Ilovepdf Merged
Ilovepdf Merged
   Ans d
4. This can be simplified as follows
                       ∞                                ∞
                                                1      𝑢
                     ∫ sin(𝑢) 𝛿(6𝑢 − 15𝜋)𝑑𝑢 = ∫   sin ( ) 𝛿(𝑢 − 15𝜋)𝑑𝑢
                 −∞                          −∞ 6      6
                  ∞
                    1      𝑢 + 15𝜋           1      15𝜋     1     5𝜋   1
               =∫     sin (        ) 𝛿(𝑢)𝑑𝑢 = sin (     ) = sin ( ) =
                 −∞ 6         6              6       6      6      2   6
   Ans a
                 ∞
5. The value of ∫−∞ 𝜙(𝑡)𝛿 ′ (𝑡) 𝑑𝑡 equals −𝜙 ′ (0). Let 𝜙1 (𝑡) = 𝜙(𝑡 + 𝛼)
                  ∞                           ∞
               ∫ 𝜙(𝑡 + 𝛼)𝛿     ′ (𝑡)
                                       𝑑𝑡 = ∫ 𝜙1 (𝑡)𝛿 ′ (𝑡) 𝑑𝑡 = −𝜙1′ (0) = −𝜙 ′ (𝛼)
                  −∞                         −∞
   Ans c
6. An example of a random signal is noise
   Ans a
7. The quantity
                        ∞                        ∞
                              𝑡       𝑡               2𝜏
                      ∫ sin ( ) 𝛿 ′ ( ) 𝑑𝑡 = 2 ∫ sin ( ) 𝛿 ′ (𝜏) 𝑑𝜏
                       −∞     3      2          −∞    3
    ∞
   ∫−∞ ϕ(𝑡) 𝛿 ′ (𝑡)𝑑𝑡 = −ϕ′ (𝑡)|𝑡=0. Hence,
            ∞
                   2𝜏                       2𝜏           2        2𝜏       4
        2 ∫ sin ( ) 𝛿 ′ (𝜏) 𝑑𝜏 = −2 sin′ ( )|      = −2 × cos ( )|      =−
           −∞       3                       3 𝜏=0        3        3 𝜏=0    3
   Ans a
                     8𝜋𝑛
8. 𝑥(𝑛) = sin ( 18 ) is a discrete time, power and periodic signal with period 𝑁 = 9. It is
   not an energy signal since its energy is infinite
   Ans d
           sin(𝑎𝑡)                               sin(𝐹𝑡)        sin(𝑎𝑡)
