0% found this document useful (0 votes)
52 views81 pages

Limit

The document contains a series of mathematics problems and their solutions, primarily focusing on limits and calculus concepts. Each question is presented with multiple-choice answers, and the solutions provide detailed explanations and reasoning for arriving at the correct answers. The problems cover various mathematical principles, including L'Hospital's Rule, polynomial limits, and properties of functions.

Uploaded by

Subrata Karmakar
Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content, claim it here.
Available Formats
Download as DOC, PDF, TXT or read online on Scribd
0% found this document useful (0 votes)
52 views81 pages

Limit

The document contains a series of mathematics problems and their solutions, primarily focusing on limits and calculus concepts. Each question is presented with multiple-choice answers, and the solutions provide detailed explanations and reasoning for arriving at the correct answers. The problems cover various mathematical principles, including L'Hospital's Rule, polynomial limits, and properties of functions.

Uploaded by

Subrata Karmakar
Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content, claim it here.
Available Formats
Download as DOC, PDF, TXT or read online on Scribd
You are on page 1/ 81

MATHEMATICS

Q.1 lim  sin x  a tan x 


x a 2 2a 

a a  
(A) (B) – (C) (D) –
  a a
[B]

Q.2 Lim { 3 ( n  1) 2  3 ( n  1) 2 }
n 
(A) 0 (B) 1 (C) 2 (D) 3 [A]

Lim Lim
Q.3 m  n  

1  n 1n  2 n  n 2 n  3n  n 3n  4 n  ...  n (m  1) n  m n 
 
 m2 
 

is equal to
1 1 1 1
(A) (B) (C) (D) [A]
2 3 4 5
Lim
Q.4 x 0 
(– n ({x} + | [x] | )){x} is-
(Here {x} & [x] are respectively fractional part & greatest integers of x)
(A) 0 (B) e1
(C) n 2 (D) n ½ [D]
1 3 1 1
[13 x ]  [ 2 x ]  [33 x ]  ........  [ n 3 x ]
Q.6 lim 2 3 n is –
n  2 2 2
1  2  .......  n
(Where [.] denotes the greatest integer function)
2x x
(A) x (B) (C) 0 (D) [A]
3 6

Q.7 Suppose you have two linear functions f and g shown below.
f(x)
(0, 6)
(x, f(x)) g(x)
(0, 3)
(x, g(x))
(a, 0) x O
f (x)
Then Lim is -
x a g(x )
(A) does not exist
(B) not enough information
(C) 2
(D) 3 [C]
Sol.[C] This problem requires a geometrical argument :
f (x ) xa g( x ) f (x) 6
Method.1 By similar triangles, = = , and therefore = =2
6 0a 3 g ( x ) 3
Corporate Office: CP Tower, Road No.1, IPIA, Kota (Raj.), Ph: 0744-2434159 LIMIT 1
f (x )
Method.2 lim
f (x)
= lim
 a = lim slope of f = 6 = 2
x a g ( x ) x a g( x ) x a slope of g 3
a
This problem is a nice preview of L'Hospital's Rule

1/ x
 f (1  x ) 
Q.8 Let f: R  R be such that f(1) = 3 and f '(1) = 6, Then, lim   is equal to
x 0  f (1) 

(A) 1 (B) e1/2


2
(C) e (D) e3 [C]
1/ x
 f (1  x ) 
Sol. lim  
x 0  f (1) 

1/ x
 f (1  x )  f (1) 
= lim 1  
x 0  f (1) 
f ( x 1) f (1)
lim
= x 0 x f (1)
e
1 f ( x 1) f (1)
lim
= f (1) x 0 (x)
e
f '(1)  f (1  x )  f (1) 
= f (1) xlim  f ' (1) 
e  0 x 
= e6/3 = e2

4 3 2
Q.9 If xlim{( x  ax  3x  bx  2

 x 4  2 x 3  cx 2  3x  d ) }

is finite, then the value of a is


(A) 3 (B) 5
(C) 2 (D) any real number
[C]

Sol. lim ( x 4  ax 3  3x 2  bx  2 )
x 

 x 4  2 x 3  cx 2  3x  d )

 4 3 2
 ( x  ax  3x  bx  2)
= lim 
x   4 3 2
 x  ax  3x  bx  2

 ( x 4  2 x 3  cx 2  3x  d ) 


 x  2 x  cx  3x  d 
4 3 2

 3
 (a  2) x  (3  c) x
2
lim 
x   4 3 2
 x  ax  3x  bx  2

Corporate Office: CP Tower, Road No.1, IPIA, Kota (Raj.), Ph: 0744-2434159 LIMIT 2

 ( b  3) x  ( 2  d )


 x  2 x  cx  3x  d 
4 3 2

Clearly, the degree of the polynomial in the
numerator is 3 and that of denominator is 2.
Therefore, for the limit to be finite, we must have,
a–2=0a=2

1 5 
Q.10 If f(x) = f ( x  1)   and f(x) > 0 for all x  R, then xlim

f(x) is
3 f ( x  2) 

2 5
(A) (B)
5 2
(C)  (D) does not exist [B]

Sol. Let xlim



f(x) = I then,

lim f ( x  1) lim f ( x  2)  I
x  x 

1 5 
Since, f ( x )  f ( x  1)  
3 f ( x  2) 
 
1 5 
 xlim

f (x)   lim f ( x  1)  
3  x  lim f ( x  2) 
 x  
1 5
 I =  I    3I2 = I2 + 5
3 I
5
 2I2 = 5  I= 
2

100 x   99 sin x  
Q.11 The value of lim   
x 0  x   x  
 sin
where [ ] represents the greatest function is-
(A) 199 (B) 198 (C) 0 (D) 197 [B]
Sol. We know that

x > sin x for all x > 0

and x < sin x for all x < 0

x sin x
 > 1 and < 1 for x  0
sin x x

100 x 99 sin x
 > 100 and < 99
sin x x

 100x   99 sin x  
 lim     
x 0  sin x 
  x 

= xlim
0
(100 +98) = 198

Corporate Office: CP Tower, Road No.1, IPIA, Kota (Raj.), Ph: 0744-2434159 LIMIT 3

 12 3 52 7 

Q.12 The lim  3
 2
 3
 2
 .... equals -
x  1  x 1  x 1  x 1  x 
 
5 10 5 21
(A)  (B)  (C) (D) [B]
6 3 6 3

 1
2
3 52 7 

Sol. lim  3
 2
 3
 2
 ....
x  1  x 1  x 1  x 1  x 
 

1  5  9  .... 3  7  11  ..... 
2 2 2

= lim  3
 2 
x   1 x 1 x 
 
 x x 


 (4k  3)
k 1
2
 (4k  1) 
k 1
= xlim   

 1 x3 1 x2 
 
 
 x x x x x 
16
 k 1

k 2  24
k 1
k  9
k 1
4  k  1 
k 1 k 1
lim
= x    
 1 x3 1 x2 
 
 

 16 x ( x  1)( 2 x  1)
  12x ( x  1)  9 x
 6
= lim 
x 
 1 x3

2 x ( x  1)  x 
 
1 x2 

32 10
= – +2=  .
6 3

Q.13 Let the sequence < bn> of real numbers satisfy the recurrence relation :

1  125 
b n 1  2b n  2  , bn 0, then nlim b n is equal to -
3  b n  

2
(A) 0 (B)  (C) 5 (D) [C]
3

Sol. Let nlim b =b


 n

 
Then, bn +1 =
1  2b n  125 
3  2 
bn 

 
lim 1 125 
 2 lim b 
n  bn + 1 = 3  n  n 2 
 lim b n 
 n  
1  125 
 b=  2b  2 
3  b 

Corporate Office: CP Tower, Road No.1, IPIA, Kota (Raj.), Ph: 0744-2434159 LIMIT 4
b 125
 = 2  b3 = 125  b = 5
3 b

sin x  (sin x ) sin x


Q.14 The value of lim is-
x   / 2 1  sin x  n sin x

(A) 0 (B) 1
(C) 2 (D) None of these [C]
Sol. Let sinx = t

if x  , t1
2

t  (t) t
so lim
t 1 1  t  nt

using L Hospitals

1  t t (1  log t )
lim
= t 1 1
1
t
1
 t t (1  log t ) 2  t t  
= lim  t  = +2
t 1 1
 2
t

xe x  n (1  x )
Q.15 lim is equal to-
x 0 x2
3 2
(A) (B) (C) 0 (D) 1 [A]
2 3
Sol. Use expansion.
e1/ x  e 1/ x
Q.16 Let f(x) = g(x) and x 0 where g is a continuous function. Then xlim
0
f(x) exists if
e1/ x  e 1/ x
(A) g(x) is any polynomial
(B) g(x) = x + 4
(C) g(x) = x2
(D) g(x) = 2 + 3x + 4x2
e1 / x  e 1 / x 1  e 2 / x
Sol.[C] lim = lim = 1 and
x 0 e
1/ x
 e 1 / x x 0  1  e
2 / x

e1 / x  e 1 / x e2 / x  1
lim 1 / x = lim = –1. Hence
x 0 e  e 1 / x x  0  e 2 / x  1
lim f ( x ) exists if g(x) = x or g(x) = x2.
x 0

If g(x) = a (a  0), then xlim


0
f ( x ) = a and lim f ( x ) = –a. Thus lim f ( x ) doesn't exist in this case.
x 0  x 0

Corporate Office: CP Tower, Road No.1, IPIA, Kota (Raj.), Ph: 0744-2434159 LIMIT 5
  
Q.17 If fr() =  cos 2
 i sin ×
 r r2 

 2 2    
 cos 2  i sin 2  ….  cos  i sin 
 r r   r r

then nlim

f n () equals

(A) –1 (B) 1 (C) – i (D) i


Sol.[D] Using De Moivre's theorem
= e i / r e 2i / r …. e i / r
2 2
fr ()
2
= e ( i / r )(1 2 ...... r )

= e ( i / 2)(11 / r )
2
= e ( i / r )[ r ( r 1) / 2 ]

 nlim f n ( ) = lim e i / 2(11/ n )


 n 

 
= ei/2 = cos   + i sin   = i
2 2

Q.18 Let

f(x)= nlim
 {sinx + 2sin x + 3sin x +...+ n sin x}. If x  n +
2 3 n
, n  I, then
2
1
lim 2 is equal to :
x  / 2 [(1 – sin x ) f ( x )] x –1
sin

(A) 1 (B) 0
(C) e (D) e2
sin x
Sol.[C] f(x) =
(1 – sin x ) 2
1
lim
Now x  2 sin x –1
 / 2 [(1 – sin x ) f ( x )]

1
= lim
x  / 2 (sin x ) sin x –1
sin x –1
= lim =e
e x / 2 sin x –1

(2sin x  1)[n (1  sin 2x )]


Q.19 lim is equal to
x 0 x tan 1 x
(A) n 2 (B) 2 n 2
2
(C) (n 2) (D) 0

( 2 sin x  1)[n (1  sin 2 x )]


lim
Sol.[B] x 0 tan 1 x
x2
x

Corporate Office: CP Tower, Road No.1, IPIA, Kota (Raj.), Ph: 0744-2434159 LIMIT 6
2 sin x  1 sin x n (1  sin 2 x )
= lim × ×
x  0 sin x x sin 2 x

sin 2 x
× × 2 = 2n2
2x
1

Q.20 If f(n) = Lim  x  x   x  x


x0  1  sin  1  sin  ..... 1  sin n  
2  2
 2   2 

then nLim
  f(n) =

(A) 1 (B) e (C) 0 (D) 


1  x  x   x  
  1 sin   1 sin 2 .... 1 sin n  1
Sol.[B] f(n) = Lim e x   2  2   2  
x 0

  x x x   x x  
 1  sin  sin  ......  sin    sin sin 2 ...... .....1
2 2 n 2
  2 2   2  
=
Lim e x
x 0

  x   x 
 sin x sin  2   
 2   2   ....... sin  2 n  
 x x 
= 
x

Lim e 
x 0

1 1 1 
=   2 ..... n 
 2 2 2 
e
1/ 2
Sum of infinite G.P. = 1 =e
1
e 2

Q.21 lim | x  1 |  | x – 1 | –2 equals -


x 0
x
(A) 1 (B) –1 (C) 2 (D) 0 [D]

Q.22 lim [cot–1x] is; where [ ] represents greatest integer function -


x – 


(A) 0 (B)
2
(C) 3 (D) None of these [C]

Q.23 If f(x) = x2 + bx ; 0  x  1
= 3 – ax2; 1 < x  2
such that lim
x 1
f(x) = 4, then ordered pair (a, b) is given as-
(A) (1, 5) (B) (1, 7)
(C) (–1, 3) (D) None of these [C]

1 x 2 1 1
Q.24 lim
x 0 x 5 0 e t dt –
x 4

3x 2
is equal to

Corporate Office: CP Tower, Road No.1, IPIA, Kota (Raj.), Ph: 0744-2434159 LIMIT 7
(A) 1 (B) 3/5 (C) 1/2 (D) 3/10
Sol.[D] Applying L'Hospital Rule
x
t2
3 0 e dt  3x  x 3  0 
 
x5
0
2
lim 3e  x  3  3x 2
x 0
5x 4
2
=
3 lim e
x
 1  x 2  0 
x 0
5 x4 0
2
3 lim e  x (2 x )  0  2 x
=
5 x 0 4x 3
2
3 2 lim  e  x  1  0 
= ·  
5 4 x 0 x2 0
2
3 2 lim 1  e  x 3
=  x  0 2
=
5 4 (x ) 10

Q.25 A particle begins at the origin and moves 2 units to right and reaches P 1 then 1 unit up and reaches P2, 1/2 unit right
1
and reaches P3, unit down to reach P4 & 1/8 unit right to reach
4
P5 and so on. If Pn = (xn, yn) then nlim P is
 n
(A) (4, 6) (B) (8/3, 4/5)
(C) (4/5, 2) (D) (4, 3)
  1 n 
21    
 4 
Sol.[B] nlim
 n
x =     = 8/3
1
1
4
   1  
n

1 1  
lim yn =   4  
= 4/5
n 
 1 
1  
 4 
(8/3, 4/5)
2
Q.26 lim f ( x ) , where 2 x  3 < f(x) < 2 x  5x , is
x 
x x2
(A) 1 (B) 2 (C) –1 (D) –2 [B]

 4 2 2 
Q.27 If lim  x  x  1  ax  b   0 then
x   
(A) a = 1, b = – 2 (B) a = 1, b = 1
1
(C) a = 1, b =  (D) None of these [C]
2

Corporate Office: CP Tower, Road No.1, IPIA, Kota (Raj.), Ph: 0744-2434159 LIMIT 8
Lim
Q.28  [1 + (cos x)cos x]2 is equal to
x
2
(A) Does not exist (B) 1
(C) e (D) 4
Lim
Sol.[D] x    [1 + (cos x)cosx]2
2

Lim
y=  (cos x)cos x
x
2
Lim
log(y) =  (cos x) log cos x
x
2
Lim log(cos x )
log (y) =  (/) L'hospital
x sec( x )
2
Lim 1 sin x
log(y) =  ×–
x cos x sec x tan x
2
Lim
=  – cos x = 0
x
2
y = e0 = 1
Now limit is (1 + 1)2 = 22 = 4

2 2  (cos( x )  sin( x ))3 Lim


Q.29 Let f(x) = then x   f(x) is equal to
1  sin( 2 x ) 4
1 3
(A) (B) 2 (C) 1 (D)
2 2

2 2  (cos x  sin x )3
Sol.[D] f(x) = (0/0)
1  sin 2 x
L'Hospital Rule
lim
 f(x)
x
4
lim 3(cos x  sin x ) 2 (  sin x  cos x )
= x  –
4  2 cos 2 x
lim  3(cos x  sin x ) 2 (cos x  sin x )
= x 
4 2(cos x  sin x ) (cos x  sin x )
lim
3
= x  × (cos x + sin x)
4 2
3 2 3
=  =
2 2 2

S3n 2n
f (r )
Q.30 If Sn denote the sum of first n terms of an A.P. and f(n) =
S2 n  S n
, then nLim
  n
is equal to
r 1
(A) 6 (B) 3 (C) 2 (D) 0
3n
Sol.[A] S3n = [2a + (3n – 1)d]
2

Corporate Office: CP Tower, Road No.1, IPIA, Kota (Raj.), Ph: 0744-2434159 LIMIT 9
2n
S2n = [2a + (2n – 1) d]
2
n
Sn = [2a + (n – 1)d]
2
n
S2n – Sn = [2a + (3n – 1)d]
2
S3n
= 3 = f(n)
S2 n  S n
2n
1  2n 
n
S = xLim

f (r ) = nLim

3  =6
r 1  n 

Q.31 If  and  are the roots of the quadratic equation ax2 + bx + c = 0, then

Lim 1  cos(cx 2  bx  a )
x 1 / 
=
2(1  x ) 2

c  1 c  1
(A)    (B)   
2    

 2    

c   1
(C)    (D) None of these
    

Sol.[A] ax2 + bx + c = 0 roots , 


So, cx2 + bx + a = c (x – 1/) (x – 1/)

Lim 1  cos(c( x  1 /  )( x  1 / ))


x 1 /  2 2 ( x  1 / ) 2

c
Lim 2 sin 2 ( x  1 / )( x  1 / )
x 1 /  2
2 2 ( x  1 /  ) 2

 2 c 
 sin  ( x  1 / )(x  1)   2
Lim 1   2  2 c
 ( x  1 / )
2   2 
x 1 / 
4
 ( x  1 /  )(x  1 / ) c  
 2  
 

Lim 1 c2 c 1 1
x 1 /   (1 /   1 / ) 2 = 2     
2 4  

Q.32 Lim log sin( x / 2) sin x is equal to -


x 0 

(A) 1 (B) 0 (C) 4 (D) 1/4


log sin x cot x
Sol.[A] Let y = lim  x  = xlim  2 x
x 0 log sin   0 cot
2 2
Corporate Office: CP Tower, Road No.1, IPIA, Kota (Raj.), Ph: 0744-2434159 LIMIT 10
tan x / 2
= lim 2
x/2 × x/2 =1
x 0 tan x x
x

