B) a             (C)       2 a (D) 2a       [A]
                                            1
Q.95    The sum                                                               is equal to -
                      n 1          n ( n  1)( n  2)
                                        1                 1              1
        (A) 1                 (B)               (C)                (D)     [C]
                                        2                 4              8
Corporate Office: CP Tower, Road No.1, IPIA, Kota (Raj.), Ph: 0744-2434159                                                             LIMIT   19
             1    1       1                   1 
          1   1    1      ........... 1  2  is Pn ;
             4    9      16                  n 
        then nLim P is-
                n
        (where n N)
             1                            n 1
        (A) –                       (B)
             2                              n
            1
        (C)                         (D) None of these.        [C]
            2
Q.97    Inscribed in a circle of radius R is a square, a circle is inscribed in the square, a new square in the circle, and so on
        for n times. Find the limit of the sum of areas of all the circles and the limit of the sum of areas of all the squares as
        n 
        (A) 2R2, R2              (B) R2, 4R2
                 2
        (C) 2R , 4R  2           (D) 4R2, 2R2         [C]
         lim x sin( x  [ x ])
Q.98     x 1 ,                 where [·] denotes the greatest integer function, is equal to -
                  x 1
        (A) 1                 (B) –1
        (C)                  (D) Does not exist [D]
Q.100 Evaluate :
          Lim [ x ]  [ x 2 ]  [ x 3 ]  ......  [ x 2 n 1 ]  n  1
         x 0 
                               1  [ x ] | x | 2 x
        (A) 1                       (B) 0
        (C) 2                       (D) None of these         [B]
                                1       1                            
Q.102    Lim 1  1     1      1 
                                                                   1
                                                   ...... … 1  n       is equal to-
         n                     2                                    
                   5        5   54                          52      
                             5          4                1
        (A) 0          (B)         (C)             (D)     [B]
                             4          5                5
                              3
         Lim       x2 1  x2 1
Q.103    x  4               5
                   x4 1  x4 1
         (A) 0                (B) 1
         (C) 2                (D) None of these               [B]
Corporate Office: CP Tower, Road No.1, IPIA, Kota (Raj.), Ph: 0744-2434159                                          LIMIT       20
Q.104 If the rth term, tr, of a series is given by
                                                        n
                       r
                                              n   r
        tr =                         . Then lim     t            is –
             r4  r2 1                                r 1
        (A) 1                                 (B) 1/2
        (C) 1/3                               (D) None of these                [B]
Q.105     lim
         x          x2  x 1 –              x2 1 =
            2
        (A)                                   (B) 1
            3
            1
        (C)                                   (D) None                         [C]
            2
                                                                           =
         x 0                           e xnx                
                                                               
                                                   1
        (A) e                                 (B)    ln 2
                                                   e
        (C) e ln 2                            (D) None of these.               [B]
                                                               
                                                                       1
        Evaluate : Lim 1  sin x  2 f ( x )                       sin x 1       =
                           x  / 2
        (A) 1                                 (B) 0
        (C) e                                 (D) None of these                [C]
          Lim                           ax                  
Q.110           –     a2  x2     cot                         is-
                                                               
         x a
                                       2 ax                  
                a                2a          a                         4a
        (A)                  (B)       (C) –                   (D)        [D]
                                                                    
Corporate Office: CP Tower, Road No.1, IPIA, Kota (Raj.), Ph: 0744-2434159             LIMIT   21
                                1n 
Q.111    lim n  n  e.1  1   =
         n                   n   
                                         
                                           3
        (A) 1                        (B)
                                           2
              2
        (C)                          (D) None of these     [B]
              3
                             1          1       
Q.112 The value of Lim  1 
                   x 0 
                                                 
                               x   tan x  4  2 
                            2                   
        is-
      (A) loga16           (B) Does not exist
      (C) 3 ln 2           (D) 4 ln 2         [D]
                 sin [ x ]
                           ,        [x]  0
Q.114 If f(x) =  [ x ]                            [IIT 1985]
                
                 0,                 [x]  0
        Where [x] denotes the greatest integer less than or equal to x, then xlim
                                                                               0
                                                                                  f(x) equals-
        (A) 1                        (B) 0
        (C) –1                       (D) None of these     [D]
                                 1
Q.115 The value of xlim
                                   (1  cos 2 x )                [IIT-1991]
                     0          2
                                       x
        (A) 1                        (B) –1
        (C) 0                        (D) None of these     [D]
                             1/ x2
Q.116    Lim  1  5x 2 
         x 0        2 
               1  3x 
        (A) e2       (B) e           (C) e–2       (D) e–1 [A]
         Lim    1  cos 2( x  1)
Q.117     x 1
                                    =     [IIT-98, 91]
                      x 1
        (A) Does not exist because LHL  RHL
        (B) Exists and is equals to –          2
        (C) Does not exist because x – 1  0
        (D) Exists and is equals to            2           [A]
Corporate Office: CP Tower, Road No.1, IPIA, Kota (Raj.), Ph: 0744-2434159                       LIMIT   22
               1
        (A)                               (B) –2
               2
                                                      1
        (C) 2                             (D) –                         [A]
                                                      2
                                                  x
                       x 3 
Q.119 For x  R, Lim
                 x         =                           [IIT Scr. 2000]
                                    x2
        (A) e              (B) e–1        (C) e–5            (D) e5     [C]
                       2
Q.120    Lim sin(  cos x) =[IIT Scr. 2001]
         x 0
                    x2
                                 
        (A) –     (B)     (C)         (D) 1                           [B]
                                 2
                                              (cos x  1)(cos x  e x )
Q.121 The value of Integer n ; for which Lim
                                         x 0
                                                                        is a finite non zero
                                                                                      xn
        number-                           [IIT Scr. 2002]
        (A) 1              (B) 2          (C) 3       (D) 4             [C]
                            1
                                         sin x    
Q.124    lim   sin x  x   1               
             
         x 0                     x             , for x > 0
                                                  
                                                              [IIT 2006]
        (A) 0              (B) –1         (C) 2              (D) 1 [D]
               3          1
                                x  2x                                    
                                                                               1 
                 x  4 x                                          2
         Lim  3                                                             
Q.5
         x 2    x  8     x 2                            x      2      
                                                                             
                1                1                 1                1
         (A)               (B)            (C)                (D)      [A]
                2                4                 8               16
Corporate Office: CP Tower, Road No.1, IPIA, Kota (Raj.), Ph: 0744-2434159                                                   LIMIT    23
                                           n
                a 1  n b 
Q.3       Lim               ; (a > 0, b > 0) has the value equal to :
          n       a      
                           
          (A) a1/b          (B) ba                  (C) ab         (D) b1/a [D]
                                                                                                        0.999
                                                                                                            ...
                                                                                                               9
Q.4       A function of an integral argument attains the values u1 = 0.9, u2 = 0.99, u3 = 0.999… un =               . What is
                                                                                                          n times
          the Lim u equal to ? What must the value of n be for the absolute value of difference between u n and its limit not
              n  n
          to exceed 0.0001 ?
          (A) 1, n  2                              (B) 1, n  4
          (C) 1, n  6                              (D) 1, n  8                [B]
Q.1       If Lim
             x 0
                  sin–1(sec x) = p and Lim
                                       x 0
                                            sin–1[sec x] = q where [x] denotes greatest integer function then
          (A) p exists but q does not
          (B) p does not exist but q does
          (C) both p & q exist
          (D) neither p nor q exist                                             [B]
Q.8       If
            n2          n4         n6                  5 
L = nlim
      
                      2                      ......     
            n  n  1 n  2n  4 n 2  3n  9
              2
                                                          7n 
          then eL is equal to -
          n2             n4                    n  2( 2 n )                         
L = nlim             
        n 2  n  1 n 2  2n  2 2
                                       ....  2                                       
                                                                                       
                                             n  ( 2n ) n  ( 2 n ) 2                 
                        2n
                                        n  2r
          = nlim
                      n
                        r 1
                                    2
                                         rn  r 2
                               2n
                 1                             1  2( r / n )
          = nlim
              
                        n
                             (r / n )
                               r 1
                                                 2
                                                    (r / n )  1
               2
          =    x
                    1  2x
                    2
                       x 1
                                                
                             dx = n ( x 2  x  1)                      2
                                                                          0
                                                                              = n 7
               0
 eL = 7
                  5n 1  3n  32n
Q.4       If nlim
               
                                    is equal to
                  5n  2 n  32n 3
          (A) 5                                      (B) 3
          (C) 1                                      (D) None of these
Corporate Office: CP Tower, Road No.1, IPIA, Kota (Raj.), Ph: 0744-2434159                                      LIMIT      24
                  5 n 1  3 n  3 2n
Sol.[D]    lim
          n  5 n      2 n  3 2 n 3
                  5.5 n  3 n  9 n
           lim
          n  5 n      2 n  27.9 n
                                       n          n
                              5    3
                            5.      1
                               9   9      1
                        lim                 =
                                  n     n
                       h   5    2       27
                                  27
                            9     9
                                                                                                f (x 2 )  f (x)
Q.4       If f(x) is differentiable and strictly increasing function then the value of lim                       is
                                                                                           x  0 f ( x )  f (0)
                   f (x 2 )  f (x)  0 
Sol.[C] xlim
          0
                                      
                    f ( x )  f ( 0)  0 
          Apply L'Hospital rule
                     3 tan 1 x  3 tan x  x 5  6 x
Q.3       If lim                                         is a finite number then the greatest value of n is
              x 0                     3x n
          (A) 3                           (B) 5
          (C) 2                           (D) None of these
Sol.[D] xlim
          0
       3 3 5               3 2 5              5
 3x  x  x  ...   3x  x  x  ...  6x  x 
         5                   5                 
                            n
                          x
          all coff. of x, x3 and x5 is zero and minimum power of x occurs in numerator is 7
          So                n=7
                      n
                              r3  8
          n  
Q.4       Lim                              is equal to
                     r 3     r3  8
          (A) 2/7                             (B) 3/7
          (C) 7/2                            (D) 7/3
Corporate Office: CP Tower, Road No.1, IPIA, Kota (Raj.), Ph: 0744-2434159                                            LIMIT   25
                                      n
                                            r3  8   33  8                 43  8 
Sol.       [A]               Lim
                             n            3
                                            r 8
                                                 =  3
                                                      3   8
                                                             
                                                             
                                                                                     
                                                                              43  8 
                                     r 3                                          
                                                             n3  8 
                                                  ........  3      
                                                                     
                                                             n 8
                   (3  2) (32  2 2  3.2) 
           = Lim
             n 
                              2    2        
                   (3  2) (3  2  3.2) 
 ( 4  2) ( 4 2  2 2  4.2)             (n  2) (n 2  2 2  n.2) 
              2     2         .........             2     2        
 ( 4  2) ( 4  2  4.2)               (n  2) (n  2  n.2) 
                   (3  2) ( 4  2).......(n  2) 
           = Lim
             n   (3  2) ( 4  2).......n  2 
                                                  
           1.2.3.4.5.6........   19.28.39.52.63.......... 
       =                         7.12.19.28.39.52.......... 
              5.6.7.8.....                                  
           1.2.3.4
       =           = 2/7
            7.12
Q.5     ABC is an isosceles triangle described in a circle of radius r. If AB = AC and h is the altitude from A to BC then
                
         Lim 3 equals to [where  is the area and p the is perimeter of the triangle ABC]
         h 0 p
        (A) 1/128r                            (B) 1/215r
        (C) 1/128                (D) 1/215
Sol.[C] AB = AC and AD = h
           BC = 2BD = 2                OB2  OD 2
= 2 r 2  (h  r ) 2 = 2 2hr  h 2
AB = AD2  BD 2 = h 2  2hr  h 2
                 =        2hr
           Perimeter p = 2AB + BC
           = 2 2hr  h 2 +                  2hr
=h 2hr  h 2
                                                      2r  h                     1
           Lim                = Lim
           h 0      p   3      h 0
                                            8   2r  h        2r      3   =
                                                                                 128
Corporate Office: CP Tower, Road No.1, IPIA, Kota (Raj.), Ph: 0744-2434159                                   LIMIT      26
                                           n                                  n
Sol.[D]  = nlim
              
                                    r
                                    r 1
                                               2
                                      n3
                                     n                2
                                         r   1
           = nlim
                                  
                                    r 1
                                           
                                          n  n
                                                               1
                           1                          x3 
          =                  x 2 dx          =         
                                                      3  0
                       0
                     1
          =
                     3
                       n                    n
                               r3                   r2
          =        r 1      n4
                                          