9. Note              ↔ 𝑝2𝑎 (𝜔). Given 𝑥(𝑡) =               =𝜋             with 𝑎 = 𝐹. The Fourier
             𝜋𝑡                                     𝑡             𝜋𝑡
   transform is 𝑋(𝜔) = 𝜋𝑝2𝐹 (𝜔). Hence, using Parseval’s relation, energy is
                                   ∞
                             1                 1
                               ∫ |𝑋(𝜔)|2 𝑑𝜔 =    × 𝜋 2 × 2𝐹 = 𝜋𝐹
                            2𝜋                2𝜋
                                −∞
                           1 sin(8𝑡)     1
   Therefore, energy of 2              is 4 × 𝜋8 = 2𝜋
                               𝑡
   Ans c
                              ∞
10. Area under impulse is ∫−∞ 𝛿(𝑡)𝑑𝑡 = 1
    Ans d
1. An eigenfunction of the LTI system is 𝑒 𝑗2𝜋𝑓0𝑡
   Ans d
              3𝜋        5𝜋
2. Given 𝑒 𝑗 7 𝑡 + 𝑒 𝑗 9 𝑡 .
                               3𝜋         3𝜋
                                               (𝑡+𝑇1 )                     7   14𝐾1
                          𝑒𝑗 7 𝑡 = 𝑒𝑗 7                  ⇒ 𝑇1 = 𝐾1 2𝜋 ×      =
                                                                          3𝜋    3
                                             18𝐾2
                                                         𝑇2 =
                                              5
                                      14𝐾1 18𝐾2 𝐾1 27
                          𝑇1 = 𝑇2 =         =      ⇒    =
                                        3      5     𝐾2 35
   Setting 𝐾1 = 27, 𝐾2 = 35 yields 𝑇1 = 𝑇2 = 126
   Therefore, fundamental period is 126
   Ans b
3. Given signal
                                          1 −1 ≤ 𝑡 < 0
                                𝑥(𝑡) = {−1 0 ≤ 𝑡 < 1
                                          0   otherwise
   given as input to LTI system with impulse response ℎ(𝑡) = 1 for 0 ≤ 𝑡 ≤ 1 and 0
   otherwise. Resulting output 𝑦(𝑡) is
                                            𝑡 + 1 −1 ≤ 𝑡 < 0
                                           1 − 2𝑡 0 ≤ 𝑡 < 1
                                 𝑦(𝑡) =      𝑡−2 1≤𝑡 <2
                                               0     𝑡 < −1
                                         {     0      𝑡>2
                                                              𝑑𝑦(𝑡)
    Hence, it can be seen that the only true statement is that 𝑑𝑡 = −2 for 0 ≤ 𝑡 < 1
   Ans b
4. The modulator is linear but not time-invariant
   Ans c
5. A linear time-invariant (LTI) system has to satisfy additivity, homogeneity and time-
   invariance properties
   Ans b
6. Given input 𝑥(𝑛) = 𝛼 𝑛 𝑢(𝑛) given to a discrete time LTI system with impulse response
   ℎ(𝑛) = 𝛽 𝑛 𝑢(−𝑛). Flip ℎ(𝑛) to get 𝛽 −𝑛 𝑢(𝑛). Shift by 𝑚 ≥ 0 to get
                                    ∞
                                                                                 1
                       𝑦(𝑚) = ∑ 𝛼 𝑛 𝑢(𝑛)𝛽−(𝑛−𝑚) 𝑢(𝑛 − 𝑚) = 𝛼 𝑚                        𝛼
                                                                                1−
                                    𝑛=0                                               𝛽
                                                   𝛽𝑚
    Similarly, for 𝑚 < 0, the output is                𝛼
                                                  1−
                                                       𝛽
   Ans a
7. Given the signal 𝑥(𝑡) = 2 − |𝑡| for |𝑡| ≤ 1 and 0 otherwise, which is a triangular pulse,
   input to an LTI system with impulse response ℎ(𝑡) = 𝑢(𝑡 + 3) − 𝑢(𝑡 − 3), which is a
   rectangular pulse. To evaluate the convolution, we flip 𝑥(𝑡) and shift while evaluating
   the area under the product. It can be seen that the peak is 3, which occurs when the
   triangular pulse completely overlaps with the rectangular pulse. Further, this happens
   for −2 ≤ 𝑡 ≤ 2
   Ans d
8. This property is termed as Additivity
    Ans a
9. The even component of 𝑒 𝜎𝑡 , for 𝜎 real is given as cosh(𝜎𝑡)