Q.33 lim  1  2  ......  n  is equal to:


n 
1 n 2 1 n2 1 n2 
(A) 0 (B) –1/2
(C) 1/2 (D) None of these

 1 2 n 
Sol.[B]  2
 2
 ......  2
1 n 1 n 1 n 
1
= × (1 + 2 + ..... + n)
1 n 2
1 n (n  1) n 1
= . = =
1 n 2
2 2(1  n ) 2 [(1 / n )  1]
 1 2 n 
 nlim

 2
 2
 ......  
1 n 1 n 1 n2 
1 1
= nlim
 2 [(1 / n )  1]
=–
2

 [ x ]2  sin[ x ]
 for [ x ]  0
Q.34 If f(x) =  [x]
 0 for [ x ]  0

where [x] denotes the greatest integer less than or equal to x, then xlim
0
f(x) equals:

(A) 1 (B) 0
(C) –1 (D) None of these
Sol.[D] As x  0 – (i.e., approaches 0 from the left),
[x] = –1,

 lim f(x) = lim 1  sin (1) = –1 + sin 1


x 0  x 0 1
whereas, if x  0+ we get [x] = 0,

f(x) = 0  lim f(x) = 0


x 0 

Thus, xlim
0
f(x) does not exist.

lim 1  cos 3 x
Q.35 x 0
is equal to
x sin x cos x
(A) 2/5 (B) 3/5 (C) 3/2 (D) 3/4

1  cos 3 x
Sol.[C] xlim
0
= lim
x sin x cos x x 0

Corporate Office: CP Tower, Road No.1, IPIA, Kota (Raj.), Ph: 0744-2434159 LIMIT 11
(1  cos x ) (1  cos 2 x  cos x )
x sin x cos x

2 sin 2 ( x / 2) (1  cos 2 x  cos x )


= xlim
0 2 x sin ( x / 2) cos ( x / 2) cos ( x / 2) cos x
1 sin ( x / 2) 1  cos 2 x  cos x
= xlim
0
. .
2 x/2 cos ( x / 2) cos x
1 3 3
= . 1. =
2 1 2

1 1
Q.36 lim sin x  tan x is equal to
x 0
x3
(A) 2 (B) 1 (C) –1 (D) 1/2

sin 1 x  tan 1 x 0 
Sol.[D] xlim
0
 form 
x 3 0 
1 1

= xlim
0 1 x 2 1  x 2 (L Hospital rule)
3x 2
1 lim 1 1  x 2  1  x 2 
=  
3 x 0 x 2 (1  x 2 ) 1  x 2 
 
1 lim 1  (1  x 2 ) 2  (1  x 2 ) 1 
=  . 
3 x 0 x 2  (1  x 2 ) 1  x 2 (1  x )  1  x 2
2 

1 lim x 2 (3  x 2 ) 1
= .
3 x 0 x 2 (1  x 2 ) 1  x 2 (1  x 2 )  1  x 2
1 3 1
=  =
3 2 2

Q.37 Given f(2) = 6 and f(1) = 4


2
lim f (2h  2  h )  f ( 2) is equal to
h 0 2
f (h  h  1)  f (1)
(A) 3/2 (B) 3 (C) 5/2 (D) –3

f (2h  2  h 2 )  f ( 2)
Sol.[B] hlim
0 f (h  h 2  1)  f (1)

f ( 2h  2  h 2 )  f (2) h ( 2  h )
= hlim ×
0
2h  2  h 2  2 h (1  h )

(h  h 2  1)  1
×
f (h  h 2  1)  f (1)

2h 1 1
= f(2) × hlim
0 × =6×2× =3
1 h f ' (1) 4

Corporate Office: CP Tower, Road No.1, IPIA, Kota (Raj.), Ph: 0744-2434159 LIMIT 12
Note that L Hospital rule is not applicable in this case.

|x|
Q.38 The value of lim is -
x0 x

(A) 1 (B) 2
(C) 3 (D) Does not exist [D]

 2
x  1 , x  1
Q.39 If f(x) =  then the value of lim
x 1
f(x) is -
3x  1 , x  1

(A) 1 (B) 2
(C) 3 (D) Does not exist [B]

Q.40 Lim (1 – x + [ x – 1] + [1 – x]) where [x] denotes greatest integer but not greater than x
x 1

(A) 1 (B) –1
(C) 0 (D) Does not exist [B]

1/ x
Lim e 1
Q.41 x 0
=
1/ x
e 1
(A) –1 (B) 1
(C) 0 (D) Does not exist [D]

1
Q.42 If f ( x )  3  1 /(1 x )
then-
1 7
(A) Lim f(x) = 3
x 1

(B) Lim f(x) = 4


x 1

(C) Lim
x 1
f(x) = 4

(D) Lim
x 1
f(x) does not exist [D]

Q.43 lim[cos 1 (cos x )] , where [] denotes greatest integer function


x 1

(A) 0 (B) 1
(C) Does not exist (D) None of these [C]

  cos –1 x 0
Q.44 lim  ,   =
x  1 x 1 0
1
(A)  (B)
2
(C) 2 (D)  [C]

Corporate Office: CP Tower, Road No.1, IPIA, Kota (Raj.), Ph: 0744-2434159 LIMIT 13
cos θ  sinθ
lim
Q.45 π π =
x 
4 θ
4
(A) 2 (B) 1
(C) 2 (D) Does not exist [A]

x3  x 2 1
Q.46 lim =
x  x3  x2 1
(A) 0 (B) 1
(C) 2 (D) Does not exist [B]

x4  x2 1
Q.47 lim =
x  x5  x 2 1
(A) 0 (B) 1
(C) 2 (D) Does not exist [A]

3x 5  x 2  13
Q.48 lim =
x  x 4  7 x 2  17
(A) 0 (B) 2
(C) infinite (D) None [C]

x 3  2x  1
Q.49 lim =
x  1 x 5  2x  1
(A) 2/3 (B) 1/3 (C) 4/3 (D) 5/3 [B]

2 sin 2 x  sin x  1
Q.50 lim =
x
 2 sin 2 x  3 sin x  1
6

(A) 0 (B) 3 (C) –3 (D) 1 [C]

sin 3 x  x 3
Q.51 lim =
x  0 (sin x  x )

(A) 0 (B) 1 (C) –1 (D) 2 [A]

x 3  7x 2  15x  9
Q.52 lim =
x 4  5x 3  27x  27
x 3

2 2 1
(A) (B) (C) (D) 1 [B]
3 9 9

m
x 1
Q.53 lim , (m  n) ; m, n  I
x 0 n x 1
(A) mn (B) m/n
(C) n/m (D) None [C]

Corporate Office: CP Tower, Road No.1, IPIA, Kota (Raj.), Ph: 0744-2434159 LIMIT 14
Q.54 lim  x 2  1  x 2  1  =
x  0 
(A) 0 (B) 1
(C) 2 (D) None [A]

(1  x 2 )  (1  x )
Q.55 lim =
x 0 3
(1  x )  (1  x )
(A) 0 (B) 1 (C) 2 (D) 4 [B]

x  2a  x 2a
Q.56 lim , a>0=
x  2a  2 2
x  4a
(A) 2a (B) 2 a
(C) 1 / 2 a (D) a [C]

2 x  sin 1 x
Q.57 lim =
x 0 2 x  tan 1 x
1
(A) 3 (B) (C) 0 (D) 1 [B]
3

1 1
Q.58 lim  2 log (1 + x) =
x 0 x x
1
(A) 1 (B) (C) 0 (D) 2 [B]
2

sin x
Lim e  1  sin x
Q.59 x 0
=
x2
1
(A) 1 (B) (C) e1/2 (D) e [B]
2

log e {1  tan( x  a )}
Q.60 lim =
x a tan( x  a )
(A) 0 (B) 1 (C) 2 (D) 3 [B]

cos(x / 2)
Q.61 lim =
x 1 1 x
(A) 0 (B)  (C) /2 (D) 2 [C]

(cos ) x  (sin ) x  1
Q.62 lim , x  (0, /2)
x 2 x2
(A) sin2 n (sin )
(B) cos2  n (cos )
(C) cos2  n (cos ) – sin2 n (sin )
(D) cos2  n (cos ) + sin2 n (sin ) [D]

Q.63 lim (1  k / x ) mx =
x 
(A) ek (B) e
(C) emk (D) None [C]

Corporate Office: CP Tower, Road No.1, IPIA, Kota (Raj.), Ph: 0744-2434159 LIMIT 15
x
 x 
Q.64 lim   =
x   1  x 

1
(A) e (B) (C) 0 (D) 1 [B]
e

Q.65 lim (1  x )1/(13 x ) =


x 0
1
(A) e13 (B)
e 13
(C) e (D) 1 [B]

log e (a  x )  log e a
Q.66 lim =
x 0 x
(A) a (B) a2
(C) a–1 (D) Does not exist [C]

log e (1  7 sin x )
Q.67 lim =
x 0 sin x
(A) 3 (B) 7
(C) 0 (D) Does not exist [B]

tan x  sin x
Q.68 lim =
x 0 x3
1 1
(A) (B)
2 4
(C) e (D) Does not exist [A]

tan x
Lim e  ex
Q.69 x 0
=
tan x  x
(A) e (B) 1
(C) 0 (D) Does not exist [B]

o
Q.70 Lim sin x is equal to
x 0
x
(A) 0 (B) 

(C) 1 (D) [D]
180

1 x

Q.71  1  x  1 x 2 =
lim 
x 1 2  x 

(A) (2)1/3 (B) (2/3)1/2


(C) (2/3)1/4 (D) Does not exist [C]

Q.72 lim x1 / x =
x 
(A) 0 (B) 1
(C) 2 (D) (2)1/2 [B]

Corporate Office: CP Tower, Road No.1, IPIA, Kota (Raj.), Ph: 0744-2434159 LIMIT 16
1/ x3
Q.73  tan x  =
lim  
x 0 x 
(A) 0 (B) 1
(C) e (D) Does not exist [D]

x
Q.74 Lim tan
=
x 1 (2  x ) 2

(A) e–2/ B) e1/


(C) e2/ D) e–1/ [C]

Q.75 Lim sin x  log(1  x ) =


x 0
x2
(A) 0 (B) 1/2
(C) –1/2 (D) does not exist [C]

Q.76 Lim (1  cos 2 x ) sin 5x =


x 0
x 2 sin 3x
(A) 10/3 (B) 3/10 (C) 6/5 (D) 5/6 [C]
x2
xe
Q.77 Lim x =

2
x 0 e t dt
0
(A) 0 (B) 1
(C) –1 (D) does not exist [B]
Q.78 Let f(a) = g(a) = k and their nth derivatives exist and are not equal for some n.
Further if
lim f (a )g ( x )  f (a )  g (a )f ( x )  g (a )  4
x a g( x )  f ( x )
then k is equal to
(A) 0 (B) 4 (C) 2 (D) 1 [B]

x2  x  1
Q.79 lim  (where [x] is greatest integer function  x)
x  e[ x ]
(A) 0 (B) 1
(C) 2 (D) Does not exist [A]

Q.80 lim [ x ]  [ 2 x ]  [3x ]  .....  [ nx ] =


n  1  2  3  ......  n

(where [·] denotes the greatest integer function)


x x
(A) 0 (B) (C) (D) x [D]
2 6

1 1 1
Q.81 lim [ x ]  2 [ 2 x ]  3 [3x ]  ...  n [nx ] =
n 
12  2 2  32  ...  n 2

(where [·] denotes the greatest integer function)


Corporate Office: CP Tower, Road No.1, IPIA, Kota (Raj.), Ph: 0744-2434159 LIMIT 17
1 1
(A) 0 (B) (C) (D) 1 [A]
2 6

x  x 2  x 3  ........x 100  100


Q.82 lim =
x 1 x 1
(A) 502 (B) 50 × 101
(C) 50 × 100 (D) 100 × 101 [A]

lim
Q.83  [Max (sinx, cosx)]
x
4

1
(A) (B) 0
2
(C) – 1 (D) 1 / 2 [D]

Q.84 Lim (cosec x)1/log x =


x 0 

(A) e (B) e–1


(C) e2 (D) 1 [B]

Q.85 Which of the following statement is/are


correct -
Lim
(A) x    [sgn sin x] = 1
Lim
(B) x    [sgn sin x]  –1
(C) Lim
x   [sgn sin x] = 1
Lim
(D) x [sgn sin x] does not exist
(Where [.] represent greatest integer function) [A]

Q.86 Let rth term of a series given by


n
r
tr 
1  3r 2  r 4
. Then Lim
n 
t
r 1
r is

(A) 3/2 (B) 1/2


(C) – 1/2 (D) – 3/2 [C]

Q.87 The sum to infinity of the series :


3 5 7
3
+ 3 3
+ + ...... is -
1 1 2 1  2 3  33
3

(A) 3 (B) 4 (C) 5 (D) 6 [B]

Q.88 Let
     2 2    
fk () =  cos 2
 i sin   cos 2  i sin 2  .... ….  cos  i sin  then Lim f () =
n  n
 k k2   k k   k k

Corporate Office: CP Tower, Road No.1, IPIA, Kota (Raj.), Ph: 0744-2434159 LIMIT 18
 
(A) cos + i sin (B) cos + i sin
2 2
 
(C) i cos + sin (D) i cos + sin [A]
2 2

sin [ x  ]
Q.89 Let f(x) = where [x] stands for the greatest integer function. Then xLim
n
f(x) = ?
1  [ x ]2
(Here n  I) = ?
(A) Does not exist (B) Equals to 0
(C) Equals to 1 (D) Equals to –1 [B]

 2 
Q.90 If nlim  an  1  n  = b, a finite number then the ordered pair (a, b) is -
   1 n 

(A) (1, 1) (B) (–1, 1)
(C) (1, –1) (D) None of these [A]

3 5 7
Q.91 Let Sn= + + + ... upto n terms, then lim Sn is -
3 3 3 n 
1 1 2 1  2 3  33
3
(A) 2 (B) 3
(C) 4 (D) none of these [B]

100

Q.92  (n  r) 10
=
r 1
Lim
n  n10  10 10

(A) 100 (B) 200


(C) 300 (D) None of these [A]

k
Q.93 Lim n cos n ! 0 < k < 1
n
n 1
(A) 0 (B) 1!
(C) 2! (D) None of these [A]

Sn 1  Sn
Q.94 If Sn = a1 + a2 + ........ an and Lim an = a, then Lim n is equal to-
n  n 
k
k 1
(A) 0 (B) a (C) 2 a (D) 2a [A]

 1
Q.95 The sum  is equal to -
n 1 n ( n  1)( n  2)
1 1 1
(A) 1 (B) (C) (D) [C]
2 4 8

Q.96 The continued product of

Corporate Office: CP Tower, Road No.1, IPIA, Kota (Raj.), Ph: 0744-2434159 LIMIT 19
 1  1  1   1 
 1   1    1   ........... 1  2  is Pn ;
 4  9  16   n 
then nLim P is-
 n
(where n N)
1 n 1
(A) – (B)
2 n
1
(C) (D) None of these. [C]
2

Q.97 Inscribed in a circle of radius R is a square, a circle is inscribed in the square, a new square in the circle, and so on
for n times. Find the limit of the sum of areas of all the circles and the limit of the sum of areas of all the squares as
n 
(A) 2R2, R2 (B) R2, 4R2
2
(C) 2R , 4R 2 (D) 4R2, 2R2 [C]

lim x sin( x  [ x ])
Q.98 x 1 , where [·] denotes the greatest integer function, is equal to -
x 1
(A) 1 (B) –1
(C)  (D) Does not exist [D]

Q.99 The value of x Lim 1  sin 2 x =


 / 4
  4x
1 1
(A) – (B)
4 4
1
(C) (D) None of these [D]
2

Q.100 Evaluate :
Lim [ x ]  [ x 2 ]  [ x 3 ]  ......  [ x 2 n 1 ]  n  1
x 0 
1  [ x ] | x | 2 x

(A) 1 (B) 0
(C) 2 (D) None of these [B]

Q.101 Lim cos x  1  cos x  =


x 
(A) 0 (B) 1
(C) 2 (C) None of these. [A]

 1   1   
Q.102 Lim 1  1  1   1 
1
 ...... … 1  n  is equal to-
n   2    
5  5   54   52 
5 4 1
(A) 0 (B) (C) (D) [B]
4 5 5

3
Lim x2 1  x2 1
Q.103 x  4 5
x4 1  x4 1
(A) 0 (B) 1
(C) 2 (D) None of these [B]
Corporate Office: CP Tower, Road No.1, IPIA, Kota (Raj.), Ph: 0744-2434159 LIMIT 20
Q.104 If the rth term, tr, of a series is given by
n
r
n   r
tr = . Then lim t is –
r4  r2 1 r 1
(A) 1 (B) 1/2
(C) 1/3 (D) None of these [B]

Q.105 lim
x  x2  x 1 – x2 1 =
2
(A) (B) 1
3
1
(C) (D) None [C]
2

Q.106 The value of


1/ x
lim  e xn ( 2 –1) – (2 x – 1) x sin x 
x

=
x 0  e xnx 
 
1
(A) e (B) ln 2
e
(C) e ln 2 (D) None of these. [B]

Q.107 Let f(x) = nLim



{sinx + 2sin2x + 3sin3x +...
….+ nsinn x} If sinx  n+ /2, n  :

 
1
Evaluate : Lim 1  sin x  2 f ( x ) sin x 1 =
x  / 2
(A) 1 (B) 0
(C) e (D) None of these [C]

Q.108 Lim cos(sin x )  cos x =


x 0
x4
1 1
(A) 1 (B) 6 (C) – (D) [D]
6 6

Q.109 Let a = min{x2 + 2x + 3, x  R} and


n
1  cos 
b = lim
0
 2
. Then  a r . b n r =
r 0
(A) 2n+1 + 1 (B) 2n+1 – 1
4 n 1  1 4 n 1  1
(C) (D) [C]
3 .2 n 3.2 n

Lim  ax 
Q.110 – a2  x2 cot   is-

x a
2 ax 
a 2a a 4a
(A) (B) (C) – (D) [D]
   

Corporate Office: CP Tower, Road No.1, IPIA, Kota (Raj.), Ph: 0744-2434159 LIMIT 21
 1n 
Q.111 lim n  n  e.1  1   =
n   n 
  