                                           r 1     n4
                                                       0
                       n                        n              3
                               r3                   r   1
          =        r 1      n4
                                  =                  
                                               r 1 
                                                      n  n
                                                           1
                         1                 x4 
          =                  x3    dx =  
                                           4  0
                       0
= 1/4
               cos x
Q.1       If          is a periodic function, then
               sin ax
          Lim Lim (1 + cos2m n!a) is equal to -
          m n 
1 + (± 1)2m  2
                 k                                                                       k
                                                     k                                                         (1  x 2 )1 / 3  (1  2 x )1 / 4
Q.3       If   r 1
                               cos–1 r =
                                                      2
                                                        for any k  1 and A =          r 1
                                                                                               (r)r. Then Lim
                                                                                                           x A
                                                                                                                             x  x2
                                                                                                                                                  =
                              (1  x 2 )1 / 3  (1  2 x )1 / 4
          Required limit xlim
                           0
                                                        x  x2
                     2x                   2
          lim           (1  x 2 ) 2 / 3  (1  2 x ) 3 / 4   1
          x 0        3                   4                 =
                                                              2
                                   1  2x
                            2 2          
Q.6       Let f(x) = max.  x   , {sin x} . Which of the following is correct ?
                                           
                                             4              
                 lim                                   lim
          (C)            f(x) = 0                (D)           f(x) = 1
                x                                      x
                     2                                       2
Sol.[D] By graph
                                                             y = x2 – 2/4
y = {sin x}
/2 /2
                                                       x        
           lim cos (tan–1 sin sin–1                             )
          | x |                                       2       
                                                   1 x         
                                         x       
           lim cos tan–1                         
          | x |                            2   
                                   1 x          
Corporate Office: CP Tower, Road No.1, IPIA, Kota (Raj.), Ph: 0744-2434159           LIMIT   28
          lim =         1 x2                1
         | x |                     =
                        2x 2  1             2
                                                 x
               e  1       x 
Q.1      Lim                  is
         x   1  e  e 1  x 
                                 1e                            e                    1 e
        (A) e(1 – e)     (B)                           (C)                 (D)
                               e e                           e  1e              e    e
Sol. [C]
                                                                                                1/ x
                                                                     f (1  x ) 
Q.1      Let f : R  R such that f(1) = 3 and f (1) = 6. Then Lim                                  equals –
                                                               x 0     f (1) 
         (A) 1       (B) e1/2   (C) e2       (D) e3
Sol.     [C]
                     log( x  a )
Q.3       Lim
         x a      log(e x  e a )
                                     1 x x            3
Q.7      The value of  so that xlim
                                  0  2
                                        (e – e – x ) =   is
                                                  x                        2
         (A) 1           (B) 0           (C) 4                     (D) 2
                                 e x  e x  1
Sol.[D] Using L Hospital Lim
                            x0
                                      2x
        Nr  0 for x  0
        e0 – e0 – 1 = 0   or  = 2
Q.4      Lim n (1  x )  x  1 =
         x 0      2
                        x                x
                                 1                       1
         (A)            (B)                     (C)          (D) 1
                                 2                       2
             n (1  x )  x 2  x
Sol.[B] Lim
        x 0                       using expansion
                               x2
                               x2 x3
         n(1 + x) = x –            ……...
                               2   3
                      x          x
Q.5       Lim (cos  )  (sin  )  1 is equal to
          x 2
                        x2
         (A) 1
Corporate Office: CP Tower, Road No.1, IPIA, Kota (Raj.), Ph: 0744-2434159                                        LIMIT   29
          (B) cos n sin + sin2
          (C) sin n cos + cos2
          (D) None of these
Sol.[D] Using D. L.Hospital rule
                        x (n x ) 3
Q.6       Value of Lim
                   x 
                                    is equal to
                                    1 x  x 2
          (A) 0                                          (B) 1
          (C)– 1                                        (D) 3
             (n x ) n
Sol.[A] xLim
                      0 (m > 0)
                            xm
                                  n2                                                 n          3
                                          n (1  kx )                                     ek       x
                                                                                                        1          lim f ( x ) is
Q.1       If f(n) = xlim
                      0        k 1
                                               x
                                                       , g(n) = xlim
                                                                  0                
                                                                                    k 1
                                                                                                    x
                                                                                                             , then x  
                                                                                                                        g( x )
          (A) does not exist                             (B) 2
          (C) 0                                          (D) data inadequate 
                                                                             2
                      n 2 ( n 2  1)           n ( n  1) 
Sol.[B] f(n) =                       , g(n) =             
                             2                      2     
               x 2 ( x 2  1) 4
         xlim
                              =2
               2( x  1) 2 x 2
          If P = nlim
                                                                 2
Q.2                       2 3 4     n–1 n 1 /( n                     1)   , then P4 equals
                     (ea .e a …..e a )
              = nlim
                                                       2
                  
                     (en/4 (1+ n–1) an/4(2 + n)) 1 /( n 1)
                               n2             2n  n 2
          = nlim
                          4 ( n 2 1)       4 ( n 2 1)   = e1/4 . a1/4  P4 = e.a
                        e                 a
               1
Q.2       y=     [(n + 1) (n + 2) …….2n]1/n
               n
          then Lim y is equal to
                  n 
                       4                                              2
          (A) log                                        (B) log       
                       e                                              e
                  4                                            16
          (C)                                            (D)      
                  e                                             e
Sol.    [C]
                                                                     1/ n
            n  1   n  2          2n  
       y =                ........    
            n   n                  n 
Corporate Office: CP Tower, Road No.1, IPIA, Kota (Raj.), Ph: 0744-2434159                                                           LIMIT   30
                      1     n 1      n2        
       log y =            log     log     .....
                      n     n          n         
                  n
           1                      r
       =
           n    log1  n 
               r 0
                               1
       Lim log y =
       n                      n (1 + x)dx
                               0
Q.3                   x       x         x                      x  4 is
           lim
           x 1                         x 1
                1                            15
           (A)                           (B)
               16                            16
               7                             3
           (C)                           (D)
               8                             4
Sol. [B]
                                                    x
                 e   1       x 
Q.5        Lim                   is
           x   1  e   e 1  x 
                                                 1e 
           (A) e(1 – e)                  (B)         
                                               e e 
                     e                           1 e
           (C)                         (D)
                  e  1e                     e    e
Sol. [C]
                                                              x
                   1   1     1            1              
Q.3        Lim 1 x  2 x  3 x  ...  99 x                     is
           x 0                                         
                                                         
           (A) 1                         (B) 99
           (C) 99 × 50                   (D) 0
Sol.[B]
                 n           n 1     n 2                   1
Q.2        Lim1.
           n  
                 r 1
                          
                       r  2.
                              r 1
                                   r3  
                                       r 1
                                                    
                                            r  .......  n.1 4 is
                                                             n
                                                             
                1                            1
           (A)                           (B)
               12                            6
                1                            1
           (C)                           (D)
               24                            8
Sol.[C]
Corporate Office: CP Tower, Road No.1, IPIA, Kota (Raj.), Ph: 0744-2434159   LIMIT   31
                                                      f (x)
           (C) f(x) – f(y)                   (D)
                                                      f ( y)
                    x 1/ n  1
Sol.[B] f(x) = nlim
                 
                                f(x) = nx
                      1/ n
                                x                  nx
                     m     m
Q.7        Lim n C x   1                            equals to -
           n        n    n 
                    mx                             mx
           (A)         . e m                (B)      .em
                    x!                             x!
           (C) e0                            (D) 0
                                                         n
                                    m
                       n       x   1  
                             m        n
Sol. [A]       Lt                
           n       x n  x n x  m x
                                   1  
                                      n
                                                                          x
                                         n                       m
           =
             mx           
                       Lt 1 
                               m
                                                         n 1  n 
              x       n     n                Lt
                                              n        nx     nx
                                             n                           x
                m x m                                     m
           =       e         Lt                     Lt 1    
                 x         n      nx       n  x n     n 
                e m m x           n
           =               Lt
                    x    n   n  x nx
                    x 2  3x  5
Q.3        lim                      exists if
           x      4x  1  x k
           (A) k = 2                         (B) k < 2
           (C) k  2                         (D) None of these
Sol.[C]
                                                                       (1  3y  5 y 2 ) y k  2
                                  Put x = 1/y                   lim
                                                                 y0      4 y k 1  y k  1
            limit will give a definite value if k  2
                                    [x]
Q.6        The value of      lim       is (where [·] denotes greatest integer):
                            x 0     x
           (A) 1                             (B) 0
           (C)                              (D) None of these
               [0  h ]
Sol.[B] lim             0
           h 0 0  h
                                                                                                            n    x     n    x
                                                                                                         x 1/ e
                                                                                                   lim (2 )       (3 x )1/ e
Q.73       The                           value                           of                        x 
                                                                                                                              ;
                                                                                                                xn
           (where n  N) is-
           (A) 0                             (B) n 2/3
           (C) nn 3/2                       (D) Not defined
Sol.[A]
Corporate Office: CP Tower, Road No.1, IPIA, Kota (Raj.), Ph: 0744-2434159                                                        LIMIT   32
Q. 120 The figure shows a right-angled triangle with its hypotenuse OB along y-axis and its vertex along
          (A) 2                         (B) 1
          (C) 1/2                       (D) 0
Sol.[B]
Q.9       C is a point on the circumference of a circle and D is the foot of the perpendicular from C on a fixed diameter AB.
                                  CD 2
          Then the limit of            as C tends to B along the circumference -
                                  DB
          (A) does not exist
          (B) equal to one
          (C) is equal to the length AB
          (D) None of these
              lim     CD 2
Sol.[C]   pt . CB
                       DB
                     C
          A               B
                    D
              lim        AD.BD
          pt . CB             = AB
                          DB
                              1                           f ( x )  f (3) 
Q.7       Let f (x) =                 , the value of Lim                  is
                          18  x   2                x 3       x 3       
          (A) 0          (B) –1/9 (C) +1/3         (D) 1/9
               f ( x )  f (3)
Sol. [C] Lim                    Apply L-Hospital rule
          x 3      x 3
               f ( x )  0              1            1    1
          Lim                = f (3) =          =       =
          x 3       1                  18  9         9   3
           lim       1  cos 2( x  1)
Q.1       x 1
                          x 1
          (A) exists and it equal to       2
                     1  cos 2( x  1)                  2 | sin( x  1) |
Sol.[D] xlim
          1
                                       = xlim
                                           1
                          x 1                               x 1
Corporate Office: CP Tower, Road No.1, IPIA, Kota (Raj.), Ph: 0744-2434159                                      LIMIT      33
                            2 | sin( x  1) |
         But xlim
              1
                                 x 1
         =     2 x 1
                      lim sin( x  1) =                   2 and
                                   x 1
                                           lim            2 | sin( x  1) |
                                          x 1–
                                                               x 1
         =–            lim sin( x  1) = – 2 .
                 2 x 1–
                                   x 1
Q.2      Let ƒ(x) = sgn (sgn (sgn x)). Then xlim
                                              0
                                                 ƒ(x) is -
         (A) 1                           (B) 2
         (C) 0                           (D) None of these
Sol.[D] By definition we have for x  0, sgn (sgn x)
                                       x 
                               = sgn      
                                      | x |
              x/|x|      x
         =           =        = sgn x. Thus, sgn [sgn)
             |x|/|x|    |x|
                                        1 x0
                                       
                     (sgn x) = sgn x =  0 x  0
                                       – 1 x  0
                                       
         Therefore, xlim
                     0
                         ƒ(x) = 1 but xlim
                                       0 –
                                            ƒ(x) = –1.
                                                             1                    
Q.3       lim           4
                            
                              1  3x  x 2 
                                                                   3
                                                                          x 4 1 
                                                                                      is -
         x 1  x 2  x 1      1 x3                                 x 3  x 1 
                                                                                
                                                            1                     
                                         2                            3x ( x 4  1) 
                      4 x  1  3x  x
         = xlim        
                      x 1
                                                          
                                                          
                                                                   
             1
                     
                         3
                                 1 x 3
                                                                        x 4  1 
                                                                                     
                                                   1        
                                   2 
         = xlim  4 x  1  3x  x                       3x 
             1          3
                               x     
                                    1                         
                                                           
         = xlim
             1
                [x – 1 + 3x] = 3.
         lim     8         x2       x2       x2     x2 
Q.4                1  cos     cos     cos    cos     
         x 0
              x 8          2        4        2      4 
         is equal to -
                1                   1      1                              1
         (A)               (B) –      (C)                      (D) –
               16                  16     32                             32
Corporate Office: CP Tower, Road No.1, IPIA, Kota (Raj.), Ph: 0744-2434159                   LIMIT   34
                     8           x2       x2       x2     x2 
Sol.[C] xlim
          0
                         1  cos     cos     cos    cos     
                    x 8          2        4        2      4 
        8          x2                      
                                                cos x
                                                        2       
                                                                1  cos x
                                                                           2         
= xlim       1  cos                                                                
    0
       x 8         2                      
                                                      4        
                                                                         2          
                                                                                     
           8                 x2                      2 
                                              1  cos x 
= xlim              1  cos               
    0
           x 8                2         
                                          
                                              
                                                       4 
           8              2             2
                      2 x           2 x
= xlim
    0
              . 2 sin       . 2 sin
           x8            4             8
                                      2                                   2
                 2                                    x2             
           sin x                               2  sin                             2
       32                                x2                         .  x 2 
= xlim           4                             .        8
    0
       x8  x2                            4          2                8 
                                 