    Ans c
10. The input-output system corresponding to the ideal capacitor is causal but not
    memoryless
    Ans c
1. This property is termed as time-invariance
   Ans c
                                                                           𝑑𝑦(𝑡)
2. Given the system described by the linear differential equation 2                + 3𝑦(𝑡) = 𝑥(𝑡).
                                                                            𝑑𝑡
   Also 𝑦(0) = 2 and input signal 𝑥(𝑡) = 𝑒 −𝑡 . Let particular solution be 𝐶𝑒 −𝑡 . Then,
   substituting in the DE
                              −2𝐶𝑒 −𝑡 + 3𝐶𝑒 −𝑡 = 𝑒 −𝑡 ⟹ 𝐶 = 1
   Hence, particular solution is 𝑒 −𝑡 for 𝑡 > 0
   Ans b
3. Given 𝑅 = 2Ω, 𝐿 = 4𝐻
   As described in lectures, the input-output relation for this system is
                    𝐿 𝑑                             𝑑
                         𝑖𝐿 (𝑡) + 𝑖𝐿 (𝑡) = 𝑖(𝑡) ⇒ 2    𝑖 (𝑡) + 𝑖𝐿 (𝑡) = 𝑖(𝑡)
                    𝑅 𝑑𝑡                            𝑑𝑡 𝐿
   Ans a
4. Given ℎ(𝑛) = 𝛼 𝑛 𝑢(−𝑛), 𝛼 > 1 and 𝑥(𝑛) = 𝑢(𝑛) − 𝑢(𝑛 − 𝑁 − 1)
                                                                    1 − 𝛼 𝑛−1
           𝛼 𝑛 𝑢(−𝑛) ∗ 𝑢(−𝑛) = (1 + 𝛼 −1 + ⋯ + 𝛼 𝑛 )𝑢(−𝑛) =                   𝑢(−𝑛)
                                                                    1 − 𝛼 −1
                              𝛼 𝑛 𝑢(−𝑛) ∗ (𝑢(𝑛) − 𝑢(𝑛 − 𝑁 − 1))
                           = 𝛼 𝑛 𝑢(−𝑛) ∗ (𝑢(𝑁 − 𝑛) − 𝑢(−1 − 𝑛))
                      = 𝛼 𝑛 𝑢(−𝑛) ∗ (𝑢(−(𝑛 − 𝑁)) − 𝑢(−(𝑛 + 1)))
                       1 − 𝛼 𝑛−𝑁−1             1 − 𝛼𝑛
                     =             𝑢(−𝑛 + 𝑁) −          𝑢(−𝑛 − 1)
                         1 − 𝛼 −1              1 − 𝛼 −1
   For 𝑛 > 𝑁, this equals 0
                                    1−𝛼𝑛−𝑁−1
   For 0 ≤ 𝑛 ≤ 𝑁, this equals
                                     1−𝛼−1
   For 𝑛 ≤ −1, this equals
               1 − 𝛼 𝑛−𝑁−1 1 − 𝛼 𝑛       𝛼 𝑛 − 𝛼 𝑛−𝑁−1 𝛼 𝑛 (1 − 𝛼 −(𝑁+1) )
                           −          =               =
                 1 − 𝛼 −1    1 − 𝛼 −1       1 − 𝛼 −1        1 − 𝛼 −1
   Therefore, output is
                                    0            for   𝑛>𝑁
                               1 − 𝛼 𝑛−𝑁−1
                             (              )    for 0 ≤ 𝑛 ≤ 𝑁
                         =       1 − 𝛼 −1
                                  𝛼 𝑛 (1 − 𝛼 −(𝑁+1) )
                                 {                    for      𝑛 ≤ −1
                                       1 − 𝛼 −1
   Ans a
5. The input-output relation for this system can be found as follows. Given 𝑣𝑐 (𝑡) is the
                                                     𝑑𝑣𝑐 (𝑡)
   voltage across the capacitor. The current is 𝐶           , which implies that voltage across
                                                       𝑑𝑡
                          𝑑𝑣𝑐 (𝑡)
   the resistance is 𝑅𝐶          . Therefore, using KVL, it follows that
                            𝑑𝑡
                                                        𝑑𝑣𝑐 (𝑡)
                                     𝑣(𝑡) = 𝑣𝑐 (𝑡) + 𝑅𝐶
                                                            𝑑𝑡
   Ans d
6. Given eigenfunction (𝑡) = 𝑒 𝛼𝑡 , for Re{𝛼} > −1. The output corresponding to impulse
   response ℎ(𝑡) = 𝑒 −𝑡 𝑢(𝑡) is
                     ∞                         ∞
                                                                 1
                   ∫ 𝑒 −𝜏 𝑒 𝛼(𝑡−𝜏) 𝑑𝜏 = 𝑒 𝛼𝑡 ∫ 𝑒 −𝜏 𝑒 −𝛼𝜏 𝑑𝜏 =       𝑒 𝛼𝑡
                    0                         0                1 + 𝛼
                                                                          1
                      1
   The eigenvalue is 1+𝛼. The eigenvalue corresponding to eigenfunction 𝑒 2𝑡 is
                                           1       2
                                               =
                                           1       3
                                         1+2
   Ans c