3
(A) 1 (B)
2
2
(C) (D) None of these [B]
3

 1  1 
Q.112 The value of Lim 1 
x 0 
 
x   tan x  4  2 
 2  
is-
(A) loga16 (B) Does not exist
(C) 3 ln 2 (D) 4 ln 2 [D]

Q.113 lim n x  [ x ] = ([.] G. I. F. )


x  [x]
(A) 0 (B) –1
(C)  (D) None of these [B]

 sin [ x ]
 , [x]  0
Q.114 If f(x) =  [ x ] [IIT 1985]

 0, [x]  0

Where [x] denotes the greatest integer less than or equal to x, then xlim
0
f(x) equals-
(A) 1 (B) 0
(C) –1 (D) None of these [D]

1
Q.115 The value of xlim
(1  cos 2 x ) [IIT-1991]
0 2
x
(A) 1 (B) –1
(C) 0 (D) None of these [D]

1/ x2
Q.116 Lim  1  5x 2 
x 0  2 
 1  3x 
(A) e2 (B) e (C) e–2 (D) e–1 [A]

Lim 1  cos 2( x  1)
Q.117 x 1
= [IIT-98, 91]
x 1
(A) Does not exist because LHL  RHL
(B) Exists and is equals to – 2
(C) Does not exist because x – 1  0
(D) Exists and is equals to 2 [A]

Q.118 Lim x tan 2 x  2 x tan x is [IIT 99]


x 0 (1  cos 2 x ) 2

Corporate Office: CP Tower, Road No.1, IPIA, Kota (Raj.), Ph: 0744-2434159 LIMIT 22
1
(A) (B) –2
2
1
(C) 2 (D) – [A]
2
x
 x 3 
Q.119 For x  R, Lim
x    = [IIT Scr. 2000]
 x2
(A) e (B) e–1 (C) e–5 (D) e5 [C]

2
Q.120 Lim sin(  cos x) =[IIT Scr. 2001]
x 0
x2

(A) – (B)  (C) (D) 1 [B]
2
(cos x  1)(cos x  e x )
Q.121 The value of Integer n ; for which Lim
x 0
is a finite non zero
xn
number- [IIT Scr. 2002]
(A) 1 (B) 2 (C) 3 (D) 4 [C]

(sin nx ) (a – n )nx – tan x 


Q.122 If xlim
0
 0 then the value of a is –
x2
1 n
(A) (B)
n 1 n 1
1
(C) n+ (D) n [C]
n

Q.123 If f(x) is a differentiable function and f  (2) = 6,


2
f ( 2  2 h  h )  f ( 2)
f (1) = 4, f (c) represents the differentiation of f(x) at x = c, then hlim
0
f (1  h 2  h )  f (1)
[IIT Scr.2003]
(A) may exist (B) will not exist
(C) is equal to 3 (D) is equal to –3 [C]

 1
sin x 
Q.124 lim   sin x  x   1  

x 0  x  , for x > 0
 
[IIT 2006]
(A) 0 (B) –1 (C) 2 (D) 1 [D]

Questions Add (24–6-09)

 3 1
 x  2x 
1 
x  4 x  2
Lim  3   
Q.5
x 2  x  8   x 2  x 2  
   

1 1 1 1
(A) (B) (C) (D) [A]
2 4 8 16
Corporate Office: CP Tower, Road No.1, IPIA, Kota (Raj.), Ph: 0744-2434159 LIMIT 23
n
 a 1  n b 
Q.3 Lim  ; (a > 0, b > 0) has the value equal to :
n   a 
 
(A) a1/b (B) ba (C) ab (D) b1/a [D]

0.999
  ...
9
Q.4 A function of an integral argument attains the values u1 = 0.9, u2 = 0.99, u3 = 0.999… un = . What is
n times

the Lim u equal to ? What must the value of n be for the absolute value of difference between u n and its limit not
n  n
to exceed 0.0001 ?
(A) 1, n  2 (B) 1, n  4
(C) 1, n  6 (D) 1, n  8 [B]

Q.1 If Lim
x 0
sin–1(sec x) = p and Lim
x 0
sin–1[sec x] = q where [x] denotes greatest integer function then
(A) p exists but q does not
(B) p does not exist but q does
(C) both p & q exist
(D) neither p nor q exist [B]

Q.8 If
 n2 n4 n6 5 
L = nlim

  2   ......  
 n  n  1 n  2n  4 n 2  3n  9
2
7n 
then eL is equal to -

(A) 1 (B) 1/7 (C) 7 (D) e


Sol.[C]

 n2 n4 n  2( 2 n ) 
L = nlim  
  n 2  n  1 n 2  2n  2 2
 ....  2 

 n  ( 2n ) n  ( 2 n ) 2 
2n
n  2r
= nlim
 n
r 1
2
 rn  r 2
2n
1 1  2( r / n )
= nlim

n
 (r / n )
r 1
2
 (r / n )  1
2

= x
1  2x
2
 x 1

dx = n ( x 2  x  1)  2
0
= n 7
0

 eL = 7

5n 1  3n  32n
Q.4 If nlim

is equal to
5n  2 n  32n 3
(A) 5 (B) 3
(C) 1 (D) None of these

Corporate Office: CP Tower, Road No.1, IPIA, Kota (Raj.), Ph: 0744-2434159 LIMIT 24
5 n 1  3 n  3 2n
Sol.[D] lim
n  5 n  2 n  3 2 n 3

5.5 n  3 n  9 n
lim
n  5 n  2 n  27.9 n
n n
5 3
5.      1
 9 9 1
lim =
n n
h   5  2 27
      27
9 9

f (x 2 )  f (x)
Q.4 If f(x) is differentiable and strictly increasing function then the value of lim is
x  0 f ( x )  f (0)

(A) 1 (B) 0 (C) –1 (D) 2

f (x 2 )  f (x)  0 
Sol.[C] xlim
0
 
f ( x )  f ( 0)  0 
Apply L'Hospital rule

lim f ' ( x 2 )( 2 x )  f ' ( x )


x 0 f ' (x)
f '(x) is strictly increasing function so that f '(x) > 0
f ' (0)( 2  0)  f ' (0)

f ' (0)
f ' ( 0)
– =–1
f ' ( 0)

3 tan 1 x  3 tan x  x 5  6 x
Q.3 If lim is a finite number then the greatest value of n is
x 0 3x n
(A) 3 (B) 5
(C) 2 (D) None of these
Sol.[D] xlim
0

 3 3 5   3 2 5  5
 3x  x  x  ...   3x  x  x  ...  6x  x 
 5   5  
n
x
all coff. of x, x3 and x5 is zero and minimum power of x occurs in numerator is 7
So n=7
n
r3  8
n  
Q.4 Lim is equal to
r 3 r3  8
(A) 2/7 (B) 3/7
(C) 7/2 (D) 7/3

Corporate Office: CP Tower, Road No.1, IPIA, Kota (Raj.), Ph: 0744-2434159 LIMIT 25
n
r3  8  33  8   43  8 
Sol. [A] Lim
n   3
r 8
=  3
3  8


 
 43  8 
r 3    

 n3  8 
........  3 

 n 8

 (3  2) (32  2 2  3.2) 
= Lim
n 
 2 2 
 (3  2) (3  2  3.2) 
 ( 4  2) ( 4 2  2 2  4.2)   (n  2) (n 2  2 2  n.2) 
 2 2  .........  2 2 
 ( 4  2) ( 4  2  4.2)   (n  2) (n  2  n.2) 

 (3  2) ( 4  2).......(n  2) 
= Lim
n   (3  2) ( 4  2).......n  2 
 

 (3 2  2 2  3.2) (4 2  2 2  4.2)......(n 2  2 2  n.2) 


 2 2 2 2 2 2 
 (3  2  3.2) (4  2  4.2).....(n  2  n.2) 

1.2.3.4.5.6........   19.28.39.52.63.......... 
=    7.12.19.28.39.52.......... 
 5.6.7.8.....   
1.2.3.4
= = 2/7
7.12

Q.5 ABC is an isosceles triangle described in a circle of radius r. If AB = AC and h is the altitude from A to BC then

Lim 3 equals to [where  is the area and p the is perimeter of the triangle ABC]
h 0 p
(A) 1/128r (B) 1/215r
(C) 1/128 (D) 1/215
Sol.[C] AB = AC and AD = h
BC = 2BD = 2 OB2  OD 2

= 2 r 2  (h  r ) 2 = 2 2hr  h 2

AB = AD2  BD 2 = h 2  2hr  h 2

= 2hr
Perimeter p = 2AB + BC
= 2 2hr  h 2 + 2hr

Area of Triangle ABC  = 1/2 BC. AD

=h 2hr  h 2

 2r  h 1
Lim = Lim
h 0 p 3 h 0
8 2r  h  2r  3 =
128

Corporate Office: CP Tower, Road No.1, IPIA, Kota (Raj.), Ph: 0744-2434159 LIMIT 26
n n

Q.1 Let  = nlim




r 1
r2
and  = nlim

 (r
r 1
3
 r2)
then
n3 n4
(A)  =  (B)  < 
(C) 4 – 3 = 0 (D) 3 – 4 = 0
n

Sol.[D]  = nlim

r
r 1
2

n3
n 2
r 1
 = nlim
 
r 1
  
 n  n
1
1  x3 
=  x 2 dx =  
 3  0
0

1
=
3
n n
r3 r2
=  r 1 n4
 
r 1 n4
0

[Sum of r given the expression in n3]


2

n n 3
r3 r 1
=  r 1 n4
=    
r 1 
n  n
1
1  x4 
=  x3 dx =  
 4  0
0

= 1/4

cos x
Q.1 If is a periodic function, then
sin ax
Lim Lim (1 + cos2m n!a) is equal to -
m n 

(A) 0 (B) 1 (C) 2 (D) – 1


cos x
Sol.[C] If is periodic then a must be rational
sin ax
A is rational n  

n!a will become and integral multiple of  Lim 2m


n  (1 + cos n!a)

1 + (± 1)2m  2

k k
k (1  x 2 )1 / 3  (1  2 x )1 / 4
Q.3 If r 1
cos–1 r =
2
for any k  1 and A =  r 1
(r)r. Then Lim
x A
x  x2
=

(A) 1/2 (B) 0 (C) A/2 (D) /2


Corporate Office: CP Tower, Road No.1, IPIA, Kota (Raj.), Ph: 0744-2434159 LIMIT 27
 
Sol.[A] For k = 1, cos–1 1 = 1 = cos =0
2 2
k = 2, cos–1 1 + cos–1 2 = 

 cos–1 2 = = 2 = 0
2
By induction j = 0, j = 1, …… k.
k
Hence A = r 1
(r)r = 0

(1  x 2 )1 / 3  (1  2 x )1 / 4
Required limit xlim
0
x  x2
2x 2
lim (1  x 2 ) 2 / 3  (1  2 x ) 3 / 4 1
x 0 3 4 =
2
1  2x

 2 2 
Q.6 Let f(x) = max.  x  , {sin x} . Which of the following is correct ?

 4 

(A) lim f(x) = 0 (B) xlim f(x) = 0


x 0  0

lim lim
(C)  f(x) = 0 (D)  f(x) = 1
x x
2 2
Sol.[D] By graph
y = x2 – 2/4

y = {sin x}

/2 /2

Q.5 The value of


lim cos (tan–1 (sin (tan–1x))) is equal to -
|x| 
(A) –1 (B) 2
1 1
(C)  (D)
2 2
Sol.[D] lim cos (tan–1 sin (tan–1x)
| x | 

 x 
lim cos (tan–1 sin sin–1  )
| x |   2 
 1 x 

 x 
lim cos tan–1  
| x |   2 
 1 x 

lim cos cos–1 1 x2


| x | 
2x 2  1

Corporate Office: CP Tower, Road No.1, IPIA, Kota (Raj.), Ph: 0744-2434159 LIMIT 28
lim = 1 x2 1
| x |  =
2x 2  1 2

x
 e  1 x 
Q.1 Lim    is
x   1  e  e 1  x 
 1e   e  1 e
(A) e(1 – e) (B)   (C)   (D)
e e  e  1e  e e

Sol. [C]

1/ x
 f (1  x ) 
Q.1 Let f : R  R such that f(1) = 3 and f (1) = 6. Then Lim  equals –
x 0  f (1) 
(A) 1 (B) e1/2 (C) e2 (D) e3
Sol. [C]

Q.1 Lim n 2 ( n a  n 1 a ) ; a > 0, is


n 

(A) 1 (B) ea (C) n a (D) 0


Sol. [C]

log( x  a )
Q.3 Lim
x a  log(e x  e a )

(A) 1 (B) 0 (C) e (D) 1/e


Sol. [A]

1 x x 3
Q.7 The value of  so that xlim
0 2
(e – e – x ) = is
x 2
(A) 1 (B) 0 (C) 4 (D) 2
 e x  e x  1
Sol.[D] Using L Hospital Lim
x0
2x
Nr  0 for x  0
e0 – e0 – 1 = 0 or  = 2

Q.4 Lim n (1  x )  x  1 =
x 0 2
x x
1 1
(A)  (B) (C)  (D) 1
2 2

n (1  x )  x 2  x
Sol.[B] Lim
x 0 using expansion
x2
x2 x3
n(1 + x) = x –  ……...
2 3

x x
Q.5 Lim (cos  )  (sin  )  1 is equal to
x 2
x2
(A) 1
Corporate Office: CP Tower, Road No.1, IPIA, Kota (Raj.), Ph: 0744-2434159 LIMIT 29
(B) cos n sin + sin2
(C) sin n cos + cos2
(D) None of these
Sol.[D] Using D. L.Hospital rule

x (n x ) 3
Q.6 Value of Lim
x 
is equal to
1 x  x 2
(A) 0 (B) 1
(C)– 1 (D) 3

(n x ) n
Sol.[A] xLim
  0 (m > 0)
xm

n2 n 3
n (1  kx ) ek x
1 lim f ( x ) is
Q.1 If f(n) = xlim
0 k 1
x
, g(n) = xlim
0 
k 1
x
, then x  
g( x )
(A) does not exist (B) 2
(C) 0 (D) data inadequate 
2
n 2 ( n 2  1)  n ( n  1) 
Sol.[B] f(n) = , g(n) =  
2  2 
x 2 ( x 2  1) 4
 xlim
 =2
2( x  1) 2 x 2

If P = nlim
2
Q.2 2 3 4 n–1 n 1 /( n 1) , then P4 equals
  (ea .e a …..e a )

(A) ea2 (B) e2a2


(C) ea (D) e2a
Sol.[C] P = nlim
2

(e1+3+…..n/2 terms a2+4+…..n/2 terms) 1 /( n 1)

= nlim
2

(en/4 (1+ n–1) an/4(2 + n)) 1 /( n 1)
n2 2n  n 2
= nlim
 4 ( n 2 1) 4 ( n 2 1) = e1/4 . a1/4  P4 = e.a
e a

1
Q.2 y= [(n + 1) (n + 2) …….2n]1/n
n
then Lim y is equal to
n 

4 2
(A) log (B) log 
e e
4 16
(C) (D) 
e e
Sol. [C]
1/ n
 n  1   n  2   2n  
y =   ........ 
 n   n   n 

Corporate Office: CP Tower, Road No.1, IPIA, Kota (Raj.), Ph: 0744-2434159 LIMIT 30
1   n 1 n2 
log y = log   log   .....
n   n   n  
n
1  r
=
n  log1  n 
r 0
1
Lim log y =
n   n (1 + x)dx
0

Q.1 If 0 < a < b, then nlim



(bn + an)1/n is equal to
(A) e (B) a
(C) b (D) None of these
Sol. [C]

Q.3 x x  x  x  4 is
lim
x 1 x 1
1 15
(A) (B)
16 16
7 3
(C) (D)
8 4
Sol. [B]
x
 e   1 x 
Q.5 Lim     is
x   1  e   e 1  x 
 1e 
(A) e(1 – e) (B)  
e e 
 e  1 e
(C)   (D)
e  1e  e e

Sol. [C]

x
 1 1 1 1 
Q.3 Lim 1 x  2 x  3 x  ...  99 x  is
x 0   
 
(A) 1 (B) 99
(C) 99 × 50 (D) 0
Sol.[B]

 n n 1 n 2  1
Q.2 Lim1.
n  
 r 1

r  2.
r 1
r3 
r 1

r  .......  n.1 4 is
n

1 1
(A) (B)
12 6
1 1
(C) (D)
24 8
Sol.[C]

Q.2 If f(x) = nlim



n (x1/n–1), x > 0, then f(xy) is:
(A) f(x) f(y) (B) f(x) + f(y)

Corporate Office: CP Tower, Road No.1, IPIA, Kota (Raj.), Ph: 0744-2434159 LIMIT 31
f (x)
(C) f(x) – f(y) (D)
f ( y)
x 1/ n  1
Sol.[B] f(x) = nlim

 f(x) = nx
1/ n

x nx
m  m
Q.7 Lim n C x   1   equals to -
n   n   n 

mx mx
(A) . e m (B) .em
x! x!

(C) e0 (D) 0
n
 m
n x 1  
m  n
Sol. [A] Lt 
n  x n  x n x  m x
1  
 n
x
n  m
=
mx 
Lt 1 
m
 n 1  n 
x n  n  Lt
n  nx nx

n x
m x m  m
= e Lt Lt 1  
x n  nx n  x n   n 

e m m x n
= Lt
x n   n  x nx

x 2  3x  5
Q.3 lim exists if
x  4x  1  x k
(A) k = 2 (B) k < 2
(C) k  2 (D) None of these
Sol.[C]
(1  3y  5 y 2 ) y k  2
Put x = 1/y  lim
y0 4 y k 1  y k  1
 limit will give a definite value if k  2
[x]
Q.6 The value of lim is (where [·] denotes greatest integer):
x 0 x
(A) 1 (B) 0
(C)  (D) None of these
[0  h ]
Sol.[B] lim 0
h 0 0  h
n x n x
x 1/ e
lim (2 )  (3 x )1/ e
Q.73 The value of x 
;
xn
(where n  N) is-
(A) 0 (B) n 2/3
(C) nn 3/2 (D) Not defined
Sol.[A]

Corporate Office: CP Tower, Road No.1, IPIA, Kota (Raj.), Ph: 0744-2434159 LIMIT 32
Q. 120 The figure shows a right-angled triangle with its hypotenuse OB along y-axis and its vertex along

y = x2. The value of xlim


0
(OB)

(A) 2 (B) 1
(C) 1/2 (D) 0
Sol.[B]
Q.9 C is a point on the circumference of a circle and D is the foot of the perpendicular from C on a fixed diameter AB.