                                              
                                                    x                 
           4                                       8                  
    1
=      .
    32
Hence (C) is the correct answer.
                                               4                  3
                                                    n5  2  n2 1
Q.5        The value of nlim
                          
                                                                                  is -
                                               5                  2
                                                    n 4  2  n3 1
                                                2                             1
                         n5/ 4 4 1                      n 2/3 3 1 
                                               n5                         n2
           = nlim
               
                                                2                         1
                         n4/5 5 1                        n 3/ 2 2 1 
                                                    4
                                                n                         n3
                         n5/ 4                     2         n 2/3            1
                                      4 1                           3 1
                          3/ 2                      5         3/ 2
                  n                             n            n                n2
           = nlim
               
                  n 4/5                          2           n 3/ 2            1
                                      5 1                           2 1
                         n 3/ 2                 n4           n 3/ 2           n3
           [On dividing the numerator and denominator by the highest power of n i.e. n3/2]
                           1           1        21
                                  4 1
                                   5/ 6 3 1 2
                          1/ 4                     5 00
                  n            n     n          n
           = nlim
               
                                                   =      = 0.
                       1           2          1      0 1
                             5 1       2 1 3
                    n 7 / 10      n4         n
           Hence (B) is correct answer.
                  k   2
Q.6          lim n sin ( n!) , 0 < k < 1, is equal to -
            n 
                    n2
Corporate Office: CP Tower, Road No.1, IPIA, Kota (Raj.), Ph: 0744-2434159                   LIMIT   35
          (A)                                   (B) 1
          (C) 0                                  (D) None of these
                        k       n k sin 2 ( n!)
                                2
             n sin ( n!)
Sol.[C] nlim
          
                         = nlim
                              n       2
               n2                 1  
                                        n
                                                 sin 2 (n!)
                                        = nlim
                                             n1 k     2
                                                     1  
                                                         n
                                            a finite quantity
                                        =
                                                    
          [ sin2 (n!) always lies between 0 and 1. Also, since 1 – k > 0,  n1–k   as n  ]
                                        = 0.
          Hence (C) is the correct answer.
Q.7       In a circle of radius r, an isosceles triangle ABC is inscribed with AB = AC. If the ABC has perimeter p = 2 [
                                                                                                       lim A is -
             2hr  h 2 + 2hr ] and area A = h 2hr  h 2 , where h is the altitude from A to BC, then h 0
                                                                                                             p3
                                                               1
          (A) 128 r                              (B)
                                                             128 r
                  1
          (C)                                    (D) None of these
                 64 r
                       A                                     h    2hr  h 2
Sol.[B]    lim              = lim                                                     3
          h 0 p 3             h 0         8
                                                        2hr  h 2            2hr 
                                                                                   
                                                                                  
                                                             h. h      2r  h
                            = lim
                                h 0         8 h .h               2r  h          2r   3
                                                                 2r  h
                            = lim
                                h 0         8          2r  h          2r   3
                                            2r                     1
                            =                                =         .
                                    
                                8 2 2r                  3
                                                                  128r
          Hence xlim
                  0
                     (cos x)1/sin x = ylim         1/y y/sin x
                                        0 [(1 + y) ]
                     cos x 1                   x
              lim               =     lim   tan                = e0 = 1.
          e   x 0    sin x             x 0    2
                                    e
          Hence (A) is the correct answer.
Corporate Office: CP Tower, Road No.1, IPIA, Kota (Raj.), Ph: 0744-2434159                                  LIMIT      36
                                                               [ x ]  [ 2 x ]  ....  [nx ]
Q.9      If [.] denote the greatest integer function then nlim
                                                                             2
                                                                                              is -
                                                                              n
                                                             2
         (A) 0            (B) x        (C) x/2       (D) x /2
Sol.[C] nx – 1 < [nx]  nx. Putting n = 1, 2, 3,…. , n and adding them,
         x  n – n <  [nx]  x  n
                  n          1   [ nx ]    n
         x.          2   –     <     2   x. 2                  … (1)
                  n           n    n         n
                    n 1                n
         Now, nlim
                 
                     x.
                        2
                            = x . nlim
                                       
                    n     n             n2
                                                    1   x
                                           – nlim
                                               
                                                      =
                                                    n   2
         As the two limits are equal, by (1)
           lim [ nx ] = x .
          n 
                n2       2
         Hence (C) is correct answer.
                                                                                              {ƒ( x )}2 n  1
Q.10     Let ƒ(x) = x – [x], where [x] denotes the greatest integer  x and g(x) = nlim
                                                                                                              , then g(x) is equal
                                                                                              {ƒ( x )}2 n  1
         to -
         (A) 0                         (B) 1
         (C) –1                        (D) None of these
Sol.[C] As 0  x – [x] < 1  x  R, 0  ƒ(x) < 1.
                 lim       2n
                 n  {ƒ(x)} = 0.
                                               {ƒ( x )}2 n  1
         Thus, for x  R, g(x) = nlim
                                   
                                               {ƒ( x )}2 n  1
                                           0 1
                                       =        = –1.
                                           0 1
Q.11     The value of
           1/ 2
 lim 2( x )      3( x )1 / 3  4( x )1 / 4  .....  ( x )1 / n is
x 
     (2 x  3)1 / 2  (2 x  3)1 / 3  ....  (2 x  3)1 / n
                                               1
         (A)      2       (B) 2        (C)           (D) 0
                                               3
Sol.[A] Given
Corporate Office: CP Tower, Road No.1, IPIA, Kota (Raj.), Ph: 0744-2434159                                            LIMIT       37
                                  1   1                          1 
                               2 1 / 2   3 1 / 3   ....  n 1 / n 
          = hlim                 h  h                           h      
              0   1                      1                              1
                   1/ 2
                        (2  3h )1 / 2  1 / 3 (2  3h )1 / 3  .....  1 / n (2  3h )1 / n
                 h                      h                              h
                                    1
          [On putting x =             as x   , h  0]
                                    h
                                    1 1           1 1                  1 1
                                                                       
                        2  3h  2     3
                                              4h  2  4
                                                                ....  nh  2n
= hlim
    0                           1 1                                1 1
                                                                     
                      1/ 2
         ( 2  3h )           h  2 3  ( 2  3h )1 / 3    ....  h  2 n  ( 2  3h )1 / n
           2  0  0  0  .......
          = 1/ 2                   =                 2 .
           2      0  0  .......
          Hence (A) is the correct answer.
                k                                                          k
                                         k                                             (1  x 2 )1 / 3  (1  2 x )1 / 4
Q.12      If         cos 1 r =           for any k  1 and A =  ( r ) , Then xlim
                                                                          r
                                                                                     A
                                                                                                                          =
               r 1                       2                       r 1                              x  x2
          (A) 1/2            (B) 0          (C) A/2        (D) /2
                                                        
Sol.[A] For k = 1, cos –1 1 =                 1 = cos   =0
                                            2            2
                                                                           
          For k = 2, cos–1 1 + cos–12 =   cos–1 2 =                      2 = 0
                                                                           2
          So by induction it can be shown that j = 0, j = 1……..k.
                              k
          Hence A =           ( r ) r     = 0.
                             r 1
                      (1  x 2 )1 / 3  (1  2x )1 / 4
          = lim
               x 0                 x  x2
                 2x                   2
                    (1  x 2 ) 2 / 3  (1  2x ) 3 / 4 1
          =                                           =   .
            lim 3                     4
                                                        2
            x 0                1  2x
                                                                       1                    9 
Q.13      If           f(n           +         1)          =                     f (n )         ,   n             N         and
                                                                       2                  f (n ) 
          (A) 3                             (B) –3
          (C) 1/2                           (D) None of these
Corporate Office: CP Tower, Road No.1, IPIA, Kota (Raj.), Ph: 0744-2434159                                                    LIMIT   38
                                   1                 9                                   1             9 
         We have f(n + 1) =             f ( n )          or lim f(n) = lim f(n + 1) =     f (n )           
                                   2               f (n )      n       n             2            f ( n ) 
                    1     9
         k=           k    k2 = 9 or k = 3
                    2     k
          nlim
              f (n) = 3.
                              4                            2
         (A)             (B)           (C)             (D)
                4                            2              
Sol.[B] Let P
                                           cos 2 0 ( 2  2)   4
                                       =          .         =   .
                                             1               
Q.15     Consider a series of number defined as following
         x0 =       a , x1 =   a      a,    x2
                                                  1  4a  1
         (A)    a                      (B)
                                                      2
Corporate Office: CP Tower, Road No.1, IPIA, Kota (Raj.), Ph: 0744-2434159                                            LIMIT   39
                1  4a  1
         (C)                        (D) can not be found
                   2a
Sol.[B] We have x 2
                  n = a + xn–1
It is easy to see that the variable x n increases. Let us show that all its values remain less than some
                               (4a  1)  1          1         4a  1 
         Hence,  x n 1                      x
                                                n 1
                                                       –
                                                                             <0
                                   2                             2       
                                                                                          ( 4a  1)  1
         Since the expression in the second bracket is positive, so we have xn–1 <
                                                                                              2
                                1  1  4a                                         (4a  1)  1
         2 –  – a = 0,  =               and since   0 we have  =                          .
                                    2                                                  2
                                 1
Q.1                  lim
         Let ƒ(x) = n   3         2n
                                         . Then the set of values of x for which f(x) = 0, is -
                              1   
                          tan 2 x   5
                                 
         (A) |2x| >     3           (B) |(2x)| <       3
                                                           2
                                     3            
Sol.[A] ƒ(x) = 0 if and only if,       tan 1 2 x            1
                                                 
                                             
          tan–1 2x >         or tan–1 2x < –
                            3                 3
 2x > 3 or 2x < – 3
 |2x| > 3
Q.2      If I1 = xlim       tan 1 x sin 1 x and I = lim               sin 1 x tan 1 x , where | x | < 1, then which of the
                   0                             2
                                                      x 0                      
                               x        x                                  x        x
         following statement is true -
         (A) Neither I1 nor I2 exists
         (B) I1 exists and I2 does not exists
         (C) I1 does not exists and I2 exists
         (D) None of these
Corporate Office: CP Tower, Road No.1, IPIA, Kota (Raj.), Ph: 0744-2434159                                        LIMIT     40
                         tan 1 x         sin 1 x
Sol.[C] We know                   < 1 and          > 1,  x  R
                            x                x
             tan 1 x   sin 1 x
                     –          <0
                x          x
                                sin 1 x   tan 1 x
                          and            –          >0
                                   x          x
          I1 does not exists and I2 exists
         Hence (C) is the correct answer.
                                                               [ x ]  [ 2 x ]  ....  [nx ]
Q.3      If [.] denote the greatest integer function then nlim
                                                                             2
                                                                                              is -
                                                                              n
                                                          2
         (A) 0            (B) x        (C) x/2      (D) x /2
Sol.[C] nx – 1 < [nx]  nx. Putting n = 1, 2, 3,…. , n and adding them,
         x  n – n <  [nx]  x  n
                 n           1   [ nx ]    n
         x.         2    –     <     2   x. 2               … (1)
                 n            n    n         n
                    n 1 
         Now, nlim
                 
                     x.
                        2
                           
                               n      n
                                       n               1   x
                          = x . nlim
                                         2
                                               – nlim
                                                   
                                                          =
                                       n                n   2
         As the two limits are equal, by (1)
          lim [ nx ] = x .
         n 
               n2       2
         Hence (C) is correct answer.
                                1
                   lim  x 4 sin  x 2
Q.1     Evaluate x –          x
                           1 | x |3
        (A) –1                         (B) 1
        (C) 0                          (D) None of these
Sol.[A] Let x = –y. Then y   when x  –
                                –1
                   lim  y 4 sin      y2
         limit = y           y
                           1 | – y |3
                                 1
                  lim   y 4 sin  y 2
                =                y
                     y
                                    1  y3
        [ y is positive]
Corporate Office: CP Tower, Road No.1, IPIA, Kota (Raj.), Ph: 0744-2434159                           LIMIT   41
                    1                   
                sin         3        2 
                    y y           y 
        = ylim
              1
                       ·                
                              3
                        1 y     1  y3 
               
                y                       
                                         
                                         
                sin 1                    
                    y     1       1     
        = ylim
              1
                       ·                 
                        1             
                             1 y 1  1 
                y       y3       y3   
                                      
                  1
        =1.          + 0 = –1.
                  1
Q.2     If ƒ(1) = g(1) = 2 and ƒ(1), g(1) exist then evaluate
                      1 log t
        =       lim
            e   t 1    1
Corporate Office: CP Tower, Road No.1, IPIA, Kota (Raj.), Ph: 0744-2434159   LIMIT   42
        = e–1.
                                      x
                   x 2  5x  3 
Q.7     If ƒ(x) =                       then xlim
                                                 
                                                    ƒ(x) is -
                   x2  x  2 
                                
        (A) e–4        (B) e3        (C) e2             (D) e4
                                                    x
                          x  5x  3 
                                  2
Sol.[D] xlim
          
             ƒ(x) = xlim 
                        2
                                      
                                      
                          x x2 
                                      x
                     4x  1 
        = xlim
             1  2       
                   x x2
                                                    