7. As shown in lectures, the impulse response of the system 𝛼𝑦(𝑛 − 1) + 𝑥(𝑛) is
                                          𝛼 𝑛 𝑢(𝑛)
                                                             1
   Hence, the system 2𝑦(𝑛) = 𝑦(𝑛 − 1) + 2𝑥(𝑛) ⇒ 𝑦(𝑛) = 2 𝑦(𝑛 − 1) + 𝑥(𝑛) has the
                      1 𝑛
   impulse response (2) 𝑢(𝑛) = 2−𝑛 𝑢(𝑛)
    Ans d
8. This property is termed as Homogeneity
    Ans a
9. As shown in the lectures, the particular solution for this system is
                                             𝐶
                                                 𝑒 −𝛽𝑡
                                           𝛼−𝛽
    Ans c
10. This can be simplified as follows
                    ∞                              ∞
                                                      1      𝑢
                  ∫ sin(𝑢) 𝛿(𝛼𝑢 − 𝛽𝜋)𝑑𝑢 = ∫             sin ( ) 𝛿(𝑢 − 𝛽𝜋)𝑑𝑢
                   −∞                             −∞ 𝛼       𝛼
                             ∞
                                1       𝑢 + 𝛽𝜋               1     𝛽𝜋
                         =∫       sin (        ) 𝛿(𝑢)𝑑𝑢 = sin ( )
                            −∞ 𝛼          𝛼                  𝛼      𝛼
   Ans a
Assignment 4: Solution
  1. Given the LTI system is stable, the ROC of 𝐻(𝑠) must include the 𝑗𝜔 axis
     Ans a
  2. Given signal
                              𝑥(𝑡) = 𝑒 −3𝑡 𝑢(𝑡 − 2) − 𝑒 5𝑡 𝑢(4 − 𝑡)
                       = 𝑒 −6 𝑒 −3(𝑡−2) 𝑢(𝑡 − 2) − 𝑒 20 𝑒 5(𝑡−4) 𝑢(−(𝑡 − 4))
                                         𝑒 −6 𝑒 −2𝑠 𝑒 20 𝑒 −4𝑠
                                      ↔            +
                                           𝑠+3        𝑠−5
     ROC is −3 < 𝑠 < 5
     Ans d
                                             1
  3. 𝑒 −𝑎𝑡 𝑢(−𝑡) has Laplace transform − 𝑠+𝑎
                            𝑑         1           1
     𝑡𝑒 −𝑎𝑡 𝑢(−𝑡) has LT − 𝑑𝑠 (− 𝑠+𝑎) = − (𝑠+𝑎)2
                                 𝑑           1              2
     𝑡 × 𝑡𝑒 −𝑎𝑡 𝑢(−𝑡) has LT −        (− (𝑠+𝑎)2) = − (𝑠+𝑎)3
                                 𝑑𝑠
     Ans d
                              1
  4. Observe sin(𝜔0 𝑡) 𝑢(𝑡) = 2𝑗 (𝑒 𝑗𝜔0𝑡 − 𝑒 −𝑗𝜔0𝑡 )𝑢(𝑡). For 𝑅𝑒{𝑠} > 0, This has Laplace
     transform
                                1     1     1    1       𝜔0
                                          −          = 2
                                2𝑗 𝑠 − 𝑗𝜔0 2𝑗 𝑠 + 𝑗𝜔0 𝑠 + 𝜔02
                                                                      4
                        sin(−4𝑡) 𝑢(𝑡) = − sin(4𝑡) 𝑢(𝑡) ↔ −
                                                                  𝑠 2 + 16
     Ans a
  5. The Laplace transform of 𝑡𝑥(−𝑡) can be found as follows
                                                   ∞
                                          𝑋(𝑠) = ∫ 𝑥(𝑡)𝑒 −𝑠𝑡 𝑑𝑡
                                                  −∞
                             ∞                         ∞
                        ⇒ ∫ 𝑥(−𝑡)𝑒 −𝑠𝑡 𝑑𝑡 = ∫ 𝑥(𝑡)𝑒 𝑠𝑡 𝑑𝑡 = 𝑋(−𝑠)
                            −∞                         −∞
                                      ∞
                                                      𝑑
                                ⇒ ∫ −𝑡𝑥(−𝑡)𝑒 −𝑠𝑡 𝑑𝑡 =    𝑋(−𝑠)
                                   −∞                 𝑑𝑠
                                    ∞
                                                       𝑑
                                ⇒ ∫ 𝑡𝑥(−𝑡)𝑒 −𝑠𝑡 𝑑𝑡 = − 𝑋(−𝑠)
                                   −∞                 𝑑𝑠
     Ans c
  6. Consider the signal 𝑥(𝑡) = 𝑒 −2𝑡 𝑢(𝑡) + 𝑒 4𝑡 𝑢(−𝑡).The Laplace transform 𝑋(𝑠) of this
     signal is
                                    1        1               6
                                        −          =−
                                  𝑠+2 𝑠−4             (𝑠 + 2)(𝑠 − 4)
     ROC is −2 < 𝑅𝑒{𝑠} < 4
     Ans b
  7. Give the Laplace transform of the impulse response of an LTI system is a polynomial
     is 𝑠.