CD 2
Then the limit of as C tends to B along the circumference -
DB
(A) does not exist
(B) equal to one
(C) is equal to the length AB
(D) None of these

lim CD 2
Sol.[C] pt . CB
DB
C

A B
D

lim AD.BD
pt . CB = AB
DB
1  f ( x )  f (3) 
Q.7 Let f (x) = , the value of Lim  is
18  x 2 x 3  x 3 
(A) 0 (B) –1/9 (C) +1/3 (D) 1/9
f ( x )  f (3)
Sol. [C] Lim Apply L-Hospital rule
x 3 x 3
f ( x )  0 1 1 1
Lim = f (3) = = =
x 3 1 18  9 9 3

lim 1  cos 2( x  1)
Q.1 x 1
x 1
(A) exists and it equal to 2

(B) exists and it equals – 2

(C) does not exist because x – 1  0


(D) does not exist because the left hand limit is not equal to the right hand limit

1  cos 2( x  1) 2 | sin( x  1) |
Sol.[D] xlim
1
= xlim
1
x 1 x 1

Corporate Office: CP Tower, Road No.1, IPIA, Kota (Raj.), Ph: 0744-2434159 LIMIT 33
2 | sin( x  1) |
But xlim
1
x 1
= 2 x 1
lim sin( x  1) = 2 and
x 1
lim 2 | sin( x  1) |
x 1–
x 1
=– lim sin( x  1) = – 2 .
2 x 1–
x 1
Q.2 Let ƒ(x) = sgn (sgn (sgn x)). Then xlim
0
ƒ(x) is -

(A) 1 (B) 2
(C) 0 (D) None of these
Sol.[D] By definition we have for x  0, sgn (sgn x)
 x 
= sgn  
| x |
x/|x| x
= = = sgn x. Thus, sgn [sgn)
|x|/|x| |x|
 1 x0

(sgn x) = sgn x =  0 x  0
– 1 x  0

Therefore, xlim
0
ƒ(x) = 1 but xlim
0 –
ƒ(x) = –1.

 1 
Q.3 lim  4

1  3x  x 2 
3
x 4 1 
is -
x 1  x 2  x 1 1 x3  x 3  x 1 
  

(A) 3 (B) 2 (C) 4 (D) 28/3


 1 
 4 1  3x  x 2  x 4 1 
Sol.[A] xlim 
1 



3
2
 x  x
1
1 x3  x 3  x 1 

 1 
2  3x ( x 4  1) 
 4 x  1  3x  x
= xlim 
 x 1



1

3
1 x 3
 x 4  1 

 1 
2 
= xlim  4 x  1  3x  x   3x 
1  3
x 
1 
  

= xlim
1
[x – 1 + 3x] = 3.

lim 8  x2 x2 x2 x2 
Q.4 1  cos  cos  cos cos 
x 0
x 8  2 4 2 4 

is equal to -
1 1 1 1
(A) (B) – (C) (D) –
16 16 32 32

Corporate Office: CP Tower, Road No.1, IPIA, Kota (Raj.), Ph: 0744-2434159 LIMIT 34
8  x2 x2 x2 x2 
Sol.[C] xlim
0
1  cos  cos  cos cos 
x 8  2 4 2 4 

8  x2 
  cos x
2 
1  cos x
2 
= xlim  1  cos 
0
x 8  2 
 4 
 2 


8  x2   2 
1  cos x 
= xlim 1  cos 
0
x 8  2 


 4 

8 2 2
2 x 2 x
= xlim
0
. 2 sin . 2 sin
x8 4 8
2 2
 2   x2 
 sin x  2  sin  2
32    x2    .  x 2 
= xlim 4   . 8
0
x8  x2   4   2   8 
 
 
 x 
 4   8 
1
= .
32
Hence (C) is the correct answer.
4 3
n5  2  n2 1
Q.5 The value of nlim

is -
5 2
n 4  2  n3 1

(A) 1 (B) 0 (C) –1 (D) 


4 3
n5  2  n2 1
Sol.[B] nlim
 5 2
n 4  2  n3 1

2 1
n5/ 4 4 1   n 2/3 3 1 
n5 n2
= nlim

2 1
n4/5 5 1   n 3/ 2 2 1 
4
n n3

n5/ 4 2 n 2/3 1
4 1  3 1
3/ 2 5 3/ 2
n n n n2
= nlim

n 4/5 2 n 3/ 2 1
5 1  2 1
n 3/ 2 n4 n 3/ 2 n3
[On dividing the numerator and denominator by the highest power of n i.e. n3/2]

1 1 21
4 1
 5/ 6 3 1 2
1/ 4 5 00
n n n n
= nlim

= = 0.
1 2 1 0 1
5 1  2 1 3
n 7 / 10 n4 n
Hence (B) is correct answer.
k 2
Q.6 lim n sin ( n!) , 0 < k < 1, is equal to -
n 
n2
Corporate Office: CP Tower, Road No.1, IPIA, Kota (Raj.), Ph: 0744-2434159 LIMIT 35
(A)  (B) 1
(C) 0 (D) None of these

k n k sin 2 ( n!)
2
n sin ( n!)
Sol.[C] nlim

= nlim
 n  2
n2 1  
 n

sin 2 (n!)
= nlim
 n1 k  2
1  
 n
a finite quantity
=

[ sin2 (n!) always lies between 0 and 1. Also, since 1 – k > 0,  n1–k   as n  ]
= 0.
Hence (C) is the correct answer.
Q.7 In a circle of radius r, an isosceles triangle ABC is inscribed with AB = AC. If the ABC has perimeter p = 2 [
lim A is -
2hr  h 2 + 2hr ] and area A = h 2hr  h 2 , where h is the altitude from A to BC, then h 0
p3
1
(A) 128 r (B)
128 r

1
(C) (D) None of these
64 r

A h 2hr  h 2
Sol.[B] lim = lim 3
h 0 p 3 h 0 8
 2hr  h 2  2hr 

 

h. h 2r  h
= lim
h 0 8 h .h  2r  h  2r 3
2r  h
= lim
h 0 8  2r  h  2r 3
2r 1
= = .

8 2 2r  3
128r

Hence (B) is the correct answer.


Q.8 The limiting value of (cos x)1/sin x as x  0 is -
(A) 1 (B) e
(C) 0 (D) None of these
Sol.[A] Put cos x = 1 + y as ; x  0 ; y  0

Hence xlim
0
(cos x)1/sin x = ylim 1/y y/sin x
0 [(1 + y) ]

cos x 1  x
lim = lim   tan  = e0 = 1.
e x 0 sin x x 0  2
e
Hence (A) is the correct answer.

Corporate Office: CP Tower, Road No.1, IPIA, Kota (Raj.), Ph: 0744-2434159 LIMIT 36
[ x ]  [ 2 x ]  ....  [nx ]
Q.9 If [.] denote the greatest integer function then nlim
 2
is -
n
2
(A) 0 (B) x (C) x/2 (D) x /2
Sol.[C] nx – 1 < [nx]  nx. Putting n = 1, 2, 3,…. , n and adding them,
x  n – n <  [nx]  x  n
n 1 [ nx ] n
x. 2 – < 2 x. 2 … (1)
n n n n

 n 1  n
Now, nlim
 
x.
2
  = x . nlim
 
 n n n2

1 x
– nlim

=
n 2
As the two limits are equal, by (1)

lim [ nx ] = x .
n 
n2 2
Hence (C) is correct answer.

{ƒ( x )}2 n  1
Q.10 Let ƒ(x) = x – [x], where [x] denotes the greatest integer  x and g(x) = nlim
 , then g(x) is equal
{ƒ( x )}2 n  1
to -
(A) 0 (B) 1
(C) –1 (D) None of these
Sol.[C] As 0  x – [x] < 1  x  R, 0  ƒ(x) < 1.

 lim 2n
n  {ƒ(x)} = 0.

{ƒ( x )}2 n  1
Thus, for x  R, g(x) = nlim

{ƒ( x )}2 n  1

0 1
= = –1.
0 1
Q.11 The value of
1/ 2
lim 2( x )  3( x )1 / 3  4( x )1 / 4  .....  ( x )1 / n is
x 
(2 x  3)1 / 2  (2 x  3)1 / 3  ....  (2 x  3)1 / n

1
(A) 2 (B) 2 (C) (D) 0
3
Sol.[A] Given

lim 2 x1 / 2  3x1 / 3  ....  nx1 / n


x  ( 2 x  3)1 / 2  (2 x  3)1 / 3  ...  ( 2 x  3)1 / n

Corporate Office: CP Tower, Road No.1, IPIA, Kota (Raj.), Ph: 0744-2434159 LIMIT 37
 1   1   1 
2 1 / 2   3 1 / 3   ....  n 1 / n 
= hlim h  h  h 
0 1 1 1
1/ 2
(2  3h )1 / 2  1 / 3 (2  3h )1 / 3  .....  1 / n (2  3h )1 / n
h h h
1
[On putting x = as x   , h  0]
h
1 1 1 1 1 1
        
2  3h  2 3
 4h  2 4
 ....  nh  2n
= hlim
0 1 1 1 1
     
1/ 2
( 2  3h )  h  2 3  ( 2  3h )1 / 3  ....  h  2 n  ( 2  3h )1 / n

2  0  0  0  .......
= 1/ 2 = 2 .
2  0  0  .......
Hence (A) is the correct answer.
k k
k (1  x 2 )1 / 3  (1  2 x )1 / 4
Q.12 If  cos 1 r = for any k  1 and A =  ( r ) , Then xlim
r
 A
=
r 1 2 r 1 x  x2
(A) 1/2 (B) 0 (C) A/2 (D) /2
 
Sol.[A] For k = 1, cos –1 1 =  1 = cos =0
2 2

For k = 2, cos–1 1 + cos–12 =   cos–1 2 =  2 = 0
2
So by induction it can be shown that j = 0, j = 1……..k.
k
Hence A =  ( r ) r = 0.
r 1

Thus required limit

(1  x 2 )1 / 3  (1  2x )1 / 4
= lim
x 0 x  x2
2x 2
(1  x 2 ) 2 / 3  (1  2x ) 3 / 4 1
= = .
lim 3 4
2
x 0 1  2x
1  9 
Q.13 If f(n + 1) = f (n )  , n  N and
2  f (n ) 

f(n) > 0 for all n  N then nlim


 f(n) is equal to-

(A) 3 (B) –3
(C) 1/2 (D) None of these

Sol.[A] As n   . nlim lim


 f(n) = n  f(n + 1) = k say

Corporate Office: CP Tower, Road No.1, IPIA, Kota (Raj.), Ph: 0744-2434159 LIMIT 38
1  9  1  9 
We have f(n + 1) =  f ( n )   or lim f(n) = lim f(n + 1) =  f (n )  
2  f (n )  n   n   2  f ( n ) 

1  9
k=  k    k2 = 9 or k = 3
2  k

 nlim
 f (n) = 3.

cos 2 (1  cos 2 (1  cos 2 (.........  cos 2 ( x ))).......)


Q.14 xlim 
  x  4  2    is equal to -
0 sin  
 
 x 


 4  2
(A) (B) (C) (D)
4  2 
Sol.[B] Let P

cos 2 (1  cos 2 (1  cos 2 (......... cos 2 ( x ))).......


= xlim 
  x  4  2  
0 sin  
  x 
  

cos 2 sin 2 (1  cos 2 (......... cos 2 ( x )).....


= xlim 
  x  4  2  
0 sin  
  x 
  

cos 2 (sin 2 (sin 2 (......... (sin 2 ( x )))).......



  x  4  2  
sin  
  
lim
= x 0  
 x    ( x  4)  2  
  
 ( x  4)  2    x  
   
 x 
 

cos 2 (sin 2 (sin 2 ).........(sin 2 ( x )).......) ( x  4)  2


·

  x  4  2   
sin 
 
= xlim
0

  x 
 ( x  4)  2 
 
 x 
 

cos 2 0 ( 2  2) 4
= . = .
1  
Q.15 Consider a series of number defined as following
x0 = a , x1 = a a, x2

= a a a , ……. Where a > 0 then nlim x =


 n

1  4a  1
(A) a (B)
2

Corporate Office: CP Tower, Road No.1, IPIA, Kota (Raj.), Ph: 0744-2434159 LIMIT 39
1  4a  1
(C) (D) can not be found
2a

Sol.[B] We have x 2
n = a + xn–1

It is easy to see that the variable x n increases. Let us show that all its values remain less than some

constant number we have x 2


n –1 – x n–1 – a < 0 ( xn–1 < xn)

 (4a  1)  1   1 4a  1 
Hence,  x n 1  x
  n 1

 <0
 2   2 

( 4a  1)  1
Since the expression in the second bracket is positive, so we have xn–1 <
2

Put nlim x = nlim


 n–1
x = 
 n

From the original relation between xn and xn–1, we get

1  1  4a (4a  1)  1
2 –  – a = 0,  = and since   0 we have  = .
2 2

1
Q.1 lim
Let ƒ(x) = n   3 2n
. Then the set of values of x for which f(x) = 0, is -
1 
 tan 2 x   5
 
(A) |2x| > 3 (B) |(2x)| < 3

(C) |2x|  3 (D) |2x|  3

2
3 
Sol.[A] ƒ(x) = 0 if and only if,  tan 1 2 x  1
 

 
 tan–1 2x > or tan–1 2x < –
3 3

 2x > 3 or 2x < – 3

 |2x| > 3

Hence (A) is the correct answer.

Q.2 If I1 = xlim tan 1 x sin 1 x and I = lim sin 1 x tan 1 x , where | x | < 1, then which of the
0  2
x 0 
x x x x
following statement is true -
(A) Neither I1 nor I2 exists
(B) I1 exists and I2 does not exists
(C) I1 does not exists and I2 exists
(D) None of these

Corporate Office: CP Tower, Road No.1, IPIA, Kota (Raj.), Ph: 0744-2434159 LIMIT 40
tan 1 x sin 1 x
Sol.[C] We know < 1 and > 1,  x  R
x x

tan 1 x sin 1 x
 – <0
x x

sin 1 x tan 1 x
and – >0
x x
 I1 does not exists and I2 exists
Hence (C) is the correct answer.
[ x ]  [ 2 x ]  ....  [nx ]
Q.3 If [.] denote the greatest integer function then nlim
 2
is -
n
2
(A) 0 (B) x (C) x/2 (D) x /2
Sol.[C] nx – 1 < [nx]  nx. Putting n = 1, 2, 3,…. , n and adding them,
x  n – n <  [nx]  x  n
n 1 [ nx ] n
x. 2 – < 2 x. 2 … (1)
n n n n

 n 1 
Now, nlim
 
x.
2
 
 n n

n 1 x
= x . nlim
 2
– nlim

=
n n 2
As the two limits are equal, by (1)

lim [ nx ] = x .
n 
n2 2
Hence (C) is correct answer.
1
lim x 4 sin  x 2
Q.1 Evaluate x –  x
1 | x |3
(A) –1 (B) 1
(C) 0 (D) None of these
Sol.[A] Let x = –y. Then y   when x  –
–1
lim y 4 sin  y2
 limit = y y
1 | – y |3
1
lim  y 4 sin  y 2
= y
y
1  y3
[ y is positive]

Corporate Office: CP Tower, Road No.1, IPIA, Kota (Raj.), Ph: 0744-2434159 LIMIT 41
 1 
 sin 3 2 
 y y y 
= ylim
  1
·  
3
 1 y 1  y3 

 y 

 
 sin 1 
 y  1 1 
= ylim
  1
·  
 1  
 1 y 1  1 
 y y3  y3 
  
1
=1. + 0 = –1.
1
Q.2 If ƒ(1) = g(1) = 2 and ƒ(1), g(1) exist then evaluate

lim ƒ(1)g ( x )  ƒ(1)  g (1)ƒ( x )  g (1)


x 1 g ( x )  ƒ( x )
(A) 1 (B) 2
(C) 3 (D) None of these
0
Sol.[B] Here, the form is .
0
ƒ(1)g( x )  g (1)ƒ( x )
 limit = xlim
1 
g( x )  ƒ( x )
{using L’ Hospital’s rule}
2{g( x )  ƒ( x )}
 xlim
1 = xlim
1 2 = 2.
g( x )  ƒ( x )
sin x
Q.3 Evaluate : xlim  sin x  x sin x .
0  
 x 
–1
(A) e (B) e
(C) e2 (D) None of these
sin x
x
Sol.[A] Limit = xlim
0  sin x  1 sin x
  x
x  
sin x
Put = t; then t  1 when x  0.
x
t
 limit = lim , which is of the form 1
t 1 t 1 t
1
t
= lim log t 1 t = lim log t
e t 1 e t 1 1 t

1 log t
= lim
e t 1 1

(Using L’ Hospital’s rule)

Corporate Office: CP Tower, Road No.1, IPIA, Kota (Raj.), Ph: 0744-2434159 LIMIT 42
= e–1.
x
 x 2  5x  3 
Q.7 If ƒ(x) =   then xlim

ƒ(x) is -
 x2  x  2 
 
(A) e–4 (B) e3 (C) e2 (D) e4
x
 x  5x  3 
2
Sol.[D] xlim

ƒ(x) = xlim 
  2


 x x2 
x
 4x  1 
= xlim
 1  2 
 x x2

 x2 x 2 
= xlim
 4 x  1  4 x 1 

1 
 
  … (1)
 x2  x  2  

 

x (4 x  1) 4 1/ x
Where  = =  4 as x  
2
x x2 11/ x  2 / x 2

(1)  xlim 4
 ƒ(x) = e .

sin x , x  n 
x 2  1, x2
Q.15 Let ƒ(x) =  , where n  I and g (x) =  , then xlim
0
g [ƒ(x)] is -
 2, x  n 
 3, x2

(A) 1 (B) 0
(C) 3 (D) Does not exist

[f ( x )]2  1, x2
Sol.[A] g [ƒ(x)] = 

 3, x2

 g [ƒ (x)] = sin2 x + 1, x  n
3, x = n

R.H.L. = hlim
0
g [ƒ(0 + h)] = hlim
0
(sin2 h + 1) = 1

L.H.L = hlim
0
g [ƒ(0 – h)] = hlim
0
(sin2 h + 1) = 1

 hlim
0 g[ƒ (x)] = 1.