                                    x2 x 2   
        = xlim
                        4 x  1  4 x 1      
            
                   1 
                                 
                                                                 … (1)
                      x2  x  2             
                  
                                               
                                                
                       x (4 x  1)              4 1/ x
        Where  =                      =                               4 as x  
                        2
                      x x2               11/ x  2 / x 2
         (1)  xlim         4
                    ƒ(x) = e .
                   sin x ,       x  n                                       
                                                                               x 2  1,   x2
Q.15    Let ƒ(x) =                      , where n  I and g (x) =                            , then xlim
                                                                                                        0
                                                                                                           g [ƒ(x)] is -
                    2,           x  n                                       
                                                                                3,        x2
        (A) 1                        (B) 0
        (C) 3                        (D) Does not exist
                    
                    [f ( x )]2  1,       x2
Sol.[A] g [ƒ(x)] = 
                    
                           3,             x2
         g [ƒ (x)] = sin2 x + 1, x  n
        3, x = n
        R.H.L. = hlim
                   0
                      g [ƒ(0 + h)] = hlim
                                       0
                                          (sin2 h + 1) = 1
        L.H.L = hlim
                  0
                     g [ƒ(0 – h)] = hlim
                                      0
                                         (sin2 h + 1) = 1
         hlim
            0 g[ƒ (x)] = 1.
                            2             2
          Lim f(x) = Lim tan {h} = Lim tan h = 1
                    h 0          h 0
         x 0             2    2          2
                                      h  [h ]                      h
         Lim
          h 0 f(x) does not exist.
                   f ( x  c)              f ( x  2c)         f ( x  3c)
Q.12    Let g(x) =    f ( c)                  f (2c)               f (3c)
                      f (c)                   f (2c)             f (3c)
                                      g( x )
        where c is constant then Lim
                                 x 0
                                             is equal to
                                                        x
        (A) 0                (B) 1       (C) –1             (D) f(c)
Sol.[A] We note that g(0) = 0
               g( x )    0
         Lim
          x 0        is   form
                x        0
               g( x )        g( x )
         Lim
          x 0        = Lim
                        x 0         = g(0) = 0.
                            x                  1
Q.14    If  and  are the root of the quadratic equation ax2 + bx + c = 0,
              lim               1  cos(cx 2  bx  a )
        then x  1                                             =
                                    2(1  x ) 2
                   c 1  1                       c 1   1
        (A)                           (B)            
                  2 
                        
                                                2 
                                                        
                                                           
                   c 1  1
        (C)                           (D) None of these
                   
                        
                           
                                                                       a        b                                          1     1
Sol.[A]  ax2 + bx + c = 0 has roots  and  then                                 c  0 i.e., cx2 + bx + a = 0 has roots   and   .
                                                                    x   2       x                                               
             2             bx a        1                     1
         cx                  = c x                   x  
                            c c                             
           lim           1  cos(cx 2  bx  a ) 
        = x 1                                   
                              2 (1   x ) 2    
                                                 
                           2                     
                 sin 2  cx  bx  a              
           lim               2                  
                                                  
        = x 1                                     
                       (1  x ) 2                
                                                   
                
                                                   
                                                    
                                 cx 2  bx  a 
                            sin                
              lim               
                                        2      
                                                
          = x 1                   (1  x )
                    
Corporate Office: CP Tower, Road No.1, IPIA, Kota (Raj.), Ph: 0744-2434159                                                       LIMIT   44
                            c     1     1 
                        sin   x    x  
           lim              2           
        = x 1
                                     1
                                x  
                                       
            c     1      1          c      1
       sin   x    x             x  
             2
                                  2      
= lim                              · lim
  x
     1     c     1      1       x
                                        1      
             x    x            
           2           
                   c    1  1
                       
                         
                             
                   2                              c 1  1
        =    1·                            =               .
                                                 2    
                                                      
                                                            
         Lim           1  cos 3 x
Q.89     x 0
                                      equals
                      x. sin x. cos x
               1
         (A)                                  (B) 1
               4
               3
         (C)                                  (D) Does not exist
               2
             (1  cos x )                   x     (1  cos x  cos 2 x )
Sol.[C] Lim
        x 0                                   
                         x2               sin x          cos x
             1      111 3
         =      1      
             2        1    2
              x
Q.90     Lim a  1 equals
         x 0
                        x
         (A) log a                            (B) 1
         (C) 0                                (D) Does not exist
Sol.[A] By D.L. Hospital rule
               x
          Lim a log a = a0. log a = log a
          x 0
                            1
             ( 2 x  3)( x  1)               x 1         1
Sol.[A] Lim
        x 1
                                  Lim                   
               ( x  1)(2 x  3)   x 1 ( x  1)( x  1)   2
         Lim           1                8                   n3    
Q.92                                               .....           equals
         n                    4              4                   4
                   1  n              1 n                 1  n 
Corporate Office: CP Tower, Road No.1, IPIA, Kota (Raj.), Ph: 0744-2434159     LIMIT   45
                1                                    1
          (A)                                 (B)
                4                                    8
                1
          (C)                                 (D) None of these
                2
                                           2        2
             13  2 3  .....  n 3 Lim n ( n  1)
Sol.[D] Lim
        n 
                                   = n 
                   1 n4                  4(1  n 4 )
                                              2
                          1
                  n 4 1  
          = Lim           n  = (1  0) 2    1
            n 
                                             
                        1     4(0  1)       4
                 4 n 4  4  1
                       n     
          (A) 6                               (B) 5
          (C) 5/6                             (D) e
                                       1/ n                       0
                                  n                5 
                                                           
Sol.[A] 6 Lim  1   5                    61    
          n        
                            6               
                                                      6  
                                           = 6 (1 + 0)0
                                           = 6 × 10
                                           = 6 × 1 = 6.
           1                                     
            , 3 ,   1 ,  3                     then Lim [x] is
           2 2   2         2                           x 
                                                 
          (A) 0                               (B) – 1
          (C) 1                               (D) Does not exist
Sol.[D] If A,B,C are vertices then AB = BC = CA=                           3   ABC is equilateral
           Required distance = 0 = 
Corporate Office: CP Tower, Road No.1, IPIA, Kota (Raj.), Ph: 0744-2434159                                                         LIMIT        46
          Lim
           x  0 [x] = Does not exist
                       3
Q.100    Lim x (log x ) equals
         x 
              1 x  x2
         (A) 0                      (B) – 1
         (C) 1                      (D) Does not exist
                                          1
        Lim  (log x ) 3  x.3(log x ) 2 
Sol.[A] x                               x
                         1  2x
                                    (By D.L. Hospital rule)
                             1              1
           Lim  3(log x ) 2   6(log x ) 
          x               x              x
                               2
                                     (By D.L. Hospital rule)
                3(log x ) 2  6 log x
          Lim
           x 
                               2x
                                    (By D.L. Hospital rule)
                                  1 6
               6 log x            
          Lim
            x                   x x
                              2
                                    (By D.L. Hospital rule)
                    6 log x  6
          Lim
            x         2x
                                    (By D.L. Hospital rule)
                       1
                      6   0
          Lim
           x         x
                         2
                                    (By D.L. Hospital rule)
           6
             =0
          
           2
         lim           1
Q.74     x a                     ( n N) equals -
                 ( x – a ) 2 n –1
         (A)                       (B) – 
         (C) 0                      (D) Does not exist
Sol.[D] Do your self.
                           2x 3 – 4x  7
Q.75     The value of xlim
                                       is-
                             3      2
                               3x  5 x – 4
        (A) 2/3                  (B) –7/4
        (C) –4/5                 (D) 
Sol.[A] Do your self.
                   x      
         lim
Q.76     x   3           equals-
               x 3  10 
Corporate Office: CP Tower, Road No.1, IPIA, Kota (Raj.), Ph: 0744-2434159   LIMIT   47
        (A) 1                           (B) 2
        (C) 3                           (D) None of these
Sol.[A] Do your self.
Q.77      lim n[a1/n–1] equals-
         n 
         (A) a                          (B) logea
        (C) 1                           (D) None of these
Sol.[B] Do your self.
         lim             x
Q.78     x                           equals -
                    x   x    x
        (A) 0                           (B) 1
        (C)                            (D) None of these
Sol.[B] Do your self.
                 log (3  x )  log (3  x )
Q.79     If xlim
              0
                                             = k, the value of k is -
                                       x
               2
         (A) –                          (B) 0
               3
               1                              2
         (C) –                          (D)
               3                              3
Sol.[D] Do your self.
Q.80    If          f(x)                      is             a         differentiable           function   and
                            2
         lim f (2  2h  h )  f ( 2)
         h 0
              f (1  h 2  h )  f (1)
Q.113     lim        1  x 4  (1  x 2 ) is –
         x 
                            x2
         (A) 0           (B) – 1        (C) 2          (D) – 2 [A]
Corporate Office: CP Tower, Road No.1, IPIA, Kota (Raj.), Ph: 0744-2434159                                   LIMIT   48
Q.114     lim         3x 
                               9x 2  x 
                                              equals?
         x                           
               1                1                  1              1
         (A)              (B)            (C) –            (D) –     [B]
               3                6                  6              3
          lim             n!
Q.115                                is equal to -
         n        ( n  1) !  n !
         (A) 0                           (B) 
         (C) 1                           (D) None of these           [A]
         (A) 0                           (B) 1
         (C)                            (D) None of these           [B]
                  x3 1                
Q.121    If xlim 
                x 2  1
                            ( ax  b )  = 2, then -
                                        
                                       
         (A) a = 1, b = 1                (B) a = 1, b = 2
         (C) a = 1, b = – 2              (D) None of these           [C]
                                      log( x  a )
Q.122    The value of lim                              is -
                           x a     log(e x  e a )
         (A) 1                           (B) – 1
         (C) 0                           (D) None of these           [A]
                                  3
          lim        x 2 1  x3 1
Q.123    x  4
                                               equals -
                                  5
                     x4 1  x4 1
         (A) 1                           (B) 0
         (C) – 1                         (D) None of these           [B]
                      2
              x
Q.124    lim e  cos x is -
         x 0
                x2
                3                              1
         (A)                             (B)
                2                              2
               2
         (C)                             (D) None of these           [A]
               3
                 sin px
Q.125    If xlim
              0 tan 3x
                        = 4, then p is equal to -
Q.127     lim ([x – 3] + [3 – x] –x), where [.] denotes the greatest integer function, is equal to -
         x 3
         (A) 4                           (B) – 4
         (C) 0                           (D) None of these           [B]
Corporate Office: CP Tower, Road No.1, IPIA, Kota (Raj.), Ph: 0744-2434159                             LIMIT   49
                                   4 
Q.128    The value of xlim
                        
                           3x sin  x  is -
                                               3 
         (A) 4 log 3                        (B) 3 log 4
         (C) 4                              (D) None of these               [C]
Q.129    If xlim
              0
                 (1 + ax)b/x = e2, (a, b  N), then -
         (A) a = 4, b = 2                   (B) a = 8, b = 4
         (C) a = 16, b = 8                  (D) None of these               [D]
                 sin(1  [ x ])
                                , [x]  0
Q.130 If f(x) =      [x]                  then lim f(x) is -
                                                x 0
                
                      0,          [x]  0
         (A) – 1                            (B) 0
         (C) 1                              (D) None of these               [B]
         (C) xlim
              1 / 2
                     f(x) = 0               (D) x lim
                                                  3 / 4
                                                         f(x) = 2 [B]
Q.142     lim [log n–1(n).log n(n + 1).log n+ 1(n + 2)… log k (nk)] is equal to -
         n                                               n 1
         (A)                               (B) n
         (C) k                              (D) None of these               [C]
                                                                       n
                   12  2 2  32  ...  r 2
Q.143    If tr =
                    3      3         3
                   1  2  3  ....  r           3
                                                       and Sn =    r 1
                                                                             (–1)r.tr, then nlim S is given by -
                                                                                               n
                2                    2            1                    1
         (A)               (B) –            (C)                (D) –     [B]
                3                    3            3                    3
                               x     x       x 
Q.144    The value of nlim
                        
                           cos   cos   …cos  n  is-
                                2
                                      4
                                              2 
                                                  sin x
         (A) 1                              (B)
                                                    x
                 x
         (C)                                (D) None of these               [B]
               sin x
Corporate Office: CP Tower, Road No.1, IPIA, Kota (Raj.), Ph: 0744-2434159                                         LIMIT   50
                1                            1
         (A)                          (B)
              x 1                        1 x
         (C) 1 – x                    (D) x – 1                 [B]
                  2  2         2  2
Q.146    lim tan[e ]x  tan[ e ]x is,
         x 0
                     sin 2 x
         (where [.] is G.I.F.) -
         (A) 0                        (B) 8
         (C) 15                       (D) None of these         [C]
Q.80      lim       1  x 4  (1  x 2 ) is –
         x 
                           x2
         (A) 0          (B) – 1       (C) 2           (D) – 2 [A]
Q.81      lim        3x 
                             9x 2  x 
                                           equals?
         x                         
               1              1                1              1
         (A)            (B)           (C) –           (D) –     [B]
               3              6                6              3
          lim            n!
Q.82                                is equal to -
         n       ( n  1) !  n !
         (A) 0                        (B) 
         (C) 1                        (D) None of these         [A]
         (A) 0                        (B) 1
         (C)                         (D) None of these         [B]
                    
                     x 2  k,         when x  0
Q.84     Let f(x) =     2                        . If the function f(x) be continuous at x = 0, then k =
                    
                     x  k ,         when x  0
         (A) 0                        (B) 1
         (C) 2                        (D) – 2                   [A]
                  x 1 3           
Q.88     If xlim
              