                              𝑁                             𝑁
                      𝑌(𝑠)         𝑘
                                                            𝑑𝑘 𝑥(𝑡)
                           = ∑ 𝑐𝑘 𝑠 ⟹ 𝑦(𝑡) = 𝑐0 𝑥(𝑡) + ∑ 𝑐𝑘
                      𝑋(𝑠)                                   𝑑𝑡𝑘
                              𝑘=0                          𝑘=1
   Hence, The relation between the input 𝑥(𝑡) and output 𝑦(𝑡) of the LTI system in the
   time domain can be described by a linear constant coefficient differential equation
   involving 𝑥(𝑡), 𝑦(𝑡) and higher order derivatives of 𝑥(𝑡) only
   Ans c
                                                                                  𝑡
8. Given signal 𝑥(𝑡) has Laplace transform 𝑋(𝑠), then the Laplace transform of 𝑥 (𝛽) for
                                           𝑡
   𝛽 < 0 can be evaluated as follows. Set 𝛽 = 𝑢
         ∞                  −∞                   ∞
            𝑡
       ∫ 𝑥 ( ) 𝑒 −𝑠𝑡 𝑑𝑡 = ∫ 𝛽𝑥(𝑢)𝑒 −𝑠𝛽𝑢 𝑑𝑡 = − ∫ 𝛽𝑥(𝑢)𝑒 −𝑠𝛽𝑢 𝑑𝑡 = −𝛽𝑋(𝛽𝑠)
        −∞  𝛽              ∞                    −∞
                  𝑡       𝑡
   Hence, 𝑥 (− 5) = 𝑥 (−5) has the LT −(−5)𝑋(−5𝑠) = 5𝑋(−5𝑠)
   Ans b
9. Given signal
                            𝑥(𝑡) = 𝑒 −3𝑡 𝑢(𝑡 − 4) − 𝑒 −2𝑡 𝑢(2 − 𝑡)
                    = 𝑒 −12 𝑒 −3(𝑡−4) 𝑢(𝑡 − 4) − 𝑒 −4 𝑒 −2(𝑡−2) 𝑢(−(𝑡 − 2))
                                       𝑒 −12 𝑒 −4𝑠 𝑒 −4 𝑒 −2𝑠
                                   ↔              +
                                          𝑠+3        𝑠+2
    ROC is −3 < 𝑠 < −2
    Ans a
                                         1
10. The inverse Laplace transform of 𝑠−𝛼 with ROC Re{𝑠} > 𝛼 is 𝑒 𝛼𝑡 𝑢(𝑡)
   Ans b
                                       Solution-5
                             1
1. The coefficient of     (𝑠−𝑝𝑖 )𝑟
                                     is in the partial fraction expansion of 𝑋(𝑠) is
   (𝑠 − 𝑝𝑖 )𝑟 𝑋(𝑠)|𝑠=𝑝𝑖
   Ans a
                                          −1
2. Given the Laplace transform 𝑋(𝑠) = (𝑠+1)(𝑠+2)2 with ROC Re{𝑠} > −1. Also, given
                                                            𝑐
                                                            1     𝜆
                                                                  1      𝜆
                                                                         2
   the partial fraction expansion of 𝑋(𝑠) given as 𝑋(𝑠) = 𝑠+1 + 𝑠+2 + (𝑠+2) 2 . The value of
   Ans a
                                      3             𝜔
6. Given Laplace transform of      (𝑠+2)2 +9
                                               = (𝑠+𝑎)20+𝜔2 with 𝜔0 = 3 and 𝑎 = 2, ROC
                                                        0
   Re{𝑠} > −2 = −2. Hence, inverse Laplace transform is 𝑒 −𝑎𝑡 sin(𝜔0 𝑡) 𝑢(𝑡) =
   𝑒 −2𝑡 sin(3𝑡) 𝑢(𝑡)
   Ans b
                                           𝑠2 +9𝑠+16
7. Given the Laplace transform 𝑋(𝑠) = (𝑠+2)(𝑠+3)2 with ROC Re{𝑠} > −2. Also, given
                                                            𝑐
                                                            1     𝜆
                                                                  1      𝜆
                                                                         2
   the partial fraction expansion of 𝑋(𝑠) given as 𝑋(𝑠) = 𝑠+2 + 𝑠+3 + (𝑠+3) 2
                                                                              . The value of
   𝜆1 can be calculated as follows.