Q.11 Given a real valued function ‘f’ such that


 tan 2 {x}
 for x  0
 x 2  [ x ]2

f(x) =  1 for x  0
 {x} cot{x} for x  0



2
 Lim f ( x ) 
then the value of cot–1   is –
 x 0 

(A) 0 (B) 1 (C) –1 (D) None

Sol.[D] Lim– f(x) = Lim


h 0
{ h} cot{ h}
x 0
Corporate Office: CP Tower, Road No.1, IPIA, Kota (Raj.), Ph: 0744-2434159 LIMIT 43
= Lim
h 0
(1  h ) cot(1  h ) = cot 1

2 2
Lim f(x) = Lim tan {h} = Lim tan h = 1
 h 0 h 0
x 0 2 2 2
h  [h ] h

 Lim
h 0 f(x) does not exist.

f ( x  c) f ( x  2c) f ( x  3c)
Q.12 Let g(x) = f ( c) f (2c) f (3c)
f (c) f (2c) f (3c)

g( x )
where c is constant then Lim
x 0
is equal to
x
(A) 0 (B) 1 (C) –1 (D) f(c)
Sol.[A] We note that g(0) = 0
g( x ) 0
 Lim
x 0 is form
x 0

g( x ) g( x )
 Lim
x 0 = Lim
x 0 = g(0) = 0.
x 1
Q.14 If  and  are the root of the quadratic equation ax2 + bx + c = 0,

lim 1  cos(cx 2  bx  a )
then x  1 =
 2(1  x ) 2

c 1 1 c 1 1
(A)    (B)   
2 
   
 2 
   

c 1 1
(C)    (D) None of these
 
   

a b 1 1
Sol.[A]  ax2 + bx + c = 0 has roots  and  then   c  0 i.e., cx2 + bx + a = 0 has roots and .
x 2 x  

2 bx a   1  1
 cx    = c x    x  
 c c    

lim  1  cos(cx 2  bx  a ) 
= x 1  
  2 (1   x ) 2 
 
  2 
 sin 2  cx  bx  a 
lim   2 
 
= x 1  
  (1  x ) 2 
 

 

 cx 2  bx  a 
sin  
lim 
 2 

= x 1 (1  x )

Corporate Office: CP Tower, Road No.1, IPIA, Kota (Raj.), Ph: 0744-2434159 LIMIT 44
c  1  1 
sin   x    x  
lim 2     
= x 1
  1
  x  
  

c 1  1  c 1
sin   x    x     x  
2
      2 
= lim · lim
x
1 c 1  1  x
1  
  x    x   
2   

c  1 1

  

2   c 1 1
= 1· =    .
 2    

Lim 1  cos 3 x
Q.89 x 0
equals
x. sin x. cos x
1
(A) (B) 1
4
3
(C) (D) Does not exist
2
(1  cos x ) x (1  cos x  cos 2 x )
Sol.[C] Lim
x 0  
x2 sin x cos x
1 111 3
=  1 
2 1 2

x
Q.90 Lim a  1 equals
x 0
x
(A) log a (B) 1
(C) 0 (D) Does not exist
Sol.[A] By D.L. Hospital rule
x
Lim a log a = a0. log a = log a
x 0
1

Q.91 Lim ( 2 x  3)( x  1) equals


x 1
2x 2  x  3
1 3
(A) (B)
2 2
(C) 1 (D) – 1

( 2 x  3)( x  1) x 1 1
Sol.[A] Lim
x 1
 Lim 
( x  1)(2 x  3) x 1 ( x  1)( x  1) 2

Lim  1 8 n3 
Q.92   .....  equals
n  4 4 4
1  n 1 n 1  n 

Corporate Office: CP Tower, Road No.1, IPIA, Kota (Raj.), Ph: 0744-2434159 LIMIT 45
1 1
(A) (B)
4 8
1
(C) (D) None of these
2
2 2
13  2 3  .....  n 3 Lim n ( n  1)
Sol.[D] Lim
n 
= n 
1 n4 4(1  n 4 )
2
 1
n 4 1  
= Lim  n  = (1  0) 2  1
n 

 1  4(0  1) 4
4 n 4  4  1
n 

Q.93 Lim (6n + 5n)1/n equals


n 

(A) 6 (B) 5
(C) 5/6 (D) e
1/ n 0
 n   5 

Sol.[A] 6 Lim 1   5    61    
n  
  6   
  6  

= 6 (1 + 0)0
= 6 × 10
= 6 × 1 = 6.

Q.94 Lim cos 2  cos 2 x equals


x  –1
x2  | x |
(A) sin 2 (B) 2 sin 2
(C) 4 sin 2 (D) 0

Sol.[B] Lim cos 2  cos 2 x


x  1
x2  x
2 sin(1  x ) sin( x  1)
= xLim
 1 x ( x  1)

Lim 2 sin(1  x ) . sin( x  1)  2 sin( 2) × 1


x  1 (1  x ) x (1)
= 2 sin 2
Q.99 If  is the distance between orthocentre & circumcentre of triangle with vertices (1, 0),

 1   
  , 3 ,   1 ,  3  then Lim [x] is
 2 2   2 2  x 
   
(A) 0 (B) – 1
(C) 1 (D) Does not exist
Sol.[D] If A,B,C are vertices then AB = BC = CA= 3 ABC is equilateral
 Required distance = 0 = 

Corporate Office: CP Tower, Road No.1, IPIA, Kota (Raj.), Ph: 0744-2434159 LIMIT 46
 Lim
x  0 [x] = Does not exist
3
Q.100 Lim x (log x ) equals
x 
1 x  x2
(A) 0 (B) – 1
(C) 1 (D) Does not exist
1
Lim (log x ) 3  x.3(log x ) 2 
Sol.[A] x  x
1  2x
(By D.L. Hospital rule)
1 1
Lim 3(log x ) 2   6(log x ) 
 x  x x
2
(By D.L. Hospital rule)
3(log x ) 2  6 log x
 Lim
x 
2x
(By D.L. Hospital rule)
1 6
6 log x  
 Lim
x  x x
2
(By D.L. Hospital rule)
6 log x  6
 Lim
x  2x
(By D.L. Hospital rule)
1
6   0
 Lim
x  x
2
(By D.L. Hospital rule)
6
=0
 
2

lim 1
Q.74 x a ( n N) equals -
( x – a ) 2 n –1
(A)  (B) – 
(C) 0 (D) Does not exist
Sol.[D] Do your self.

2x 3 – 4x  7
Q.75 The value of xlim
 is-
3 2
3x  5 x – 4
(A) 2/3 (B) –7/4
(C) –4/5 (D) 
Sol.[A] Do your self.
 x 
lim
Q.76 x   3  equals-
 x 3  10 

Corporate Office: CP Tower, Road No.1, IPIA, Kota (Raj.), Ph: 0744-2434159 LIMIT 47
(A) 1 (B) 2
(C) 3 (D) None of these
Sol.[A] Do your self.
Q.77 lim n[a1/n–1] equals-
n 
(A) a (B) logea
(C) 1 (D) None of these
Sol.[B] Do your self.
lim x
Q.78 x  equals -
x x x
(A) 0 (B) 1
(C)  (D) None of these
Sol.[B] Do your self.
log (3  x )  log (3  x )
Q.79 If xlim
0
= k, the value of k is -
x
2
(A) – (B) 0
3
1 2
(C) – (D)
3 3
Sol.[D] Do your self.
Q.80 If f(x) is a differentiable function and

f (2) = 6, f (1) = 4, f (c) represents the differentiation of f(x) at x = c, then

2
lim f (2  2h  h )  f ( 2)
h 0
f (1  h 2  h )  f (1)

(A) may exist (B) will not exist

(C) is equal to 3 (D) is equal to –3

Sol.[C] Do your self.


     
Q.111 xlim

x cos   sin   is -
 4 x   4x 
 
(A) (B)
2 4
(C) 1 (D) None of these [B]
lim 1  cot x 3
Q.112  is -
x
4 2  cot x  cot 3 x
11 3
(A) (B)
4 4
1
(C) (D) None of these [B]
2

Q.113 lim 1  x 4  (1  x 2 ) is –
x 
x2
(A) 0 (B) – 1 (C) 2 (D) – 2 [A]

Corporate Office: CP Tower, Road No.1, IPIA, Kota (Raj.), Ph: 0744-2434159 LIMIT 48
Q.114 lim  3x 
 9x 2  x 
 equals?
x    

1 1 1 1
(A) (B) (C) – (D) – [B]
3 6 6 3

lim n!
Q.115 is equal to -
n  ( n  1) !  n !
(A) 0 (B) 
(C) 1 (D) None of these [A]

Q.116 The value of xlim



x1/x is -

(A) 0 (B) 1
(C)  (D) None of these [B]
 x3 1 
Q.121 If xlim 
  x 2  1
 ( ax  b )  = 2, then -

 
(A) a = 1, b = 1 (B) a = 1, b = 2
(C) a = 1, b = – 2 (D) None of these [C]
log( x  a )
Q.122 The value of lim is -
x a log(e x  e a )
(A) 1 (B) – 1
(C) 0 (D) None of these [A]
3
lim x 2 1  x3 1
Q.123 x  4
equals -
5
x4 1  x4 1
(A) 1 (B) 0
(C) – 1 (D) None of these [B]
2
x
Q.124 lim e  cos x is -
x 0
x2
3 1
(A) (B)
2 2
2
(C) (D) None of these [A]
3
sin px
Q.125 If xlim
0 tan 3x
= 4, then p is equal to -

(A) 6 (B) 9 (C) 12 (D) 4 [C]


 x 3 
Q.126 The value of xlim  log a
3 
 is -
 x  6  3 
(A) loga 6 (B) loga 3
(C) loga 2 (D) None of these [A]

Q.127 lim ([x – 3] + [3 – x] –x), where [.] denotes the greatest integer function, is equal to -
x 3

(A) 4 (B) – 4
(C) 0 (D) None of these [B]

Corporate Office: CP Tower, Road No.1, IPIA, Kota (Raj.), Ph: 0744-2434159 LIMIT 49
 4 
Q.128 The value of xlim

3x sin  x  is -
3 
(A) 4 log 3 (B) 3 log 4
(C) 4 (D) None of these [C]

Q.129 If xlim
0
(1 + ax)b/x = e2, (a, b  N), then -

(A) a = 4, b = 2 (B) a = 8, b = 4
(C) a = 16, b = 8 (D) None of these [D]
 sin(1  [ x ])
 , [x]  0
Q.130 If f(x) =  [x] then lim f(x) is -
x 0

 0, [x]  0
(A) – 1 (B) 0
(C) 1 (D) None of these [B]

Q.131 lim log (1 / 4 1 / 8 1 / 16 ......to n terms)


is equal to -
n  0.2 5

(A) 2 (B) 4 (C) 8 (D) 0 [B]


Q.132 If f(x) = [2x], then -

(A) lim f(x) = 0 (B) lim f(x) = 1


x 1/ 2  x 3 / 4 

(C) xlim
1 / 2
f(x) = 0 (D) x lim
3 / 4
f(x) = 2 [B]

Q.141 The value of


 3 1
 x  2x 
1 
 x  4 x  2  is -
lim    
x  2  x 3  8   x2 x 2  
   
(A) 1/2 (B) 2
(C) 1 (D) None of these [A]

Q.142 lim [log n–1(n).log n(n + 1).log n+ 1(n + 2)… log k (nk)] is equal to -
n  n 1

(A)  (B) n
(C) k (D) None of these [C]
n
12  2 2  32  ...  r 2
Q.143 If tr =
3 3 3
1  2  3  ....  r 3
and Sn = r 1
(–1)r.tr, then nlim S is given by -
 n

2 2 1 1
(A) (B) – (C) (D) – [B]
3 3 3 3
x x  x 
Q.144 The value of nlim

cos   cos   …cos  n  is-
2
  4
  2 
sin x
(A) 1 (B)
x
x
(C) (D) None of these [B]
sin x

Q.145 lim (1+ x) (1 + x2) (1 + x4) ….. (1 + x2n), | x | < 1, is equal to -


n 

Corporate Office: CP Tower, Road No.1, IPIA, Kota (Raj.), Ph: 0744-2434159 LIMIT 50
1 1
(A) (B)
x 1 1 x
(C) 1 – x (D) x – 1 [B]
2 2 2 2
Q.146 lim tan[e ]x  tan[ e ]x is,
x 0
sin 2 x
(where [.] is G.I.F.) -
(A) 0 (B) 8
(C) 15 (D) None of these [C]

Q.78 lim x cos    sin    is -


x 
 4x   4x 
 
(A) (B)
2 4
(C) 1 (D) None of these [B]
lim 1  cot x 3
Q.79  is -
x
4 2  cot x  cot 3 x
11 3
(A) (B)
4 4
1
(C) (D) None of these [B]
2

Q.80 lim 1  x 4  (1  x 2 ) is –
x 
x2
(A) 0 (B) – 1 (C) 2 (D) – 2 [A]

Q.81 lim  3x 
 9x 2  x 
 equals?
x    

1 1 1 1
(A) (B) (C) – (D) – [B]
3 6 6 3

lim n!
Q.82 is equal to -
n  ( n  1) !  n !
(A) 0 (B) 
(C) 1 (D) None of these [A]

Q.83 The value of xlim



x1/x is -

(A) 0 (B) 1
(C)  (D) None of these [B]

 x 2  k, when x  0
Q.84 Let f(x) =  2 . If the function f(x) be continuous at x = 0, then k =

 x  k , when x  0
(A) 0 (B) 1
(C) 2 (D) – 2 [A]
 x 1 3 
Q.88 If xlim


 2
 (ax  b)  = 2, then -
 x 1 

Corporate Office: CP Tower, Road No.1, IPIA, Kota (Raj.), Ph: 0744-2434159 LIMIT 51
(A) a = 1, b = 1 (B) a = 1, b = 2
(C) a = 1, b = – 2 (D) None of these [C]
log( x  a )
Q.89 The value of lim is -
x a log(e x  e a )
(A) 1 (B) – 1
(C) 0 (D) None of these [A]
3
lim x 2 1  x3 1
Q.90 x  4
equals -
5
x4 1  x4 1
(A) 1 (B) 0
(C) – 1 (D) None of these [B]
2
x
Q.91 lim e  cos x is -
x 0
x2
3 1
(A) (B)
2 2
2
(C) (D) None of these [A]
3
sin px
Q.92 If xlim
0 tan 3x
= 4, then p is equal to -

(A) 6 (B) 9 (C) 12 (D) 4 [C]


 x 3 
Q.93 The value of xlim  log a
3 
 is -
 x  6  3 
(A) loga 6 (B) loga 3
(C) loga 2 (D) None of these [A]

Q.94 lim ([x – 3] + [3 – x] –x), where [.] denotes the greatest integer function, is equal to -
x 3

(A) 4 (B) – 4
(C) 0 (D) None of these [B]
 4 
Q.95 The value of xlim

3x sin  x  is -
3 
(A) 4 log 3 (B) 3 log 4
(C) 4 (D) None of these [C]

Q.96 If xlim
0
(1 + ax)b/x = e2, (a, b  N), then -

(A) a = 4, b = 2 (B) a = 8, b = 4
(C) a = 16, b = 8 (D) None of these [D]
 sin(1  [ x ])
 , [x]  0
Q.97 If f(x) =  [x] then lim f(x) is -
x 0

 0, [x]  0
(A) – 1 (B) 0
(C) 1 (D) None of these [B]

Q.98 lim log (1 / 4 1 / 8 1 / 16 ......to n terms)


is equal to -
n  0.2 5

Corporate Office: CP Tower, Road No.1, IPIA, Kota (Raj.), Ph: 0744-2434159 LIMIT 52
(A) 2 (B) 4 (C) 8 (D) 0 [B]
Q. 99 If f(x) = [2x], then -

(A) lim f(x) = 0 (B) lim f(x) = 1


x 1/ 2  x 3 / 4 

(C) xlim
1 / 2
f(x) = 0 (D) x lim
3 / 4
f(x) = 2 [B]
x
Q.75 lim  x 2  5x  3  =
x   x x3 
2
 
(A) e4 (B) e2
(C) e3 (D) e [A]
n
sin x
Q.105 For m, n  I+, Lt is equal to -
x 0 (sin x ) m
(A) 1, if n = m (B) – 1, if n > m
n
(C) (D) None of these [A]
m
2f ( x )  3f (2 x )  f ( 4 x )
Q.109 Let f ''(x) be continuous at x = 0 and f '' (0) = 4. Then value of lim is -
x 0 x2
(A) 12 (B) 10
(C) 6 (D) 4 [A]

Q.110 The value of lim 1 2  x  3 is -


x 2 x2
1 1
(A) (B)
8 3 4 3
(C) 0 (D) None of these [A]
x  sin x
Q.111 lim is equal to -
x 0 x  sin 2 x
(A) 1 (B) 0
(C)  (D) None of these [B]
1  sin x  cos x  log (1  x )
Q.117 lim equals -
x 0 x3
(A) 1/2 (B) – 1/2 (C) 0 (D) 1 [B]

(1  cos 2 x ) sin 5x
Q.118 lim =
x 0 x 2 sin 3x
(A) 10/3 (B) 3/10 (C) 6/5 (D) 5/6 [A]
20

Q.120 x
k 1
k
 20
=
lim
x 1 x 1
(A) 20 (B) 210
(C) does not exist (D) None of these [B]
Q.128 If x1, x2 are real and distinct roots of
ax2 + bx + c = 0, then

Corporate Office: CP Tower, Road No.1, IPIA, Kota (Raj.), Ph: 0744-2434159 LIMIT 53
lim (1  sin (ax 2  bx  c))1 / x  x1 is equal to -
xx 1

(A) e x1  x 2 (B) e x 2  x 1

(C) e a ( x 1  x 2 ) (D) e a ( x 2  x1 ) [C]

log e x n  [ x ]
Q.129 lim , n  N, ([x] denotes greatest integer less than or equal to x) is equal to -
x  [x]
(A) – 1 (B) 0
(C) 1 (D) does not exist [A]
tan x sin x
a a
Q.130 lim (a > 0) is equal to -
x  0 tan x  sin x

(A) – lna (B) lna


(C) 1 (D) – 1 [B]
1/ x
x (3e  4)
Q.131 lim =
1/ x
x 0 2e
(A)  (B) 0
(C) does not exist (D) None of these [B]
2
x sin (1 / x )  x
Q.133 The value of lim is -
x  1 | x |
(A) 0 (B) 1
(C) – 1 (D) does not exist [A]
 sin x 
Q.134 lim , ( []  G.I.F.), is equal to -
x  
 x 
(A) 1 (B) 0
(C) does not exist (D) None of these [B]
 sin x  x  1
Q.136 lim   sin
x 0  x  x
(A) is equal to 1
(B) does not exist
(C) is equal to 0
(D) exists and different from 0 and 1 [C]
sin [cos x ]
Q.137 lim ([]  denotes greatest integer function) equals -
x  0 1  [cos x ]

(A) 1 (B) 0
(C) does not exist (D) None of these [B]

Q.138 lim (sec x  tan x ) is equal to -


x / 2

(A) 2 (B) – 1 (C) 1 (D) 0 [D]

Q.139 If xlim  ( x ) = a3, a  0, then lim   x  is equal to -


0 x 0 a
1 1
(A) (B) a3 (C) a2 (D) [B]
a3 a2

Q.140 The value of


Corporate Office: CP Tower, Road No.1, IPIA, Kota (Raj.), Ph: 0744-2434159 LIMIT 54
x n  x n 1  x n  2  ...  x 2  x  n
lim is -
x 1 x 1
n ( n  1)
(A) (B) 0 (C) 1 (D) n [A]
2
sin (  cos 2 x )
Q.144 lim =
x 0 x2
(A)  (B) 
(C) –  (D) does not exist [C]

Q.145 If f(x) is a polynomial satisfying f(x) f(1/x) = f(x) + f(1/x) and f(2) > 1 then xlim
1
f ( x ) is -

(A) 2 (B) 1
(C) – 1 (D) None of these [A]
Q.146 Let f(x) = [x] + [– x]. Then for any integer m and non integer a, consider the following statements
(i) xlim
m
f ( x ) exist

(ii) f(x) is continuous at x = m


(iii) f(x) is continuous at x = a
(iv) xlim
a
f ( x ) exists.