                 
                   2
                         (ax  b)  = 2, then -
                  x 1             
Corporate Office: CP Tower, Road No.1, IPIA, Kota (Raj.), Ph: 0744-2434159                                  LIMIT   51
         (A) a = 1, b = 1                   (B) a = 1, b = 2
         (C) a = 1, b = – 2                 (D) None of these            [C]
                                        log( x  a )
Q.89     The value of lim                                  is -
                           x a       log(e x  e a )
         (A) 1                              (B) – 1
         (C) 0                              (D) None of these            [A]
                                    3
          lim       x 2 1  x3 1
Q.90     x  4
                                                  equals -
                                    5
                    x4 1  x4 1
         (A) 1                              (B) 0
         (C) – 1                            (D) None of these            [B]
                    2
              x
Q.91     lim e  cos x is -
         x 0
                x2
                3                                 1
         (A)                                (B)
                2                                 2
               2
         (C)                                (D) None of these            [A]
               3
                 sin px
Q.92     If xlim
              0 tan 3x
                        = 4, then p is equal to -
Q.94      lim ([x – 3] + [3 – x] –x), where [.] denotes the greatest integer function, is equal to -
         x 3
         (A) 4                              (B) – 4
         (C) 0                              (D) None of these            [B]
                                   4 
Q.95     The value of xlim
                        
                           3x sin  x  is -
                                               3 
         (A) 4 log 3                        (B) 3 log 4
         (C) 4                              (D) None of these            [C]
Q.96     If xlim
              0
                 (1 + ax)b/x = e2, (a, b  N), then -
         (A) a = 4, b = 2                   (B) a = 8, b = 4
         (C) a = 16, b = 8                  (D) None of these            [D]
                    sin(1  [ x ])
                                   , [x]  0
Q.97     If f(x) =      [x]                  then lim f(x)                                  is -
                                                   x 0
                   
                         0,          [x]  0
         (A) – 1                            (B) 0
         (C) 1                              (D) None of these            [B]
Corporate Office: CP Tower, Road No.1, IPIA, Kota (Raj.), Ph: 0744-2434159                             LIMIT   52
         (A) 2        (B) 4                   (C) 8              (D) 0      [B]
Q. 99    If f(x) = [2x], then -
         (C) xlim
              1 / 2
                     f(x) = 0                 (D) x lim
                                                    3 / 4
                                                           f(x) = 2 [B]
                                          x
Q.75      lim  x 2  5x  3  =
         x       x x3 
                    2
                          
        (A) e4                                (B) e2
        (C) e3                                (D) e                         [A]
                                                    n
                                         sin x
Q.105    For m, n  I+, Lt                                  is equal to -
                                 x 0   (sin x ) m
         (A) 1, if n = m                      (B) – 1, if n > m
                n
         (C)                                  (D) None of these             [A]
                m
                                                                                         2f ( x )  3f (2 x )  f ( 4 x )
Q.109    Let f ''(x) be continuous at x = 0 and f '' (0) = 4. Then value of lim                                             is -
                                                                                  x 0                 x2
         (A) 12                               (B) 10
         (C) 6                                (D) 4                         [A]
              (1  cos 2 x ) sin 5x
Q.118     lim                       =
         x 0      x 2 sin 3x
         (A) 10/3           (B) 3/10          (C) 6/5            (D) 5/6 [A]
                  20
Q.120            x
                 k 1
                            k
                                 20
                                         =
         lim
         x 1           x 1
         (A) 20                   (B) 210
         (C) does not exist       (D) None of these                         [B]
Q.128    If x1, x2 are real and distinct roots of
         ax2 + bx + c = 0, then
Corporate Office: CP Tower, Road No.1, IPIA, Kota (Raj.), Ph: 0744-2434159                                                         LIMIT   53
          lim (1  sin (ax 2  bx  c))1 / x  x1 is equal to -
         xx     1
(A) e x1  x 2 (B) e x 2  x 1
              log e x n  [ x ]
Q.129     lim                   , n  N, ([x] denotes greatest integer less than or equal to x) is equal to -
         x        [x]
         (A) – 1                                  (B) 0
         (C) 1                                    (D) does not exist          [A]
                      tan x          sin x
                a     a
Q.130     lim                 (a > 0) is equal to -
          x  0 tan x  sin x
         (A) 1                                    (B) 0
         (C) does not exist                       (D) None of these           [B]
Q.145    If f(x) is a polynomial satisfying f(x) f(1/x) = f(x) + f(1/x) and f(2) > 1 then xlim
                                                                                            1
                                                                                               f ( x ) is -
         (A) 2                    (B) 1
         (C) – 1                  (D) None of these [A]
Q.146    Let f(x) = [x] + [– x]. Then for any integer m and non integer a, consider the following statements
         (i) xlim
               m
                  f ( x ) exist
                   cos x         x         1
                                                    f (x)
Q.147    If f(x) = 2 sin x       x2       2 x , lim       is equal to -
                                                x 0 x
                    tan x         x        1
         (A) 1         (B) – 1        (C) 0       (D) 2       [C]
               1         
Q.148     lim  2  cot x  =
         x 0 x          
         (A) 1                        (B) 0
         (C)                         (D) does not exist      [C]
               sin 2   sin 2  
Q.149    lim                     =
           
                    2  2      
         (A) 0                        (B) 1
              sin                         sin 2
         (C)                          (D)                             [D]
                                            2
                   1                
Q.150               2 (1  cos 2 x ) is
                                    
         lim
         x 0              x
        (A) 1                         (B) –1
        (C) does not exist            (D) None of these       [C]
                                                                f ( x )e nx  g ( x )
Q.151 If x > 0 and g is a bounded function, then lim                                  is
                                                           n         e nx  1
Corporate Office: CP Tower, Road No.1, IPIA, Kota (Raj.), Ph: 0744-2434159                                     LIMIT   55
         (A) 0                      (B) f(x)
         (C) g(x)                   (D) None                       [B]
               x.2 x  x
Q.152    lim             equals
         x  0 1  cos x
                                              1
         (A) log 2                  (B)         log 2
                                              2
         (C) 2 log 2                (D) None                       [C]
                        n
Q.153    lim log x  [ x ] , n  N, ([x] denotes greatest integer less than or equal to x)
         x 0        [x]
         (A) has value – 1         (B) has value 0
         (C) has value 1           (D) does not exist              [D]
         Lim
Q.154             (x tan x –(/2) sec x) equals to
          x
               2
         (A) –1         (B) 0       (C) 1                (D) 2
Sol. [A] xLim
           / 2
                 x. tan x – /2 sec x                   From – 
                       x. sin x –  / 2
          xLim
             / 2 .        cos x
                         0  sin(  / 2)
         Form 0/0                       = –1
                          – sin(  / 2)
                                     x – 2a                x –   2a
Q.155    The value of limit
                      x 2 a                       2         2
                                                                       is
                                               x – 4a
                   1                           1
         (A)                        (B)
                   a                          2 a
                   1                           1
         (C)                        (D)
               3 a                            4 a
                                 1 / 2 x – 2a  1 / 2 x
Sol. [B] Apply L'H.Rule  xlim
                            2 a         2      2
                                              1 / 2 x – 4a  2 x
    1        ( x  x – 2a )                                  1   4a    1
=      lim                  .        x 2 – 4a 2 =              .    =
    2 x 2 a   x – 2a x .x                                   2 2a     2 a
                 g( x ) – 1
                            ;            x 1
Q.156 If f(x) =   x –1                                 and g (1) = 2, g(1) = 1. Then lim
                                                                                       x 1
                                                                                            f(x) is :
                1           ;            x 1
                
         (A) 1          (B) 3(C) 2                       (D) 4
                         1         1
Sol.[C] = lim            g( x ) /                 x = lim g( x ) x = 2
          x 1 2 g ( x )           2                   x 1   g( x )
                        ( 2 x  1) 40 ( 4 x – 1) 5
Q.157    The limit xlim
                                        45
                                                   is
                                  (2 x  3)
         (A) 16         (B) 32      (C) 24               (D) 8
                            40            5
                 ( 2 x  1) ( 4 x – 1)   2 .45   45
                                                       40
Sol.[B] xlim
                                45
                                       =       =    = 25 = 32
                       ( 2 x  3)         2 45
                                                 25
Corporate Office: CP Tower, Road No.1, IPIA, Kota (Raj.), Ph: 0744-2434159                              LIMIT   56
            lim    sin x  (sin x ) sin x
Q.158     x  / 2
                                          is equal to-
                   1  sin x  n sin x
         (A) 4                   (B) 2
         (C) 1                   (D) None of these
Sol. [B] take sin x = t
                                                         1  t t (1  nt )
     lim         t  (t) t
     t 1
                           By L' Hospital = lim
                                            t 1                     1
               1  t  nt                                   1 
                                                                     t
             t            t          2
     lim  {t (1 / t )  t (1  nt ) } = 2
     t 1
                     1/ t 2
               2x  3x
Q.159     lim 3  2 is equal to-
          x 0
                     x
                  9                         8
         (A) log                  (B) log
                  8                         9
                   9
         (C) –log                 (D) log 72
                   8
               
                3  1 2  1
                  2x    3x
                             lim
Sol.[A] xlim
          0 
                            = x 0
               
                x       x 
                   2x
                  3 1      2 3x  1    
                                         
                        2           3
                  
                    2 x        3x       
                                         
                                              9
    = 2 log 3 – 3 log 2 = log 9 – log 8 = log  
                                              8
Q.160       lim log 2 (tan2 2x) is equal to-
          x 0     tan x
         (A) 2                    (B) e2
         (C) 1                    (D) e
                log (tan 2 2 x )   
Sol. [C] xlim
           0                         By L' hospital
                                      
                  log tan 2 x
Q.161 If A and B are square Matrices of order 3 such that |A| = –1 , |B| = 3 then |3AB| = ---------
          (A) –9     (B) –81 (C) –27           (D) 81
Sol. [B] |3AB| = 3 × 3 × 3 |A| |B| = 27 (–1) (3) = –81
                 4     2
Q.162 If A =              , then (A –2I) (A –3I) =
                  1 1 
          (A) A      (B) I      (C) 0          (D) 5I
            4 2       1   0     4      2     1 0 
Sol. [C]          2         
                                                 3       
            1 1      0 1      1 1          0 1  
        2       2 1         2  0 0 
     =                         =            =0
         1  1   1  2 0 0
                  
Q.163 If              is square root of I2, then ,  and  will satisfy the relation-
                 
         (A) 1 + 2 +  = 0      (B) 1 –2 +  = 0
         (C) 1 + 2 –  = 0      (D) 2 +  = 1
                      2
                      1     0                       1          0
Sol. [D]               =                                       =
            
                    
                          0     1
                                                      0       1
                                                                               
Corporate Office: CP Tower, Road No.1, IPIA, Kota (Raj.), Ph: 0744-2434159                            LIMIT   57
          2          0  1             0
                              =             2 +  = 1
          0
                             2
                            0         1
                                              
                                                                x 2 y2
Q.164      A circle of radius r is concentric with an ellipse         = 1. If common tangent is inclined to the major axis at
                                                                a 2 b2
           an angle of , then tan2 equals-
                  r2  b2                   r 2  b2
           (A)                       (B)
                  a 2  b2                  a2  r2
                  r 2  b2                  r2  a2
           (C)                       (D)
                  r2  a2                   b2  r 2
Sol. [B]
           equation of ellipse
           x 2 y2
                 = 1 Equation of circle x2 + y2 = r2
           a 2 b2
Equation of tangent to ellipsey = mx ±           a 2m2  b2
Equation of tangent to circle y = mx ± r             1  m2
for common tangent ± r 1  m 2 = ± a 2 m 2  b 2
        r2 + r2m2 = a2 m2 + b2  a2m2 – r2m2 = r2 – b2
                   r 2 – b2             r 2 – b2
           m2 =              tan 2
                                     =
                   a2 – r2              a2 – r2
            lim       x2 1  3 x3 1
Q.165      x  4
                                         is equal to-
                      x 4 1  5 x 4 1
           (A) 1                     (B) –1
           (C) 0                     (D) 2
Sol. [C]
Q.166       lim { lim (92m (      n x))}   where x  R then-
           m    n 
           (A) 1 if x  Rational (B) 0 if x is irrational
           (C) 1 if x is irrational (D) 0 if x is rational.
Sol. [ ]
                              e sin x  1
Q.167      Find value of xlim
                           0
                                   x
                            (sin x ) 2       
           lim  1  sin x              ....  1
Sol.       x 0                 2            
                