Then correct statements is/are -


(A) (i), (ii), (iii) (B) (i), (ii)
(C) (i), (iii), (iv) (D) all of these [C]

cos x x 1
f (x)
Q.147 If f(x) = 2 sin x x2 2 x , lim is equal to -
x 0 x
tan x x 1
(A) 1 (B) – 1 (C) 0 (D) 2 [C]
 1 
Q.148 lim  2  cot x  =
x 0 x 
(A) 1 (B) 0
(C)  (D) does not exist [C]

 sin 2   sin 2  
Q.149 lim  =
  
  2  2 
(A) 0 (B) 1
sin  sin 2
(C) (D) [D]
 2

1 
Q.150  2 (1  cos 2 x ) is
 
lim
x 0 x
(A) 1 (B) –1
(C) does not exist (D) None of these [C]

f ( x )e nx  g ( x )
Q.151 If x > 0 and g is a bounded function, then lim is
n  e nx  1

Corporate Office: CP Tower, Road No.1, IPIA, Kota (Raj.), Ph: 0744-2434159 LIMIT 55
(A) 0 (B) f(x)
(C) g(x) (D) None [B]
x.2 x  x
Q.152 lim equals
x  0 1  cos x

1
(A) log 2 (B) log 2
2
(C) 2 log 2 (D) None [C]
n
Q.153 lim log x  [ x ] , n  N, ([x] denotes greatest integer less than or equal to x)
x 0 [x]
(A) has value – 1 (B) has value 0
(C) has value 1 (D) does not exist [D]
Lim
Q.154  (x tan x –(/2) sec x) equals to
x
2
(A) –1 (B) 0 (C) 1 (D) 2
Sol. [A] xLim
 / 2
x. tan x – /2 sec x From – 
x. sin x –  / 2
 xLim
 / 2 . cos x
0  sin(  / 2)
Form 0/0  = –1
– sin(  / 2)
x – 2a  x – 2a
Q.155 The value of limit
x 2 a 2 2
is
x – 4a
1 1
(A) (B)
a 2 a
1 1
(C) (D)
3 a 4 a
1 / 2 x – 2a  1 / 2 x
Sol. [B] Apply L'H.Rule  xlim
2 a 2 2
1 / 2 x – 4a  2 x
1 ( x  x – 2a ) 1 4a 1
= lim . x 2 – 4a 2 = . =
2 x 2 a x – 2a x .x 2 2a 2 a
 g( x ) – 1
 ; x 1
Q.156 If f(x) =  x –1 and g (1) = 2, g(1) = 1. Then lim
x 1
f(x) is :
1 ; x 1

(A) 1 (B) 3(C) 2 (D) 4
1 1
Sol.[C] = lim g( x ) / x = lim g( x ) x = 2
x 1 2 g ( x ) 2 x 1 g( x )

( 2 x  1) 40 ( 4 x – 1) 5
Q.157 The limit xlim
 45
is
(2 x  3)
(A) 16 (B) 32 (C) 24 (D) 8
40 5
( 2 x  1) ( 4 x – 1) 2 .45 45
40
Sol.[B] xlim
 45
= = = 25 = 32
( 2 x  3) 2 45
25

Corporate Office: CP Tower, Road No.1, IPIA, Kota (Raj.), Ph: 0744-2434159 LIMIT 56
lim sin x  (sin x ) sin x
Q.158 x  / 2
is equal to-
1  sin x  n sin x
(A) 4 (B) 2
(C) 1 (D) None of these
Sol. [B] take sin x = t
1  t t (1  nt )
lim t  (t) t
t 1
By L' Hospital = lim
t 1 1
1  t  nt 1 
t
t t 2
lim  {t (1 / t )  t (1  nt ) } = 2
t 1
1/ t 2

2x 3x
Q.159 lim 3  2 is equal to-
x 0
x
9 8
(A) log (B) log
8 9
9
(C) –log (D) log 72
8

 3  1 2  1
2x 3x
 lim
Sol.[A] xlim
0 
  = x 0

 x x 
 2x
3 1 2 3x  1 

 2  3

 2 x 3x 

9
= 2 log 3 – 3 log 2 = log 9 – log 8 = log  
8
Q.160 lim log 2 (tan2 2x) is equal to-
x 0 tan x

(A) 2 (B) e2
(C) 1 (D) e
log (tan 2 2 x )   
Sol. [C] xlim
0    By L' hospital
 
log tan 2 x
Q.161 If A and B are square Matrices of order 3 such that |A| = –1 , |B| = 3 then |3AB| = ---------
(A) –9 (B) –81 (C) –27 (D) 81
Sol. [B] |3AB| = 3 × 3 × 3 |A| |B| = 27 (–1) (3) = –81
4 2
Q.162 If A =   , then (A –2I) (A –3I) =
 1 1 
(A) A (B) I (C) 0 (D) 5I
  4 2 1 0     4 2  1 0 
Sol. [C]     2   
    3  
  1 1  0 1      1 1  0 1  
 2 2 1 2  0 0 
=    =   =0
  1  1   1  2 0 0
  
Q.163 If   is square root of I2, then ,  and  will satisfy the relation-
   
(A) 1 + 2 +  = 0 (B) 1 –2 +  = 0
(C) 1 + 2 –  = 0 (D) 2 +  = 1
2
   1 0       1 0
Sol. [D]  =   =
   

0 1
           0 1

Corporate Office: CP Tower, Road No.1, IPIA, Kota (Raj.), Ph: 0744-2434159 LIMIT 57
 2   0  1 0
  =  2 +  = 1
 0
2
    0 1

x 2 y2
Q.164 A circle of radius r is concentric with an ellipse  = 1. If common tangent is inclined to the major axis at
a 2 b2
an angle of , then tan2 equals-
r2  b2 r 2  b2
(A) (B)
a 2  b2 a2  r2
r 2  b2 r2  a2
(C) (D)
r2  a2 b2  r 2

Sol. [B]

equation of ellipse
x 2 y2
 = 1 Equation of circle x2 + y2 = r2
a 2 b2
Equation of tangent to ellipsey = mx ± a 2m2  b2
Equation of tangent to circle y = mx ± r 1  m2
for common tangent ± r 1  m 2 = ± a 2 m 2  b 2
r2 + r2m2 = a2 m2 + b2  a2m2 – r2m2 = r2 – b2
r 2 – b2 r 2 – b2
m2 =  tan 2
 =
a2 – r2 a2 – r2
lim x2 1  3 x3 1
Q.165 x  4
is equal to-
x 4 1  5 x 4 1
(A) 1 (B) –1
(C) 0 (D) 2
Sol. [C]
Q.166 lim { lim (92m ( n x))} where x  R then-
m  n 
(A) 1 if x  Rational (B) 0 if x is irrational
(C) 1 if x is irrational (D) 0 if x is rational.
Sol. [ ]
e sin x  1
Q.167 Find value of xlim
0
x

 (sin x ) 2 
lim 1  sin x   ....  1
Sol. x 0  2 

x
 
lim sin x 1  sin x  .....
x 0 2
x  

 
lim sin x . lim 1  sin x  ..... = 1.1 = 1
x 0 x 0  2 
x  

Q.168 lim x ( x  c – x )
x 

Corporate Office: CP Tower, Road No.1, IPIA, Kota (Raj.), Ph: 0744-2434159 LIMIT 58
Sol. lim x ( xc – x )
 xc  x 
x 
xc  x
lim x  x  c  x c x c
 xlim
x 
xc  x  x  1 c / x 1  =
2
x (1  a cos x )  b sin x
Q.169 If xlim
0 3
= 1 then find a, b
x
  x2   x3 
 
Sol. lim x 1  a 1  2  ....   b  x  3  .... = 1
x 0     
x3
3
lim x (1  a  b)  x (b / 6  a / 2).... = 1
x 0
x3
This is only possible when
1+a–b=0 ....(1)
b/6 – a/2 = 1 ....(2)
From (1), (2) a = –5/2, b = –3/2

Q.170 lim [sin x ] , where [.] is GIF, is


x0

(A) 0 (B) –1
(C) 1 (D) does not exist
LHL  1 
Sol.[D] As  does not exist
RHL  0 

 x 100  x 99  ......  4 
Q.171 The limit, lim   is

x 
 x 100  x 
(A) 1 (B) 10
(C) 100 (D) None of these

1 0 
Sol.[A] As the degree of Num. & den. is same so take common x100 we get lim   1
x  1  0 

1 1 
1 1 
Q.172 lim  + + +....... .........+  is equal to -
n   n n2  n n 2  2n n2  ( n – 1) n 

(A) 2 + 2 2 (B) 2 2 – 2
(C) 2 2 (D) 2 [B]

( x  1)10  ( x  2)10  ...  ( x  100)10


Q.173 lim =
x  x10  1010
(A) 0 (B) 1
(C) 10 (D) 100 [D]
2 2
(a  x ) sin(a  x )  a sin a
Q.174 The value of xlim
0
is
x
2 2
(A) a cos a + 2a sin a (B) a sin a + 2a cos a
(C) a2 cos a + a2 sin a (D) None of these
Corporate Office: CP Tower, Road No.1, IPIA, Kota (Raj.), Ph: 0744-2434159 LIMIT 59
(a  x ) 2 sin(a  x )  a 2 sin a
Sol.[A] Here xlim
0
x
d
= (a2 sin a) = a2 cos a + 2a sin a
da
log x n  [ x ]
Q.175 The value of xlim

, n  N and [.] is G.I.F.
[x]
(A) –1 (B) 0
(C) +1 (D) Does not exist
n n
Sol.[A] lim log x  [ x ] = lim log x  x
x  x 
[x] x
1 n
lim .nx n 1  1 lim 1
 x  x n = x  x =–1
1 1
tan 2 x  n sin x
Q.176 If m, n  I0 and xlim
0 = some integer then value of this limit is
x3
(A) 3 (B) 2
16  n
(C) (D) None of these
12

Sol.[A] lim tan 2 x  n sin x = I


x 0 3
x
8x 3 nx 3
2 x  .....  nx 
 xlim
0 3! 3! = I
3
x
 16  n  3
lim (2  n ) x    x  .....
 x 0  6  =I
x3
16  n
 n = 2 and value = =3
6
n n
1
Q.177 If  t r  2(3n  1) ,  n  1 then nlim
  tr
is equal to
r 1 r 1

(A) 3 (B) 3/2 (C) 3/4 (D) 3/8


n

Sol. [D]  t r = 2(3 n


– 1)
r 1
 t1 + t2 + …..+ tn = 2(3n – 1)
We can do tn = Sn – Sn–1
 tn = 2(3n –1) – 2(3n–1 – 1)
= 2[3n – 3n–1] = 4.3n–1 Now,
n 1
1 1  1  1 3
lim
n   4.3n 1 = . 1   ..... =
4  3
. 
 4 1  
1 =
8
r 1
 3
12  2 2  32  .....  n 2
Q.178 Let  = nlim
 3
&
n

Corporate Office: CP Tower, Road No.1, IPIA, Kota (Raj.), Ph: 0744-2434159 LIMIT 60
(13 – 12 )  ( 23 – 2 2 )  .......  (n 3 – n 2 )
= nlim
 then-
n4
(A)  =  (B)  < 
(C) 4 – 3 = 0 (D) 3 – 4 = 0

12  2 2  32  ......  n 2 1
Sol.[D]  = nlim
 =
3
n 3
3 3 3
1  2  .....  n 1  2 2  .....  n 2
2
 = nlim
 4

n n4
1 1
= –0=
4 4
1 1
 3 – 4 = 3 × –4× =1–1=0
3 4
Q.179 The value of the xlim
0
(1 + sin x)2cotx is -

(A) e3 (B) e
2
(C) e (D) None of these

Sol.[C] xlim
0
(1+sin x)2cot x (1 form)
lim cos x
= e x0 (1  sin x –1)  2cot x = lim 2 sin x 
sin x
e x 0
= e xlim
0 2 cos x = e
2

Q.180 lim sin x =


x 
x
(A) 1 (B) 2
(C) 0 (D)does not exist
h sin x sin  [–1to1]
Sol.[C] x 
= = =0
x  

Q.181 lim sin[cos x ] ( [ ] denotes greatest integer function ) equal -


x 0 1  [cos x ]

(A) 1 (B) 0
(C) does not exist (D) None of these
Sol. [B] (i) If x = Rational No. then h n . x = Integer 
h 
 cos ( |n . x) = (–1 or 1)
cos2n ( |n x) = + 1
h (1 + cos2m ( |n x)) = 1 + 1 = 2
n  m

h |n x= (Non Integer)


(ii) If x Irrational No then n 
 – 1 < cos ( |n x) < 1
h
 m 
n 
(cos2m( |n x)) = 0  (less than 1) = 0
h
 m 
n 
(1 + cos2m |n x) =1 + 0 = 1

1 – tan x      
Q.182 Let f(x) =
4x – 
, x  ,x 0, 2  . If f(x) is continuous in 0, 2  , then f  4  is -
4      
Corporate Office: CP Tower, Road No.1, IPIA, Kota (Raj.), Ph: 0744-2434159 LIMIT 61
1 1
(A) – 1 (B) (C) – (D) 1
2 2
 h 1 – tan x 0
Sol. [C] f   = x  / 4
= from
4 4x –  0
– sec 2 x
h – sec 2  / 4
Dh = x  / 4
=
4 4
2
– sec  / 4 2 1
= = – =–
4 4 2
x100  x 50  50
Q.183 lim is
x  x100  x
(A) 100 (B) 10
(C) 1 (D) None of these
Sol.[C] Degree (Num.) = degree (den.)
Ans = 1
1/ n
 en 
Q.184 lim   is
n   
 
(A) 1 (B) e
(C) e2 (D) e
1
 en n
Sol.[B] y  lim  
n    
 

1.  en 
 y  lim log 
n  n   
 
log y = 1  y =e
x4
Q.185 lim  x  6  =
x 
 x 1 
(A) e (B) e4 (C) e5 (D) e6
x4
Sol.[C] lim  x  6  = 1 form
x 
 x 1 
lim ( x  4)  x 6 –1 lim ( x  4)   ( x 6) –( x 1) 
  x 1  = x  x 1 
e x e  

5 x  20
= lim = e5
e x x 1

Q.186 lim {x} sin( x – 2) =


x 2 2
( x – 2)
(A) 0 (B) 
(C) 1 (D) does not exist
Sol.[C] x 2  x = 2 + h
+

sin( 2  h – 2)
limit = hlim {2 + h}
0 ( 2  h – 2) 2
sin h
= hlim
0
h× = 1.
h2
Q. 187 If [x] denotes the greatest integer  x, then

Corporate Office: CP Tower, Road No.1, IPIA, Kota (Raj.), Ph: 0744-2434159 LIMIT 62
1
lim 2 2 2 2
n 3 {[1 x] + [2 x] + [3 x] + ….+ [n x]} equals :
n 

(A) x/2 (B) x/3


(C) x/6 (D) 0
Sol. [B] xI, [x] = x
12 x  2 2 x  .....  n 2 x x (12  2 2  .....  n 2 )
Lim  Lim
n  n3 n  n3
1
= x. (difference of power of Nr and Nr is one)
3
x 2  9 x  20 x 2  9 x  20 x 2  9 x  20 x 2  9 x  20
Q. 188 If P = lim  lim and Q = lim  lim ,
x 5 x  [x] x 4 x  [x] x 4 x  [x ] x 5 x  [x]
[] = G.I.F., then P/Q =
(A) 1 (B) 2
(C) 3 (D) None
x 2  9 x  20 x 2  9x  20
Sol. [D] P = Lim  Lim
x 5 x  [x] x 4 x  [x]
( x  4) ( x  5) ( x  4) ( x  5)
= Lim  Lim
x 5 x 5 x 4 x 3
=1–0=1
x 2  9 x  20 x 2  9 x  20
Q = Lim  Lim
x 4 x  [x] x 5 x  [x]
( x  4) ( x  5) ( x  4) ( x  5)
= Lim  Lim
x 4 
x4 x 5 x4
= – 1 – 0 = – 1, P/Q = – 1