                               x
                                      
           lim sin x 1  sin x  .....
           x 0               2
                 x                   
                                       
                                            
           lim sin x . lim 1  sin x  ..... = 1.1 = 1
           x 0        x 0       2         
                 x                          
Q.168      lim x ( x  c – x )
           x 
Corporate Office: CP Tower, Road No.1, IPIA, Kota (Raj.), Ph: 0744-2434159                                        LIMIT     58
Sol.      lim         x (     xc –              x )
                                                                 xc  x           
          x 
                                                                  xc  x
        lim      x  x  c  x                                               c x                     c
                                           xlim
       x 
                     xc         x                             x      1 c / x 1            =
                                                                                                      2
                 x (1  a cos x )  b sin x
Q.169    If xlim
              0              3
                                            = 1 then find a, b
                                          x
                                        x2                                 x3                
                                     
Sol.      lim x 1  a 1  2  ....   b  x  3  .... = 1
          x 0                                        
                                                     x3
                               3
          lim x (1  a  b)  x (b / 6  a / 2).... = 1
          x 0
                              x3
         This is only possible when
         1+a–b=0                ....(1)
         b/6 – a/2 = 1          ....(2)
         From (1), (2) a = –5/2, b = –3/2
         (A) 0                                 (B) –1
         (C) 1                                 (D) does not exist
              LHL  1 
Sol.[D] As              does not exist
              RHL  0 
                          x 100  x 99  ......  4 
Q.171    The limit, lim                             is
                                                     
                    x 
                                 x 100  x          
         (A) 1                                 (B) 10
         (C) 100                               (D) None of these
                                                                            1 0 
Sol.[A] As the degree of Num. & den. is same so take common x100 we get lim         1
                                                                        x  1  0 
                                      1                           1                                                         
               1                                                                                                1          
Q.172      lim           +                      +                             +....... .........+                             is equal to -
          n   n                n2  n                     n 2  2n                                     n2    ( n – 1) n 
                                                                                                                            
         (A) 2 + 2 2                           (B) 2 2 – 2
         (C) 2 2                               (D) 2                                    [B]
Corporate Office: CP Tower, Road No.1, IPIA, Kota (Raj.), Ph: 0744-2434159                   LIMIT   60
                         (13 – 12 )  ( 23 – 2 2 )  .......  (n 3 – n 2 )
          = nlim
                                                                          then-
                                               n4
          (A)  =                             (B)  < 
          (C) 4 – 3 = 0                      (D) 3 – 4 = 0
                 12  2 2  32  ......  n 2   1
Sol.[D]  = nlim
                                            =
                              3
                                               n                             3
                              3       3                    3
                   1  2  .....  n                               1  2 2  .....  n 2
                                                                     2
           = nlim
                        4
                                                               –
                                          n                                n4
                    1     1
              =       –0=
                    4     4
                         1       1
           3 – 4 = 3 ×  –4×       =1–1=0
                         3       4
Q.179 The value of the xlim
                         0
                            (1 + sin x)2cotx is -
          (A) e3                               (B) e
                  2
          (C) e                                (D) None of these
Sol.[C] xlim
          0
             (1+sin x)2cot x (1 form)
              lim                                                  cos x
          = e x0 (1  sin x –1)  2cot x =     lim 2 sin x 
                                                                   sin x
                                              e x 0
          = e xlim
                0 2 cos x = e
                               2
          (A) 1                                (B) 0
          (C) does not exist                   (D) None of these
Sol. [B] (i) If x = Rational No. then                  h       n   . x = Integer 
                                                   h 
           cos ( |n . x) = (–1 or 1)
          cos2n ( |n x) = + 1
                  h          (1 + cos2m ( |n x)) = 1 + 1 = 2
          n  m
                           1 – tan x                                                                                    
Q.182 Let f(x) =
                            4x – 
                                     , x    ,x                        0, 2  . If f(x) is continuous in   0, 2  , then f  4  is -
                                            4                                                                               
Corporate Office: CP Tower, Road No.1, IPIA, Kota (Raj.), Ph: 0744-2434159                                                                  LIMIT   61
                                            1                          1
          (A) – 1               (B)                     (C) –                    (D) 1
                                            2                          2
                               h             1 – tan x   0
Sol. [C] f   =             x  / 4
                                                          =   from
           4                                   4x –      0
                         – sec 2 x
                         h            – sec 2  / 4
          Dh =      x  / 4
                                    =
                              4            4
                       2
                  – sec  / 4       2     1
                =               = –   =–
                       4            4     2
                   x100  x 50  50
Q.183     lim                                           is
          x             x100  x
        (A) 100              (B) 10
        (C) 1                (D) None of these
Sol.[C] Degree (Num.) = degree (den.)
        Ans = 1
                              1/ n
                en         
Q.184     lim                      is
          n              
                           
          (A) 1                                         (B) e
          (C) e2                                        (D) e
                                       1
                    en              n
Sol.[B]   y  lim                   
              n                  
                                    
                                  1.     en              
           y  lim                  log                 
                        n       n                     
                                                         
          log y = 1  y =e
                                        x4
Q.185      lim  x  6                          =
          x 
                         x 1 
          (A) e                 (B) e4                  (C) e5                   (D) e6
                                        x4
Sol.[C]    lim  x  6                          = 1 form
          x 
                         x 1 
                lim ( x  4)  x 6 –1         lim ( x  4)   ( x 6) –( x 1) 
                              x 1       =     x                   x 1       
               e x                            e                                  
                        5 x  20
          =      lim                   = e5
               e x      x 1
                                        sin( 2  h – 2)
          limit = hlim {2 + h}
                    0                   ( 2  h – 2) 2
                                            sin h
                                = hlim
                                    0
                                       h×          = 1.
                                             h2
Q. 187 If [x] denotes the greatest integer  x, then
Corporate Office: CP Tower, Road No.1, IPIA, Kota (Raj.), Ph: 0744-2434159                LIMIT   62
                  1
           lim           2       2       2           2
                  n 3 {[1 x] + [2 x] + [3 x] + ….+ [n x]} equals :
          n 
                      1                
Q.189                  2 (1  cos 2 x ) is
                                       
          lim
          x 0                x
          (A) 1                         (B) –1
          (C) does not exist            (D) None of these        [C]
                                                                   f ( x )e nx  g ( x )
Q.190     If x > 0 and g is a bounded function, then lim                                 is
                                                              n         e nx  1
          (A) 0                         (B) f(x)
          (C) g(x)                      (D) None                 [B]
                x.2 x  x
Q.191     lim             equals
          x  0 1  cos x
                                              1
          (A) log 2                     (B)     log 2
                                              2
          (C) 2 log 2                   (D) None                 [C]
Corporate Office: CP Tower, Road No.1, IPIA, Kota (Raj.), Ph: 0744-2434159                                       LIMIT   63
Q.192     lim x cos    sin    is -
         x 
                           4x              4x 
                                            
        (A)                             (B)
              2                              4
        (C) 1                           (D) None of these           [B]
          lim             1  cot 3 x
Q.193                                          is -
         x
              4     2  cot x  cot 3 x
              11                               3
        (A)                             (B)
               4                               4
              1
        (C)                             (D) None of these           [B]
              2
Q.194     lim        1  x 4  (1  x 2 ) is –
         x 
                            x2
        (A) 0              (B) – 1      (C) 2             (D) – 2 [A]
Q.195     lim         3x 
                                9x 2  x 
                                              equals?
         x                            
                1                1               1                1
        (A)                (B)          (C) –             (D) –     [B]
                3                6               6                3
          lim             n!
Q.196                                is equal to -
         n        ( n  1) !  n !
        (A) 0                           (B) 
        (C) 1                           (D) None of these           [A]
        (A) 0                           (B) 1
        (C)                            (D) None of these           [B]
                 x3 1               
Q.198   If xlim 
               x 2  1
                           (ax  b)  = 2, then -
                                     
        (A) a = 1, b = 1                (B) a = 1, b = 2
        (C) a = 1, b = – 2              (D) None of these           [C]
                                     log( x  a )
Q.199   The value of lim                               is -
                            x a   log(e x  e a )
        (A) 1                           (B) – 1
        (C) 0                           (D) None of these           [A]
                                 3
          lim        x 2 1  x3 1
Q.200    x  4
                                               equals -
                                 5
                     x4 1  x4 1
        (A) 1                           (B) 0
        (C) – 1                         (D) None of these           [B]
                     x2
         lim e             cos x
Q.201    x 0
                                     is -
                          x2
Corporate Office: CP Tower, Road No.1, IPIA, Kota (Raj.), Ph: 0744-2434159   LIMIT   64
                3                                 1
        (A)                                (B)
                2                                 2
              2
        (C)                                (D) None of these             [A]
              3
                sin px
Q.202   If xlim
             0 tan 3x
                       = 4, then p is equal to -
Q.204    lim ([x – 3] + [3 – x] –x), where [.] denotes the greatest integer function, is equal to -
         x 3
        (A) 4                              (B) – 4
        (C) 0                              (D) None of these             [B]
                                  4 
Q.205   The value of xlim
                       
                          3x sin  x  is -
                                              3 
        (A) 4 log 3                        (B) 3 log 4
        (C) 4                              (D) None of these             [C]
Q.206   If xlim
             0
                (1 + ax)b/x = e2, (a, b  N), then -
        (A) a = 4, b = 2                   (B) a = 8, b = 4
        (C) a = 16, b = 8                  (D) None of these             [D]
                 sin(1  [ x ])
                                , [x]  0
Q.207 If f(x) =      [x]                  then lim f(x) is -
                                                x 0
                
                      0,          [x]  0
        (A) – 1                            (B) 0
        (C) 1                              (D) None of these             [B]
         (C) xlim
              1 / 2
                     f(x) = 0
        (D) x lim
              3 / 4
                     f(x) = 2                                            [B]
Corporate Office: CP Tower, Road No.1, IPIA, Kota (Raj.), Ph: 0744-2434159                            LIMIT   65
        (A) 1/2                          (B) 2
        (C) 1                            (D) None of these            [A]
              2                  2               1                1
        (A)             (B) –            (C)              (D) –     [B]
              3                  3               3                3
                              x     x       x 
Q.213   The value of nlim
                       
                          cos   cos   …cos  n  is-
                               2
                                     4
                                             2 
                                                 sin x
        (A) 1                            (B)
                                                   x
                x
        (C)                              (D) None of these            [B]
              sin x
               1                                1
        (A)                              (B)
             x 1                            1 x
        (C) 1 – x                        (D) x – 1                    [B]
                  2  2         2  2
Q.215    lim tan[e ]x  tan[ e ]x is,
         x 0
                     sin 2 x
        (where [.] is G.I.F.) -
        (A) 0                            (B) 8
        (C) 15                           (D) None of these            [C]
                           e x  e tan x
Q.216    The value of xlim
                        0
                                         equals -
                            x  tan x
         (A) 0          (B) 1            (C)             (D) ½
                      x  tan x
                       1  tan x            
             e            .
Sol.[B] xlim  x  tan x  e      =1
          0                                   
                      
                             1                       1
                                                         f (x)  1
Q.217    If f(1) = 1, f (1) = 2 then lim
                                      x 1                            =
                                                          x 1
         (A) 2          (B) 1            (C) 3            (D) 4
                      f (x)  1          0
Sol.[A] lim
        x 1
                                     ;     form
                       x 1              0
Corporate Office: CP Tower, Road No.1, IPIA, Kota (Raj.), Ph: 0744-2434159                            LIMIT          66
                           1
                                  .f ' ( x )
                       2 f (x)                         f ' (1)
          lim
           x 1                                =                  .   1 =2
                             1                            f (1)
                               2 x
                           1
                           2            2   1
Q.218    lim (a  h ) . sin (a  h )  a sin a equals -
         h 0
                              h
         (A) a2 cos a + 2a sina
         (B) – a2 cos a – 2a sin a
                  a2
         (C)               + 2a sin–1 a
                 1 a2
         (D) none of these
                               d
Sol.[C] The limit equals          (a2 sin–1 a)
                               da
                 a2
                          + 2a sin–1 a
                 1 a2
          lim         1  cos x 2
Q.219    x 0
                                  equals -
                     (1  cos x )
                                               1
         (A)     2                   (B)
                                               2
         (C) 1                       (D) none of these
                          x4
                      11    .....
Sol.[A] xlim               2!       =              2
          0
                          x2
                     11    .....
                          2!
                                     x.e1/ x
Q.220    The value of xlim
                       0 
                                                   is -
                                  1  e1/ x
         (A) 0                       (B) 1
         (C)                        (D) none of these
                                 lim  x.e
                                           1/ x 
                                                