1 
Q.189  2 (1  cos 2 x ) is
 
lim
x 0 x
(A) 1 (B) –1
(C) does not exist (D) None of these [C]

f ( x )e nx  g ( x )
Q.190 If x > 0 and g is a bounded function, then lim is
n  e nx  1
(A) 0 (B) f(x)
(C) g(x) (D) None [B]
x.2 x  x
Q.191 lim equals
x  0 1  cos x

1
(A) log 2 (B) log 2
2
(C) 2 log 2 (D) None [C]

Corporate Office: CP Tower, Road No.1, IPIA, Kota (Raj.), Ph: 0744-2434159 LIMIT 63
Q.192 lim x cos    sin    is -
x 
 4x   4x 
 
(A) (B)
2 4
(C) 1 (D) None of these [B]
lim 1  cot 3 x
Q.193  is -
x
4 2  cot x  cot 3 x
11 3
(A) (B)
4 4
1
(C) (D) None of these [B]
2

Q.194 lim 1  x 4  (1  x 2 ) is –
x 
x2
(A) 0 (B) – 1 (C) 2 (D) – 2 [A]

Q.195 lim  3x 
 9x 2  x 
 equals?
x    

1 1 1 1
(A) (B) (C) – (D) – [B]
3 6 6 3

lim n!
Q.196 is equal to -
n  ( n  1) !  n !
(A) 0 (B) 
(C) 1 (D) None of these [A]

Q.197 The value of xlim



x1/x is -

(A) 0 (B) 1
(C)  (D) None of these [B]
 x3 1 
Q.198 If xlim 
  x 2  1
 (ax  b)  = 2, then -
 
(A) a = 1, b = 1 (B) a = 1, b = 2
(C) a = 1, b = – 2 (D) None of these [C]
log( x  a )
Q.199 The value of lim is -
x a log(e x  e a )
(A) 1 (B) – 1
(C) 0 (D) None of these [A]
3
lim x 2 1  x3 1
Q.200 x  4
equals -
5
x4 1  x4 1
(A) 1 (B) 0
(C) – 1 (D) None of these [B]
x2
lim e  cos x
Q.201 x 0
is -
x2

Corporate Office: CP Tower, Road No.1, IPIA, Kota (Raj.), Ph: 0744-2434159 LIMIT 64
3 1
(A) (B)
2 2
2
(C) (D) None of these [A]
3
sin px
Q.202 If xlim
0 tan 3x
= 4, then p is equal to -

(A) 6 (B) 9 (C) 12 (D) 4 [C]


 x 3 
Q.203 The value of xlim  log a
3 
 is -
 x  6  3 
(A) loga 6 (B) loga 3
(C) loga 2 (D) None of these [A]

Q.204 lim ([x – 3] + [3 – x] –x), where [.] denotes the greatest integer function, is equal to -
x 3

(A) 4 (B) – 4
(C) 0 (D) None of these [B]
 4 
Q.205 The value of xlim

3x sin  x  is -
3 
(A) 4 log 3 (B) 3 log 4
(C) 4 (D) None of these [C]

Q.206 If xlim
0
(1 + ax)b/x = e2, (a, b  N), then -

(A) a = 4, b = 2 (B) a = 8, b = 4
(C) a = 16, b = 8 (D) None of these [D]
 sin(1  [ x ])
 , [x]  0
Q.207 If f(x) =  [x] then lim f(x) is -
x 0

 0, [x]  0
(A) – 1 (B) 0
(C) 1 (D) None of these [B]

Q.208 lim log (1 / 4 1 / 8 1 / 16 ......to n terms)


is equal to -
n  0.2 5

(A) 2 (B) 4 (C) 8 (D) 0 [B]

Q.209 If f(x) = [2x], then -

(A) lim f(x) = 0


x 1/ 2 

(B) lim f(x) = 1


x 3 / 4 

(C) xlim
1 / 2
f(x) = 0

(D) x lim
3 / 4
f(x) = 2 [B]

Q.210 The value of


 3 1
 x  2x 
1 
 x  4 x  2  is -
lim    
x  2  x 3  8   x2 x 2  
   

Corporate Office: CP Tower, Road No.1, IPIA, Kota (Raj.), Ph: 0744-2434159 LIMIT 65
(A) 1/2 (B) 2
(C) 1 (D) None of these [A]

Q.211 lim [log n – 1(n).log n(n + 1).log n + 1


n 

(n + 2)… log n k 1 (nk)] is equal to -


(A)  (B) n
(C) k (D) None of these [C]
n
1  2  32  ...  r 2
2 2
Q.212 If tr =
13  2 3  33  ....  r 3
and Sn = 
r 1

(–1)r.tr, then nlim S is given by -


 n

2 2 1 1
(A) (B) – (C) (D) – [B]
3 3 3 3
x x  x 
Q.213 The value of nlim

cos   cos   …cos  n  is-
2
  4
  2 
sin x
(A) 1 (B)
x
x
(C) (D) None of these [B]
sin x

Q.214 lim (1+ x) (1 + x2) (1 + x4) ….. (1 + x2n), | x | < 1, is equal to -


n 

1 1
(A) (B)
x 1 1 x
(C) 1 – x (D) x – 1 [B]
2 2 2 2
Q.215 lim tan[e ]x  tan[ e ]x is,
x 0
sin 2 x
(where [.] is G.I.F.) -
(A) 0 (B) 8
(C) 15 (D) None of these [C]
e x  e tan x
Q.216 The value of xlim
0
equals -
x  tan x
(A) 0 (B) 1 (C)  (D) ½
 x  tan x
 1  tan x 
e .
Sol.[B] xlim  x  tan x  e =1
0   
    
1 1

f (x)  1
Q.217 If f(1) = 1, f (1) = 2 then lim
x 1 =
x 1
(A) 2 (B) 1 (C) 3 (D) 4
f (x)  1 0
Sol.[A] lim
x 1
; form
x 1 0

Corporate Office: CP Tower, Road No.1, IPIA, Kota (Raj.), Ph: 0744-2434159 LIMIT 66
1
.f ' ( x )
2 f (x) f ' (1)
 lim
x 1 = . 1 =2
1 f (1)
2 x
1
2 2 1
Q.218 lim (a  h ) . sin (a  h )  a sin a equals -
h 0
h
(A) a2 cos a + 2a sina
(B) – a2 cos a – 2a sin a
a2
(C) + 2a sin–1 a
1 a2
(D) none of these
d
Sol.[C] The limit equals (a2 sin–1 a)
da
a2
 + 2a sin–1 a
1 a2

lim 1  cos x 2
Q.219 x 0
equals -
(1  cos x )

1
(A) 2 (B)
2
(C) 1 (D) none of these

x4
11 .....
Sol.[A] xlim 2! = 2
0
x2
11 .....
2!
x.e1/ x
Q.220 The value of xlim
0 
is -
1  e1/ x
(A) 0 (B) 1
(C)  (D) none of these

lim  x.e
1/ x 

Sol.[A] As we are RHL so x 0  1  e1/ x 
 
 1 
x.e1/ x  2 .  e1/ x
lim x 
x 0
 1 
= e1/ x  2  =0
x 
Q.221 lim  4  1  equals to -
x 2
 x2  4 2  x 

Corporate Office: CP Tower, Road No.1, IPIA, Kota (Raj.), Ph: 0744-2434159 LIMIT 67
1 1 3 3
(A) – (B) (C) – (D)
4 4 4 4

lim  4  1  lim  4  x  2  lim  ( x  2) 1


Sol.[A] x 2
 x 2  4 x  2  = x 2  x 2  4  = x 2 ( x  2) ( x  2) = 4
sin 1 x  tan 1 x
Q.222 xlim
0
equals -
x3
(A) 1 (B) –1 (C) 1/2 (D) –3/2
Sol.[C] Hint : First once L' Hospital then rationalization
(1  x )1/ x  e
Q.223 The limit, xlim
0
equals -
x
(A) e (B) e/2 (C) – e (D) – e/2
Sol.[D] y = (1 + x) 1/x
 log y = 1/x log (1 + x)
 x  x
 1 ...   ...
 y = e 2 
 e.e 2
  x ..... 
lim e e 2  1 e
 
x 0   
so 2
x
2x
 x 
Q.224 If f (x) =   then -
2x 

(A) xlim

f (x) = e–6 (B) xlim

f (x) = 2

(C) xlim

f (x) = e–3 (D) xlim

f (x) = e–4
2x 2x
lim  x   2 
lim  2  x 
Sol.[D] x   2  x 
; 1 form  e = e–4 x   

Q.225 lim  1  1  1  ...  1 


 equals -
n   2.3 3.4 4.5 n.( n  1) 

(A) 1 (B) 0 (C) 1/2 (D) 2

lim  1  1  1  1  ...  1  1  1
Sol.[C] n  2 3 3 4 n n  1  
  2
sin x
sin x  (sin x )
Q.226 lim
 1  sin x  ln sin x equals -
x
2
(A) 1 (B) 2
(C) 3 (D) 4
t  tt 0
Sol.[B] Put t = sin x  lim ,
t 1 1  t  log t 0
1  t t (1  log t )
lim 0
t 1 1 ,
0 1  0
t
 1
0  t t  0    (1  log t ).(t t (1  log t ))
 t 1  1
lim = =2
t 1 1 1
0 2
t

Corporate Office: CP Tower, Road No.1, IPIA, Kota (Raj.), Ph: 0744-2434159 LIMIT 68
1
Q. 227 The value of
(1  cos 2 x ) is -
2
lim
x 0 x
(A) 1 (B) –1
(C) 0 (D) None of these
1
 2 sin 2 x | sin x |
Sol.[D] 2  lim = does not exist
lim x0 x
x 0 x
x  sin x n
n
Q. 228 If lim is nonzero finite, then n may be equal to
x 0 x  sin n x
(A) 1 (B) 2
(C) 3 (D) None of these
Sol.[A] Clearly by option at x = 1
x´ sin x´
lim = 1 (non zero and finite)
x 0 x  sin´x
tan(ax 2  bx  c)
Q.229 If  is a repeated root of ax2 + bx + c = 0, then lim is -
x  ( x  ) 2
(A) a (B) b
(C) c (D) 0
tan ( x   ) 2
Sol.[A] lim =a
x  ( x  ) 2
log e [ x ]
Q.230 lim , where [x] denotes the greatest integer less than or equal to x, is -
x  x
(A) 1 (B) –1
(C) 0 (D) does not exist
x log x 1/ x
Sol.[C] [ x ]  x xlim
 x
= lim
x  1
=0

y3
Q.231 lim as (x, y)  (1, 0) along the line y = x – 1 is given by
x 1 x3  y2 1
(A) 1 (B) 
(C) 0 (D) none of these
y3
Sol.[C] lim
x 1 x 3  y 2  1 , y = x – 1
y 1

( x  1) 3 0
lim 3 2 ,
x 1 x  ( x  1)  1 0
3( x  1) 2
lim =0
x 1 3x 2  2( x  1)

Q. 232 If a = min {x2 + 4x + 5, x  R} and


n
1  cos 2
b = lim
 0  2
then the value of a
r 0
r
.b n  r is-

n 1
2 1
(A) (B) 2n + 1 – 1
n
4 .2
Corporate Office: CP Tower, Road No.1, IPIA, Kota (Raj.), Ph: 0744-2434159 LIMIT 69
2 n 1  1
(C) (D) none of these
3 .2 n
4.1.5  4 2
Sol.[D] a = min{x2 + 4x + 5} = =1
4 1
1  cos 2
b = lim =2
 0 2
n n

r 0
a r .b n  r = 1.2
r 0
n r

= 2n(1 + 2–1 + 2–2 + .... + 2–n)

= 2n 1

 1  1 / 2  n 1   = 2 n+1
–1
1  (1 / 2) 
 
3 f (x)
Q.233 If f(9) = 9 and f ´(9) = 1, then lim is equal to -
x 9 3 x
(A) 0 (B) 1
(C) –1 (D) None of these
1f ´(x )
0
3 f (x) 0 2 f (x)
Sol.[B] lim ,  lim
x 9 3 x 0 x 9 1
0
2 x
f ´(9) 1 3  2
=+ × 2 9 = =1
2 f (9) 23
e x  e tan x
Q.234 The value of xlim
0
equals -
x  tan x
(A) 0 (B) 1 (C)  (D) ½
 e x  tan x  1 
 . tan x
Sol.[B] xlim  x  tan x  e =1
0 
      
1 1

f (x)  1
Q.235 If f(1) = 1, f (1) = 2 then lim
x 1 =
x 1
(A) 2 (B) 1 (C) 3 (D) 4
f (x)  1 0
Sol.[A] lim
x 1
; form
x 1 0
1
.f ' ( x )
2 f (x) f ' (1)
 lim
x 1 = . 1 =2
1 f (1)
2 x
1 2 2 1
Q.236 lim (a  h ) . sin (a  h )  a sin a equals -
h 0
h
(A) a2 cos a + 2a sina
(B) – a2 cos a – 2a sin a

Corporate Office: CP Tower, Road No.1, IPIA, Kota (Raj.), Ph: 0744-2434159 LIMIT 70
a2
(C) + 2a sin–1 a
1 a2
(D) none of these
d
Sol.[C] The limit equals (a2 sin–1 a)
da
a2
 + 2a sin–1 a
1 a2

lim 1  cos x 2
Q.237 x 0
equals -
(1  cos x )

1
(A) 2 (B)
2
(C) 1 (D) none of these

x4
11 .....
Sol.[A] xlim 2! = 2
0
x2
11 .....
2!
x.e1/ x
Q.238 The value of xlim
0 
is -
1  e1/ x
(A) 0 (B) 1
(C)  (D) none of these

lim  x.e
1/ x 

Sol.[A] As we are RHL so x 0  1  e1/ x 
 
 1 
x.e1/ x  2 .  e1/ x
lim x 
x 0
 1 
= e1/ x  2  =0
x 
Q.239 lim  4  1  equals to -
x 2
 x2  4 2  x 
1 1 3 3
(A) – (B) (C) – (D)
4 4 4 4

lim  4  1  lim  4  x  2 
x 2
Sol.[A]  x 2  4 x  2  = x 2  x 2  4 
lim  ( x  2) 1
= x  2 ( x  2) ( x  2) = 4
sin 1 x  tan 1 x
Q.240 xlim
0
equals -
x3
(A) 1 (B) –1 (C) 1/2 (D) –3/2
Sol.[C] Hint : First once L' Hospital then rationalization
(1  x )1/ x  e
Q.241 The limit, xlim
0
equals -
x
(A) e (B) e/2 (C) – e (D) – e/2
Corporate Office: CP Tower, Road No.1, IPIA, Kota (Raj.), Ph: 0744-2434159 LIMIT 71
Sol.[D] y = (1 + x)1/x  log y = 1/x log (1 + x)
 x  x
 1 ...   ...
y= e 2   e.e 2
  x ..... 
lim e e 2  1 e
 
x 0   
so 2
x
2x
 x 
Q.242 If f (x) =   then -
2x 

(A) xlim

f (x) = e–6 (B) xlim

f (x) = 2

(C) xlim

f (x) = e–3 (D) xlim

f (x) = e–4
2x 2x
lim  x  lim 
 2 

Sol.[D] x   2  x 
; 1 form  e 
= e–4 x   2  x 

Q.243 lim  1  1  1  ...  1 


 equals -
n   2.3 3.4 4.5 n.( n  1) 

(A) 1 (B) 0 (C) 1/2 (D) 2

Sol.[C] lim  1  1  1  1  ...  1  1   1


n 2 3 3 4 n n  1 
 2
 x2 
 
lim
Q.244 The value of x 0 


0
sec 2 t dt 

is :
 x sin x 

(A) 3 (B) 2
(C) 1 (D) 0
x2

 sec
2 x2
t dt
 sec
2
t dt
Sol.[C] xlim
0
0  xlim
0 0
 sin x 
x x x2
 x 
sin x
 xlim
0
=1
x
Apply L-Hospital rule
2 2
lim sec x .2 x
x 0
2x
2
sec 0 = 1

lim  1  2  ......  n  =
2 2 2
Q.245 n   3 3 3 
n n n 
1 1
(A) (B)
6 3
2
(C) (D) None of these
3
2 2 2
Sol.[B] lim 1  2  .....  n
n 
n3

Corporate Office: CP Tower, Road No.1, IPIA, Kota (Raj.), Ph: 0744-2434159 LIMIT 72
lim n ( n  1)(2n  1)
n 
6n 3
n 3 [1  1 / n ][2  1 / n ] 2 1
 nlim
 = =
6n 3 6 3
lim sin x  x
Q.246 x0 =
x3
1 1 1 1
(A) (B) – (C) (D) –
3 3 6 6
lim sin x  x  0 
Sol.[D] x  0 3  form 
x 0 
L. Hospital rule

lim cos x  1 lim  2 sin 2 ( x / 2)


x0 = x 0
3x 2 4  ( x / 2) 2  3

2 1
= = 
3 4 6
Q.247 If 1 + sinx + sin2 x + ……to  =4+2 3

0 < x <  then :


 
(A) x = (B) x =
6 3
   2
(C) x = or (D) x = or
3 6 3 3
lim x
Q.248 x    x  3  equals :
 x2
(A) e (B) e–1 (C) e–5 (D) e5
Sol.[C] Given limit is ( 1 form)

lim x  x  3 1
limit =
e x   x2 

lim x  5 
= = e–5
e x   x 2 

lim 1 – cot 3 x
Q.249 x  / 4
is -
2 – cot x – cot 3 x
(A) 11/4 (B) 3/4
(C) 1/2 (D) None of these
h (1 – cot x ) (1  cot x  cot 2 x ) 1  1  1 3