Sol.[A] As we are RHL so        x 0       1  e1/ x 
                                                     
                         1 
                x.e1/ x  2 .  e1/ x
           lim          x 
           x 0
                            1 
         =           e1/ x  2        =0
                           x 
Q.221     lim  4  1  equals to -
         x 2
                x2  4 2  x 
Corporate Office: CP Tower, Road No.1, IPIA, Kota (Raj.), Ph: 0744-2434159   LIMIT   67
                   1                1                 3               3
          (A) –            (B)              (C) –             (D)
                   4                4                 4               4
          (A) xlim
                
                   f (x) = e–6              (B) xlim
                                                  
                                                     f (x) = 2
          (C) xlim
                
                   f (x) = e–3              (D) xlim
                                                  
                                                     f (x) = e–4
                                 2x                                       2x
        lim  x                                                2 
                                                          lim  2  x 
Sol.[D] x   2  x 
                       ; 1 form  e         = e–4        x        
          lim  1  1  1  1  ...  1  1            1
Sol.[C]   n   2 3 3 4               n     n  1  
                                                      2
                                sin x
               sin x  (sin x )
Q.226     lim
              1  sin x  ln sin x equals -
          x
               2
          (A) 1                             (B) 2
          (C) 3                             (D) 4
                                         t  tt       0
Sol.[B] Put t = sin x  lim                        ,
                                 t 1 1  t  log t   0
               1  t t (1  log t )
          lim                         0
         t 1                1      ,
                    0 1             0
                             t
                    1
       0  t t  0    (1  log t ).(t t (1  log t ))
                    t                                    1  1
  lim                                                    =        =2
  t 1                            1                         1
                             0 2
                                 t
Corporate Office: CP Tower, Road No.1, IPIA, Kota (Raj.), Ph: 0744-2434159                              LIMIT   68
                                            1
Q. 227 The value of
                                              (1  cos 2 x ) is -
                                            2
                                lim
                                x 0              x
          (A) 1                               (B) –1
          (C) 0                               (D) None of these
               1
                  2 sin 2 x         | sin x |
Sol.[D]        2              lim              = does not exist
        lim                      x0     x
        x 0        x
               x  sin x n
                 n
Q. 228 If lim                is nonzero finite, then n may be equal to
           x 0 x  sin n x
        (A) 1                   (B) 2
        (C) 3                   (D) None of these
Sol.[A] Clearly by option at x = 1
                  x´ sin x´
          lim                = 1 (non zero and finite)
          x 0    x  sin´x
                                                                                     tan(ax 2  bx  c)
Q.229     If  is a repeated root of ax2 + bx + c = 0, then lim                                           is -
                                                                              x          ( x  ) 2
          (A) a                               (B) b
          (C) c                               (D) 0
                  tan ( x   ) 2
Sol.[A] lim                                  =a
          x            ( x  ) 2
               log e [ x ]
Q.230      lim             , where [x] denotes the greatest integer less than or equal to x, is -
          x     x
          (A) 1                               (B) –1
          (C) 0                               (D) does not exist
          x            log x                            1/ x
Sol.[C]   [ x ]  x xlim
                         x
                                              = lim
                                                   x     1
                                                               =0
                          y3
Q.231     lim                           as (x, y)  (1, 0) along the line y = x – 1 is given by
          x 1    x3  y2 1
          (A) 1                               (B) 
          (C) 0                               (D) none of these
                                    y3
Sol.[C] lim
        x 1 x 3  y 2  1 , y = x – 1
        y 1
                          ( x  1) 3               0
          lim        3                  2      ,
          x 1    x  ( x  1)  1                 0
                         3( x  1) 2
          lim                                 =0
          x 1 3x 2          2( x  1)
                     n 1
                 2          1
          (A)                                 (B) 2n + 1 – 1
                            n
                     4 .2
Corporate Office: CP Tower, Road No.1, IPIA, Kota (Raj.), Ph: 0744-2434159                                       LIMIT   69
                 2 n 1  1
         (C)                                        (D) none of these
                   3 .2 n
                                                        4.1.5  4 2
Sol.[D] a = min{x2 + 4x + 5} =                                      =1
                                                           4 1
                        1  cos 2
         b = lim                                   =2
                  0        2
           n                              n
         r 0
                 a r .b n  r =     1.2
                                    r 0
                                                         n r
         = 2n 1
                    
                  1  1 / 2  n 1                = 2   n+1
                                                                   –1
                     1  (1 / 2)                    
                                                   
                                                                        3       f (x)
Q.233    If f(9) = 9 and f ´(9) = 1, then lim                                                is equal to -
                                                                x 9      3         x
         (A) 0                                      (B) 1
         (C) –1                                     (D) None of these
                                                                           1f ´(x )
                                                                    0
                  3      f (x)               0                         2 f (x)
Sol.[B] lim                           ,          lim
         x 9       3       x                0   x 9                     1
                                                                       0
                                                                          2 x
                  f ´(9)                                  1 3  2
         =+                      × 2 9 =                           =1
                 2 f (9)                                   23
                           e x  e tan x
Q.234    The value of xlim
                        0
                                         equals -
                            x  tan x
         (A) 0              (B) 1                   (C)                (D) ½
              e x  tan x  1 
                              . tan x
Sol.[B] xlim  x  tan x  e            =1
          0 
                   
                                  1                                1
                                                                       f (x)  1
Q.235    If f(1) = 1, f (1) = 2 then lim
                                      x 1                                               =
                                                                         x 1
         (A) 2              (B) 1                   (C) 3               (D) 4
                        f (x)  1                  0
Sol.[A] lim
        x 1
                                              ;      form
                         x 1                      0
                              1
                                                  .f ' ( x )
                         2 f (x)                                       f ' (1)
          lim
           x 1                                                 =                .       1 =2
                               1                                        f (1)
                                  2 x
                           1 2         2   1
Q.236    lim (a  h ) . sin (a  h )  a sin a equals -
         h 0
                              h
         (A) a2 cos a + 2a sina
         (B) – a2 cos a – 2a sin a
Corporate Office: CP Tower, Road No.1, IPIA, Kota (Raj.), Ph: 0744-2434159                                   LIMIT   70
                   a2
          (C)                + 2a sin–1 a
                  1 a2
          (D) none of these
                                d
Sol.[C] The limit equals           (a2 sin–1 a)
                                da
                  a2
                           + 2a sin–1 a
                  1 a2
          lim          1  cos x 2
Q.237     x 0
                                   equals -
                      (1  cos x )
                                                1
          (A)     2                    (B)
                                                 2
          (C) 1                        (D) none of these
                           x4
                       11    .....
Sol.[A] xlim                2!       =               2
          0
                           x2
                      11    .....
                           2!
                                      x.e1/ x
Q.238     The value of xlim
                        0 
                                                     is -
                                     1  e1/ x
          (A) 0                        (B) 1
          (C)                         (D) none of these
                                    lim  x.e
                                              1/ x 
                                                   
Sol.[A] As we are RHL so            x 0    1  e1/ x 
                                                      
                          1 
                 x.e1/ x  2 .  e1/ x
            lim          x 
            x 0
                             1 
          =           e1/ x  2        =0
                            x 
Q.239     lim  4  1  equals to -
          x 2
                x2  4 2  x 
                   1            1               3                 3
          (A) –           (B)          (C) –                (D)
                   4            4               4                 4
       lim  4  1  lim  4  x  2 
          x 2
Sol.[A]       x 2  4 x  2  = x 2  x 2  4 
         lim         ( x  2)      1
      = x  2 ( x  2) ( x  2) = 4
              sin 1 x  tan 1 x
Q.240 xlim
        0
                                  equals -
                       x3
        (A) 1         (B) –1    (C) 1/2       (D) –3/2
Sol.[C] Hint : First once L' Hospital then rationalization
                          (1  x )1/ x  e
Q.241     The limit, xlim
                       0
                                           equals -
                                           x
          (A) e           (B) e/2      (C) – e              (D) – e/2
Corporate Office: CP Tower, Road No.1, IPIA, Kota (Raj.), Ph: 0744-2434159   LIMIT   71
Sol.[D] y = (1 + x)1/x                   log y = 1/x log (1 + x)
                           x                          x
                         1 ...                        ...
          y=          e 2             e.e           2
                               x .....    
                lim         e e 2         1                    e
                                            
                x 0                         
          so                                                      2
                                   x
                                          2x
                      x 
Q.242     If f (x) =                         then -
                     2x 
          (A) xlim
                
                   f (x) = e–6                     (B) xlim
                                                         
                                                            f (x) = 2
          (C) xlim
                
                   f (x) = e–3                     (D) xlim
                                                         
                                                            f (x) = e–4
                                     2x                                               2x
        lim  x                                                     lim 
                                                                           2 
                                                                                  
Sol.[D] x   2  x 
                       ; 1 form  e            
                                            = e–4                    x   2  x 
                        sec
                                 2                               x2
                                     t dt
                                                                  sec
                                                                             2
                                                                                 t dt
Sol.[C] xlim
          0
                       0                        xlim
                                                   0            0
                         sin x 
                       x       x                                        x2
                         x 
                 sin x
           xlim
              0
                       =1
                            x
          Apply L-Hospital rule
                 2 2
          lim sec x .2 x
          x 0
                             2x
               2
          sec 0 = 1
          lim  1  2  ......  n  =
                  2   2            2
Q.245     n   3    3            3 
                   n            n                      n 
                   1                                        1
          (A)                                       (B)
                   6                                        3
                   2
          (C)                                       (D) None of these
                   3
               2   2            2
Sol.[B]   lim 1  2  .....  n
          n 
                     n3
Corporate Office: CP Tower, Road No.1, IPIA, Kota (Raj.), Ph: 0744-2434159                 LIMIT   72
         lim n ( n  1)(2n  1)
          n 
                      6n 3
                 n 3 [1  1 / n ][2  1 / n ]   2   1
          nlim
                                            =   =
                             6n  3              6   3
          lim sin x  x
Q.246     x0                             =
                           x3
                1                   1                1                         1
         (A)              (B) –                (C)                     (D) –
                3                   3                6                         6
             lim      sin x  x  0    
Sol.[D] x  0              3     form 
                         x      0     
                L. Hospital rule
                      2      1
                =         = 
                     3 4     6
Q.247    If 1 + sinx + sin2 x + ……to                       =4+2       3
                       lim x  x  3 1
         limit =
                     e x     x2 
                lim x  5 
         =                        = e–5
             e x      x 2 
             lim           1 – cot 3 x
Q.249     x  / 4
                                                     is -
                      2 – cot x – cot 3 x
         (A) 11/4                             (B) 3/4
         (C) 1/2                              (D) None of these
         h      (1 – cot x ) (1  cot x  cot 2 x ) 1  1  1 3
            
Sol.[B] x  4   (1 – cot x ) (cot 2 x  cot x  2) = 2  1  1 = 4 .
                      1/ 2       1/ 3
Q.250     lim (cos x ) – (cos x )     is -
          x 0
                       sin 2 x
         (A) 1/6          (B) – 1/12 (C) 2/3                 (D) 1/3
Corporate Office: CP Tower, Road No.1, IPIA, Kota (Raj.), Ph: 0744-2434159         LIMIT   73
                                   1                     1
                 (cos x ) 2 – (cos x ) 3  
             h                                0
         x  0
Sol. [B]                                     0
                         sin 2 x
                                       1                    2
                                     –           1        –
               h     1     (cos x ) sin x  (cos x ) 3 sin x
                                       2
            x 0                                 3
                  – 2
                                          2 sin x. cos x
                                       1                2
                                       2  1 (cos x ) 3
                                     –                –
               h     1     (cos  x )
            x 0                            3
           – 2
                                       2 cos x
               1 1 1
                     –
           = – 2  2 3 
                                1
                         = – 12
                                                x
                  x 2  5x  3 
Q.251 If f(x) =  2            
                                                     then xlim
                                                             
                                                                f(x) is -
                  x    x  2  
           (A) e–4           (B) e3            (C) e2                   (D) e4
                                                     x
                  x 2  5x  3 
                     h
                               
Sol. [D]  x   x 2  x  2   1 form
           Using f9 = e9(f – 1)
                   h       x 2  5x  3           h  (4 x  1) x
               e x                   – 1    e x 
                    x.  x 2  x  2     =        x2  x  2
                     41
                     1     = e4
                 e
           lim             ax –1
Q.252      x 0
                                              is -
                         ax –           a
                            . x . e          . 5x1 / 3
                    x              5x1 / 3 
                                             
           = 3/5
Corporate Office: CP Tower, Road No.1, IPIA, Kota (Raj.), Ph: 0744-2434159                                     LIMIT   74
                        a   b
Q.254 If           lim x sin x ,              a,      b,    c               R   –   {0},   exists     and
                   x 0     c
                            sin( x )
         non-zero, then-
         (A) a – b + c = 0           (B) a – b – c = 0
         (C) a + b – c = 0           (D) None of these
                                 b
                     a  sin x
                             b
              x          .x
                  x 
Sol. [C] xlim
           0   sin x c 
                          c
                xc  . x
                        
          lim xa + b – c
          x 0
         For non zero value a + b – c = 0
         log y = xlim
                   0
                      sin x log |x| 0 × 
                       log | x | 
         log y = xlim
                    0 cosec x 
Corporate Office: CP Tower, Road No.1, IPIA, Kota (Raj.), Ph: 0744-2434159                           LIMIT   75
Q.257 If            x           >          0         and       g          is   a     bounded        function,           then
                       nx
          lim f ( x )e  g ( x ) is-
         n 
                     e nx  1
         (A) 0                   (B) f(x)
         (C) g(x)                (D) None of these
Sol. [B] g is a bounded function
          value of g is finite.
                                g( x )          g( x )
                 e nx f ( x )  nx      f (x) 
           lim                                       = f(x)
          n  
                                 e  =
                                                  1
                   e nx [1  1 / e nx }       1
                                                  
Q.258     lim  1              
                                      4
                                          
                                             9
                                                   ..... 
                                                              n2 
                                                                     =
         n          3
                                    n3  1 n3  1           n 3  1 
                   n  1
         (A) 1                            (B) 2/3
         (C) 1/3                          (D) 0
              12  2 2  32  ......  n 2
Sol. [C] nlim
           
                       1 n3
          lim n ( n  1) (2n  1)
          n      6 (1  n 3 )
               3
          lim n (1  1 / n ) (2  1 / n ) = 1. 2 = 1
          n       3         3
                         6n (1 / n  1)                    6       3
Q.259 Let f(x) = x(–1)[1/x], x  0, where [x] denotes the greatest integer less than or equal to x then, xlim
                                                                                                            0 f(x) =
         (C) 1                  (D) 0
                –1
Sol. [B] Let cos x = y
          x  –1, y  cos–1 (–1) y 
                                 y             y 
          lim                   
          y        1  cos y                  y 
Corporate Office: CP Tower, Road No.1, IPIA, Kota (Raj.), Ph: 0744-2434159                                         LIMIT       76
                                  y
                                                              
          lim                    y            put y =  + h
         y
                         2 . cos      y
                                 2
                                       h
                                   h
                               sin                       1
         lim
         h             2. 
                                h
                                    2
                                           h . h =
                                                    2
                                                            2                
                                 
                                2
              a    2                                                                                 g(x). g(1/x) = g(x) + g(1/x)  g(x) = xn + 1
Q.261    lim n sin ( n!) , (0 < a < 1) =
         n 
                n 1                                                                                 g(2) = 2n + 1 5 = 2n + 1
                                                                                                      n = 2  g(n) = n2 + 1
         (A) 1                                    (B) +
         (C) 0                                    (D) None of these                                  lim (x2 +1) = 32 + 1 = 10
                                                                                                     x 3
Corporate Office: CP Tower, Road No.1, IPIA, Kota (Raj.), Ph: 0744-2434159                                                                         LIMIT    77
             a                                                                                (A) 1             (B) 2/3       (C) 1/3            (D) 0      [C]
         =     =0
             
                                                                                                                                          x 1
Q.266 If root of equation ax2 + bx + c = 0 is x =  and
                                                                                      Q.272 The value of xlim  3x  4 
                                                                                                                    
                                                                                                                                           3
                                                                                                                                                 is equal to
                                                                             lim                                             3x  2 
         root's are repeated then value of                                  x 
                                                                                              (A) e–1/3   (B) e–2/3           (C) e–1            (D) e–2    [B]
                    2
         sin(ax  bx  c)                                                             Q.273   The value of
                               2           is-
                ( x  )                                                                       lim cos  x  cos  x  cos  x  …cos  x 
                                                                                              n 
         (A) a                  (B) –a                                                                  2         4         8           2n 
         (C) 0                  (D) None of these                                             is
Sol. [A]  root's are repeated.
                                                                                                                                     sin x
          ax2 + bx + c = a(x – )2                                                           (A) 1                           (B)
                                                                                                                                       x
                        
                  sin a ( x   )                2                                                   x
          xlim
                            2  a=a                                                        (C)                             (D) None of these             [B]
                         a ( x  )                                                             sin x
                         (1  cos 2 x ) sin 5x                                        Q.274   Let f : R  R be a differentiable function
Q. 267 The value of xlim
                      0        2
                                               is-
                                                 x sin 3x                                                                 1 
                                                                                              having f (2) = 6, f (2) =      . Then
         (A) 10/3  (B) 3/10 (C) 6/5        (D) 5/6 [A]                                                                    48 
                      lim sin (cx  bx  a )
                                   2
Q. 268 The value of x  1                                                                              f (x)
                                                                                                               4t 3
                                 x  1
       (where  and  are roots of ax2 + bx + c = 0) is-
                                                                                              lim
                                                                                              x 2      
                                                                                                        6
                                                                                                               x2
                                                                                                                    dt equals
Corporate Office: CP Tower, Road No.1, IPIA, Kota (Raj.), Ph: 0744-2434159                                                                       LIMIT         78
                                          2x                                                   a                         xy
                       a  b 
         If xlim
                                                                                                                            e
                                                                                                             2
                     1   2  = e2, then the values                                                                              sin 2 t
                                                                                                e sin
Q.278                                                                                                            t
                                                                                                                                            dt
                       x x                                                 Sol.[A]
                                                                                               y                             a
         of a and b are                                                                lim
                                                                                       x 0                              x
         (A) a  R, b  R     (B) a = 1, b  R                                                          x y
                                                                                                                     2
                           e x log x                                                     x 0                      1
                                                
                                              1
         (A) e                            (B)   log 2
                                              e
                                                                                                 sin x , x  n, n  Z
         (C) e log 2                      (D) None                     [B]   Q.285     If f(x) = 
                           lim sin(cx 2  bx  a )                                                2,       otherwise
Q.280    The value of      x
                              1                                                                            x 2  1                     ,         x  0, 2
                                   x  1                                                                 
                                                                                       g(x)               = 4                          ,          x  0,             then
         (where  and  are the roots of ax2 + bx + c = 0)                                                  5                          ,          x2
         is                                                                                                
                                                                             lim g (f ( x )) is
         (A) c              (B)                                                  x0
                                   
                                                                                       (A) 1                   (B) 5                    (C) 6                 (D) 7
             1                                c  1 1
         (C)                              (D)                       [D]   Sol.[A] xlim g
                                                                                            lim f ( x ) 
                                                                                                         
                                                                               0  x 0         
                                                                                       lim g (sin x )
                   1    1        1                                               x0
              1  2 1  2 ...1  2 
                                                                                       lim sin 2 x  1  1
Q.281    lim      2  3   n 
                                          is equal                                     x 0
         n 0
                 1  1   1                                                                   x, x  0
                1  1  ...1                                                              
                 2  3   n                                              Q.286     If f(x) =  1, x  0 , then xlim f(x) is
                                                                                                                     0
         to                                                                                      x 2 , x  0
                                                                                                 
                  1              1                                                     (A) 0                   (B) 1
         (A) –            (B)             (C) 2           (D) – 2 [B]
                  2              2                                                     (C) 2                   (D) Does not exist
                                                                             Sol.[A] f(0 – h) = hlim 0h  0
                                                                                                  0
          lim                 cos 1 x                                                                      2
Q.282    x  1
                                                is given by                            f(0 + h) = lim (0  h )  0
                            x 1                                                                             h 0
                                                                                                                                 1/ x
                 1                                 1                                                  
         (A)                              (B)                                Q.287      lim tan   x                                is
                                                  2                                   x 0     4     
         (C) 1                            (D) 0                        [B]             (A) 1        (B) –1                              (C) e2                (D) e
                                xb                                                                1          
                                                                                                     tan   x  1
Q.283     lim  x  a               is equal to                           Sol.[C] lim e x            4     
         x 
                  xb                                                                x 0
         (A) 1            (B) e  b–a
                                          (C) e  a–b
                                                          (D) e   b
                                                                       [C]                                
                                                                                                sec 2   x   0
                                                                                                      4                                     2
                                                                                                                                                  /4
                 a          a                                                                                                  = esec                    e2
               1                                                                     lim    e         1
                                          
                     2            2
Q.284     lim  e sin t dt  e sin t dt  is equal to
          x 0 x                                                                     x 0
                 y         xy                                             Q.288     If x is real number in [0, 1], then the value of
         (where a is a constant)                                                        lim lim [1 + cos2m (n! x)] is given by
         (A) esin2y              (B) sin 2y esin2y                                     m  n 
         (C) 0                   (D) None of these                                     (A) 2 or 1 according as x is rational or irrational
                                                                                       (B) 1 or 2 according as x is rational or irrational
                                                                                       (C) 1 for all x
Corporate Office: CP Tower, Road No.1, IPIA, Kota (Raj.), Ph: 0744-2434159                                                                                    LIMIT     79
         (D) 2 or 1 for all x.                                                        x
                                                                             (C)                                              (D) None of
Sol.[A] mlim lim 1 + (cos2 n! x)m
           n 
                                                                                    sin x
                                                                             these
         Case I
         when x is irrational = 1 + (cos2 )                                                                           sin x
                                                                                    x     x         x
                             = 1 + (0 to 1) = 1 + 0 = 1            Sol.[B] cos       cos 2 ....cos n = n     x 
         put x = 0 when x is rational 1 + cos 0 = 2                                 2    2         2   2 sin  n 
                                                                                                                             2 
               sin(e x 1  1)                                               by trigonometry
Q.289    lim                   is equal to
          x 1     log x                                                                    sin x
         (A) 1                  (B) 0
                                                                                               x  x
         (C) e                  (D) None of these
                                                                               lim  2 n . sin  n  . n sin x
             sin(e x 1  1)
                                                                             = n            2  2 =
Sol.[A] lim                                                                                               x
        x 1     log x                                                                       x 
                                                                                             n
                cos(e x 1  1).e x 1                                                      2 
         = lim
           x 1           1            =1                                                                sin x n
                                                                    Q.293    For m, n  I+, Lt                            is equal to -
                          x                                                                      x 0   (sin x ) m
                      1                                                   (A) 1, if n = m                 (B) – 1, if n > m
                x sin  , x  0
Q.290 If f(x) =       x                                                          n
                                                                             (C)                             (D) None of these            [A]
                
                    0 ,    x0                                                     m
                                                                    Q.294    Let f ''(x) be continuous at x = 0 and f '' (0) = 4.
              lim f ( x )
         Then x 0                                                           Then                    value                     of
         (A) is equal to 1        (B) is equal to – 1
                                                                                      2f ( x )  3f (2 x )  f ( 4 x )
         (C) is equal to 0        (D) does not exist.                         lim                                               is -
                               1
                                                                             x 0                      x2
Sol.[C] f(0 + h) = hlim
                     0
                        h sin     = 0 sin  = 0                              (A) 12                          (B) 10
                               h
                                                                             (C) 6                           (D) 4                        [A]
                                 1 
        f(0 – h) = hlim
                     0
                        – h sin       = 0 sin (–) = 0
                                h                                Q.295    The value of lim           1     2  x  3 is -
Q.291 Suppose f : R  R is a differentiable function                                            x 2           x2
        and f(1) = 4. Then the value of                                               1                               1
                                                                             (A)                             (B)
                         2t
                     f (x)                                                          8 3                            4 3
         lim
         x 1       4( x  1)
                               dt is
                                                                             (C) 0                           (D) None of these            [A]
         (A) 8 f '(1)           (B) 4 f '(1)                                            x  sin x
         (C) 2f '(1)            (D) f '(1)                          Q.296     lim                       is equal to -
                 f (x)
                                                                             x 0       x  sin 2 x
Sol.[A] lim
        x 1
                      2t dt
                         4
                                                                             (A) 1
                                                                             (C) 
                                                                                                             (B) 0
                                                                                                             (D) None of these            [B]
                 x 1                                                                 20
         = lim
                 2  f ( x ) f ( x )  0
                                          = 2f(1) f (1) = 8f       Q.297            x
                                                                                     k 1
                                                                                            k
                                                                                                 20
                                                                                                         =
            x 1          1 0                                               lim
                                                                             x 1       x 1
         (1)
Q.292    The value of                                                        (A) 20                   (B) 210
                                                                             (C) does not exist       (D) None of these                   [B]
          lim cos  x  cos  x  cos   x
                                             …          cos       Q.298    If x1, x2 are real and distinct roots of
          n 
                   2         4          8
                                                                             ax2 + bx + c = 0, then
          x 
          n  is                                                             lim (1  sin (ax 2  bx  c))1 / x  x1 is equal
         2                                                                 x  x1
                                        sin x                                to -
         (A) 1                    (B)
                                          x
Corporate Office: CP Tower, Road No.1, IPIA, Kota (Raj.), Ph: 0744-2434159                                                    LIMIT        80
         (A) e x1  x 2                           (B)
         e x 2  x1
         (C) e a ( x 1  x 2 )     (D) e a ( x 2  x1 )   [C]
              log e x n  [ x ]
Q.299     lim                   , n  N, ([x] denotes
         x        [x]
         greatest integer less than or equal to x) is equal
         to -
         (A) – 1                  (B) 0
         (C) 1                    (D) does not exist [A]
                a tan x  a sin x
Q.300     lim                     (a > 0) is equal to -
          x  0 tan x  sin x
Corporate Office: CP Tower, Road No.1, IPIA, Kota (Raj.), Ph: 0744-2434159 LIMIT 81