Sol.[B] x  4 (1 – cot x ) (cot 2 x  cot x  2) = 2  1  1 = 4 .
1/ 2 1/ 3
Q.250 lim (cos x ) – (cos x ) is -
x 0
sin 2 x
(A) 1/6 (B) – 1/12 (C) 2/3 (D) 1/3

Corporate Office: CP Tower, Road No.1, IPIA, Kota (Raj.), Ph: 0744-2434159 LIMIT 73
1 1
(cos x ) 2 – (cos x ) 3  
h 0
x  0
Sol. [B] 0
sin 2 x
1 2
– 1 –
h 1 (cos x ) sin x  (cos x ) 3 sin x
2
x 0 3
 – 2
2 sin x. cos x
1 2
2  1 (cos x ) 3
– –
h 1 (cos x )
x 0 3
  – 2
2 cos x
1 1 1

= – 2  2 3 
1
= – 12
x
 x 2  5x  3 
Q.251 If f(x) =  2 
 then xlim

f(x) is -
 x  x  2 
(A) e–4 (B) e3 (C) e2 (D) e4
x
 x 2  5x  3 
h
 
Sol. [D]  x   x 2  x  2   1 form
Using f9 = e9(f – 1)
h  x 2  5x  3  h (4 x  1) x
e x   – 1 e x 
 x.  x 2  x  2  = x2  x  2
41
 1 = e4
e

lim ax –1
Q.252 x 0
is -
ax – a

(A) 2 a log a (B) a log a

(C) log a (D) none of these


a x log a
h ax –1 0 h h
x 0
  x 0 1 1 ax
Sol. [A] ax – a 0  = x 0 2axlog a ×
2 ax
=2 a log a

lim sin( x 1 / 3 )n (1  3x )


Q.253 x 0 1/ 3 =
(tan 1 x ) 2 (e 5 x  1)
(A) 3/5 (B) 1/5
(C) 2/5 (D) None of these
 sin x1 / 3  1/ 3   log (1  3x ) 
 1/ 3
x  
  (3x )
 x    (3x ) 
Sol.[A] xlim
0 2
 tan 1 x   5x  1 
1/ 3

  . x . e . 5x1 / 3
 x   5x1 / 3 
   
= 3/5

Corporate Office: CP Tower, Road No.1, IPIA, Kota (Raj.), Ph: 0744-2434159 LIMIT 74
a b
Q.254 If lim x sin x , a, b, c  R – {0}, exists and
x 0 c
sin( x )
non-zero, then-
(A) a – b + c = 0 (B) a – b – c = 0
(C) a + b – c = 0 (D) None of these
b
a  sin x
 b
x   .x
 x 
Sol. [C] xlim
0  sin x c 
  c
 xc  . x
 
lim xa + b – c
x 0
For non zero value a + b – c = 0

Q.255 lim sin || x | 2 | 3 is-


x 1

(A) sin 2 (B) sin 1


(C) 0 (D) Does not exist

Sol. [A] R.H.L. hlim


0
sin ||1 + h –2| –3|

lim sin | 1 – h –3|  lim sin (2 + h) = sin 2


h 0 h 0
L.H.L.
lim sin |1 (1 – h) –2| –3|
h 0

lim sin |1 + h –3|  lim sin (2 – h) = sin 2


h 0 h 0

Q.256 lim |x| sin x =


x 0

(A) 0 (B) does not exist


(C) 1 (D) None of these

Sol. [C] Let y = xlim


0
|x|sinx 00 form

log y = xlim
0
sin x log |x| 0 × 
log | x | 
log y = xlim
 0 cosec x 

Apply L' Hospital rule


1/ x
log y = xlim
0
cosec x cot x
 sin x 
log y = xlim
0
–   tan x
 x 
log y = 0
y=1

Corporate Office: CP Tower, Road No.1, IPIA, Kota (Raj.), Ph: 0744-2434159 LIMIT 75
Q.257 If x > 0 and g is a bounded function, then

nx
lim f ( x )e  g ( x ) is-
n 
e nx  1
(A) 0 (B) f(x)
(C) g(x) (D) None of these
Sol. [B] g is a bounded function
 value of g is finite.

 g( x )  g( x )
e nx f ( x )  nx  f (x) 
lim  = f(x)
n  
 e  =
1
e nx [1  1 / e nx } 1

Q.258 lim  1 
4

9
 ..... 
n2 
=
n  3
n3  1 n3  1 n 3  1 
 n  1
(A) 1 (B) 2/3
(C) 1/3 (D) 0
12  2 2  32  ......  n 2
Sol. [C] nlim

1 n3
lim n ( n  1) (2n  1)
n  6 (1  n 3 )
3
lim n (1  1 / n ) (2  1 / n ) = 1. 2 = 1
n  3 3
6n (1 / n  1) 6 3

Q.259 Let f(x) = x(–1)[1/x], x  0, where [x] denotes the greatest integer less than or equal to x then, xlim
 0 f(x) =

(A) doesn't exist (B) 2


(C) 0 (D) –1
Sol. [C]  [1/x] = Integer
 (–1)[1/x] 1 or –1
lim
x 0 x (–1)[1/x]
lim (h ) (1 or  1)  0 
h 0 
lim (h ) (1 or  1)  0
h 0 
lim  (cos 1 x )
Q.260 x  1
is given by-
( x  1)

(A) 1/  (B) 1 / ( 2)

(C) 1 (D) 0
–1
Sol. [B] Let cos x = y
 x  –1, y  cos–1 (–1) y 
  y  y 
lim 
y 1  cos y   y 

Corporate Office: CP Tower, Road No.1, IPIA, Kota (Raj.), Ph: 0744-2434159 LIMIT 76
 y
 
lim y put y =  + h
y
2 . cos  y
2
h
 h
  sin  1
lim
h  2. 
h
2
  h . h =
2
2 
 
2
a 2 g(x). g(1/x) = g(x) + g(1/x)  g(x) = xn + 1
Q.261 lim n sin ( n!) , (0 < a < 1) =
n 
n 1 g(2) = 2n + 1 5 = 2n + 1
 n = 2  g(n) = n2 + 1
(A) 1 (B) +
(C) 0 (D) None of these lim (x2 +1) = 32 + 1 = 10
x 3

n a 1  sin 2 ( n!) Q.264 If f(x) = sin [x]/[x], [x]  0


( ) a 1 .[0, 1]
Sol. [C] nlim
  1 = = 0, [x] = 0
1   1 where [x] denotes the greatest integer less than
 n
= 0 × [0, 1] or equal to x; then xlim
0
f(x) equals-
( 0 < a < 1 a–1 –ve = 0) = 0
(A) 1 (B) 0
Q.262 lim log (1 / 4  1 / 8  1 / 16 ...n terms )
is (C) –1 (D) None of these
n  (0.2)
5

equal to-  sin[ x ]


, x  [0, 1)
Sol. [D]  [ x ]
(A) 2 (B) 4 
 0, x  [0, 1)
(C) 8 (D) 0
  1   RHL lim 0 = 0
   1 n   x 0 
1
log 5     
2
Sol. [B] nlim
 4 1  = lim sin [ x ]
  1   LHL
  2   x 0  [x]
(0.2)
1 1 
lim sin [  h ] = sin [ 1] = sin 1
1   h 0 [h ] [ 1]
5 2
log
( 0 .2 )    
Limit does not exist.
1 1
log   1 n
= 1
5 2
=
 a k and nlim
  log 5  
5 5 2 Q.265 If Sn = 
a n = a, then
k 1
log  2  1
= 5 5
5 1/ 2
log5 2  5 2 log5 2 =
(S n 1  S n )
log 5 ( 2) 2 =4
5 lim n is equal to-
Q.263 If g(x) is a polynomial satisfying
n 
 k
g(x) g(y) = g(x) + g(y) + g(xy) –2 for all real x k 1

(A) 0 (B) a (C) 2 a (D) 2a


and y and g(2) = 5, then xlim
3
g(x) is-
Sol. [A] Sn = a1 + a2 + …..+ an
(A) –8 (B) 10 Sn+1 = a1 + a2 +……+ an + an+1  Sn+1 –Sn = an+1
(C) 8 (D) None of these
Sol. [B] Put x = 2, y = 1
a n 1
lim n (n  1)  nlim a =a
g (2) g(1) = g(2) + g(1) + g(2) –2 n   n
4g (1) = 8 (g(2) = 5) 2
g(1) = 2
 nlim
 an+1 = a
Put y = 1/x

Corporate Office: CP Tower, Road No.1, IPIA, Kota (Raj.), Ph: 0744-2434159 LIMIT 77
a (A) 1 (B) 2/3 (C) 1/3 (D) 0 [C]
= =0

x 1
Q.266 If root of equation ax2 + bx + c = 0 is x =  and
Q.272 The value of xlim  3x  4 
  
3
is equal to
lim  3x  2 
root's are repeated then value of x 
(A) e–1/3 (B) e–2/3 (C) e–1 (D) e–2 [B]
2
sin(ax  bx  c) Q.273 The value of
2 is-
( x  ) lim cos  x  cos  x  cos  x  …cos  x 
n 
(A) a (B) –a 2 4 8  2n 
(C) 0 (D) None of these is
Sol. [A]  root's are repeated.
sin x
 ax2 + bx + c = a(x – )2 (A) 1 (B)
x

sin a ( x   ) 2  x
 xlim
  2  a=a (C) (D) None of these [B]
 a ( x  )  sin x
(1  cos 2 x ) sin 5x Q.274 Let f : R  R be a differentiable function
Q. 267 The value of xlim
0 2
is-
x sin 3x  1 
having f (2) = 6, f (2) =   . Then
(A) 10/3 (B) 3/10 (C) 6/5 (D) 5/6 [A]  48 
lim sin (cx  bx  a )
2
Q. 268 The value of x  1 f (x)
4t 3
 x  1
(where  and  are roots of ax2 + bx + c = 0) is-
lim
x 2 
6
x2
dt equals

  (A) 12 (B) 18 (C) 24 (D) 36 [B]


(A) c   (B)  
      sin x cos x tan x
1 c  1 1 Q.275 If f (x) = x3 x2 x , then
(C) (D)    [D] 2x 1 1
   
3
lim x2  2 3
x 1 lim f ( x ) is
Q. 269 x 1
is equal to- x 0
2
( x  1) x2
1 1 (A) 3 (B) –1 (C) 0 (D) 1 [D]
(A) (B) n
9 6
1 Q.276 If Sn = a k and lim an = a, then
n 
(C) (D) None of these [A] k 1
3
Q.270 Let the function f be defined by the equation S n 1  S n
if 0  x  1 lim n
is equal to
 3x
f (x) = 
5  3x if 1  x  2
, then
n 
k k 1

(A) lim f ( x )  f (1) (A) 0 (B) a (C) 2 a (D) 2a [A]


x 1
Q.277 Let f (a) = g (a) = k and their nth derivatives
(B) lim f (x)  3 f n (a), g n (a) exist and are not equal for some n.
x 1
If lim
(C) lim f (x)  2 x a
x 1
f (a )g ( x )  f (a )  g (a )f ( x )  g (a )
(D) lim f ( x ) does not exist [D] =
x1 g( x )  f ( x )
4, then the value of k is
Q.271 lim  1 
4

9
 ... 
n2 
 (A) 4 (B) 2 (C) 1 (D) 0 [A]
n  3
n3 1 n3 1 n 3  1 
 n  1
=

Corporate Office: CP Tower, Road No.1, IPIA, Kota (Raj.), Ph: 0744-2434159 LIMIT 78
2x a xy
 a b 
If xlim
 e
2
1   2  = e2, then the values sin 2 t
  e sin
Q.278 t
 dt
 x x  Sol.[A]
y a
of a and b are lim
x 0 x
(A) a  R, b  R (B) a = 1, b  R x y
2

(C) a  R, b = 2 (D) a = 1, b = 2 [B]  e sin t dt


= e y

Q.279 The value of lim lim


x 0 x 0 x
sin 2 ( x  y )
 e x log( 2 x 1)  ( 2 x  1) x sin x 
1/ x
= lim e .1  0 2
  is equal to  e sin y

 e x log x  x 0 1
 
1
(A) e (B) log 2
e
sin x , x  n, n  Z
(C) e log 2 (D) None [B] Q.285 If f(x) = 
lim sin(cx 2  bx  a )  2, otherwise
Q.280 The value of x
1 x 2  1 , x  0, 2
 x  1 
g(x) = 4 , x  0, then
(where  and  are the roots of ax2 + bx + c = 0)  5 , x2
is 
  lim g (f ( x )) is
(A) c   (B)   x0
     
(A) 1 (B) 5 (C) 6 (D) 7
1 c  1 1
(C) (D)    [D] Sol.[A] xlim g
 lim f ( x ) 

      0  x 0 
lim g (sin x )
 1  1   1  x0
1  2 1  2 ...1  2 
lim sin 2 x  1  1
Q.281 lim  2  3   n 
is equal x 0
n 0
 1  1   1   x, x  0
1  1  ...1   
 2  3   n  Q.286 If f(x) =  1, x  0 , then xlim f(x) is
0
to x 2 , x  0

1 1 (A) 0 (B) 1
(A) – (B) (C) 2 (D) – 2 [B]
2 2 (C) 2 (D) Does not exist
Sol.[A] f(0 – h) = hlim 0h  0
0
lim  cos 1 x 2
Q.282 x  1
is given by f(0 + h) = lim (0  h )  0
x 1 h 0
1/ x
1 1   
(A) (B) Q.287 lim tan   x  is
 2 x 0   4 
(C) 1 (D) 0 [B] (A) 1 (B) –1 (C) e2 (D) e
xb 1   
 tan   x  1
Q.283 lim  x  a  is equal to Sol.[C] lim e x  4  
x 
xb x 0
(A) 1 (B) e b–a
(C) e a–b
(D) e b
[C]  
sec 2   x   0
4  2
/4
a a  = esec  e2
1  lim e 1
 
2 2
Q.284 lim  e sin t dt  e sin t dt  is equal to
x 0 x   x 0
y xy  Q.288 If x is real number in [0, 1], then the value of
(where a is a constant) lim lim [1 + cos2m (n! x)] is given by
(A) esin2y (B) sin 2y esin2y m  n 
(C) 0 (D) None of these (A) 2 or 1 according as x is rational or irrational
(B) 1 or 2 according as x is rational or irrational
(C) 1 for all x
Corporate Office: CP Tower, Road No.1, IPIA, Kota (Raj.), Ph: 0744-2434159 LIMIT 79
(D) 2 or 1 for all x. x
(C) (D) None of
Sol.[A] mlim lim 1 + (cos2 n! x)m
 n 
sin x
these
Case I
when x is irrational = 1 + (cos2 ) sin x
x x x
= 1 + (0 to 1) = 1 + 0 = 1 Sol.[B] cos cos 2 ....cos n = n  x 
put x = 0 when x is rational 1 + cos 0 = 2 2 2 2 2 sin  n 
2 
sin(e x 1  1) by trigonometry
Q.289 lim is equal to
x 1 log x sin x
(A) 1 (B) 0
 x  x
(C) e (D) None of these
lim 2 n . sin  n  . n sin x
sin(e x 1  1)
= n  2  2 =
Sol.[A] lim x
x 1 log x  x 
 n
cos(e x 1  1).e x 1 2 
= lim
x 1 1 =1 sin x n
Q.293 For m, n  I+, Lt is equal to -
x x 0 (sin x ) m
 1 (A) 1, if n = m (B) – 1, if n > m
x sin  , x  0
Q.290 If f(x) =  x n
(C) (D) None of these [A]

 0 , x0 m
Q.294 Let f ''(x) be continuous at x = 0 and f '' (0) = 4.
lim f ( x )
Then x 0 Then value of
(A) is equal to 1 (B) is equal to – 1
2f ( x )  3f (2 x )  f ( 4 x )
(C) is equal to 0 (D) does not exist. lim is -
1
x 0 x2
Sol.[C] f(0 + h) = hlim
0
h sin = 0 sin  = 0 (A) 12 (B) 10
h
(C) 6 (D) 4 [A]
 1 
f(0 – h) = hlim
0
– h sin   = 0 sin (–) = 0
h Q.295 The value of lim 1 2  x  3 is -
Q.291 Suppose f : R  R is a differentiable function x 2 x2
and f(1) = 4. Then the value of 1 1
(A) (B)
2t
f (x) 8 3 4 3
lim
x 1  4( x  1)
dt is
(C) 0 (D) None of these [A]
(A) 8 f '(1) (B) 4 f '(1) x  sin x
(C) 2f '(1) (D) f '(1) Q.296 lim is equal to -
f (x)
x 0 x  sin 2 x

Sol.[A] lim
x 1
 2t dt
4
(A) 1
(C) 
(B) 0
(D) None of these [B]
x 1 20

= lim
2 f ( x ) f ( x )  0
= 2f(1) f (1) = 8f Q.297 x
k 1
k
 20
=
x 1 1 0 lim
x 1 x 1
(1)
Q.292 The value of (A) 20 (B) 210
(C) does not exist (D) None of these [B]
lim cos  x  cos  x  cos x
 … cos Q.298 If x1, x2 are real and distinct roots of
n 
2 4 8
ax2 + bx + c = 0, then
 x 
 n  is lim (1  sin (ax 2  bx  c))1 / x  x1 is equal
2  x  x1
sin x to -
(A) 1 (B)
x
Corporate Office: CP Tower, Road No.1, IPIA, Kota (Raj.), Ph: 0744-2434159 LIMIT 80
(A) e x1  x 2 (B)

e x 2  x1
(C) e a ( x 1  x 2 ) (D) e a ( x 2  x1 ) [C]

log e x n  [ x ]
Q.299 lim , n  N, ([x] denotes
x  [x]
greatest integer less than or equal to x) is equal
to -
(A) – 1 (B) 0
(C) 1 (D) does not exist [A]
a tan x  a sin x
Q.300 lim (a > 0) is equal to -
x  0 tan x  sin x

(A) – lna (B) lna


(C) 1 (D) – 1 [B]

Corporate Office: CP Tower, Road No.1, IPIA, Kota (Raj.), Ph: 0744-2434159 LIMIT 81

You might also like