                          𝑠 2 + 9𝑠 + 16               2
                                                               𝑠 2 + 9𝑠 + 16
               𝑋(𝑠) =                      ⟹  (𝑠 + 3)   𝑋(𝑠) =
                        (𝑠 + 2)(𝑠 + 3)2                            (𝑠 + 2)
                          𝑠(𝑠 + 2) + 7(𝑠 + 2) + 2                  2
                        =                           =𝑠+7+
                                    (𝑠 + 2)                     𝑠+2
               𝑑                                 2
           ⟹      (𝑠 + 3)2 𝑋(𝑠)|       =1−             |     = 1 − 2 = −1 = 𝜆1
               𝑑𝑠                 𝑠=−3        (𝑠 + 2)2 𝑠=−3
             2        1          2       2(𝑠 + 3)2 − (𝑠 + 2)(𝑠 + 3) + 2(𝑠 + 2)
                 −        +            =
           𝑠 + 2 𝑠 + 3 (𝑠 + 3)2                      (𝑠 + 2)(𝑠 + 3)2
                                           2
                                         𝑠 + 9𝑠 + 16
                                      =
                                        (𝑠 + 2)(𝑠 + 3)2
   Ans d
8. Given the LTI system is causal, the ROC of 𝐻(𝑠) is of the form Re{𝑠} > 𝜎max
   Ans c
                                     1
9. Observe − cos(4𝑡) 𝑢(−𝑡) = − 2 (𝑒 𝑗4𝑡 + 𝑒 −𝑗4𝑡 )𝑢(−𝑡). For Re{𝑠} < 0, this has
   Laplace transform
                               1 1       1 1        𝑠
                                       +        = 2
                               2 𝑠 − 4𝑗 2 𝑠 + 4𝑗 𝑠 + 16
    Ans c
                                      1
10. The inverse Laplace transform of 𝑠+𝛼, for ROC 𝑅𝑒{𝑠} > −𝛼, is 𝑒 −𝛼𝑡 𝑢(𝑡)
   Ans a
                                               Solution-6
1. Given 𝑋(𝑧) = ∑∞
                 𝑛=−∞ 𝑥(𝑛)𝑧
                            −𝑛
                               . Hence,
                ∞                             ∞                                       ∞
                                     −𝑛                     −(𝑛0 −𝑚)        −𝑛0
               ∑ 𝑥(𝑛0 − 𝑛)𝑧               = ∑ 𝑥(𝑚)𝑧                    =𝑧         ∑ 𝑥(𝑚)𝑧 𝑚
               𝑛=−∞                        𝑚=−∞                                   𝑚=−∞
                                           ∞
                                                                   1
                                = 𝑧 −𝑛0 ∑ 𝑥(𝑚)(𝑧 −1 )−𝑚 = 𝑧 −𝑛0 𝑋 ( )
                                                                   𝑧
                                          𝑚=−∞
   Ans c
2. The z-transform of the impulse response corresponding to an LTI system described by
   a difference equation is a Rational function of 𝑧
   Ans c
                                                                                 1
3. Given signal 5−𝑛+1 𝑢(𝑛 + 1) − 4𝑛 𝑢(−𝑛 − 1). ROC of 5−𝑛+1 𝑢(𝑛 + 1) is |𝑧| > 5 and
   ROC of 4𝑛 𝑢(−𝑛 − 1) is |𝑧| < 4.
                   1
   Hence, ROC is < |𝑧| < 4
                      5
   Ans b
                                                           𝜋
4. The 𝑧 −transform of cos(Ω0 𝑛) 𝑢(𝑛) = cos (3 𝑛) 𝑢(𝑛) is
                                                         𝑧
                               𝑧 2 − 𝑧 cos Ω0      𝑧2 − 2
                                               =
                           𝑧 2 − 2𝑧 cos Ω0 + 1 𝑧 2 − 𝑧 + 1
   Ans a
5. Given 𝑋(𝑧) = ∑∞𝑛=−∞ 𝑥(𝑛)𝑧
                              −𝑛
                                  . Hence,
                                 ∞                                                ∞
               𝑑                            𝑑
                  𝑋(𝑧) = ∑ −𝑛𝑥(𝑛)𝑧 −𝑛−1 ⇒ −𝑧 𝑋(𝑧) = ∑ 𝑛𝑥(𝑛)𝑧 −𝑛
               𝑑𝑧                           𝑑𝑧
                                𝑛=−∞                                         𝑛=−∞
                                                               2             ∞
               𝑑     𝑑         𝑑        𝑑
           ⇒      (−𝑧 𝑋(𝑧)) = − 𝑋(𝑧) − 𝑧 2 𝑋(𝑧) ↔ ∑ −𝑛2 𝑥(𝑛)𝑧 −𝑛−1
               𝑑𝑧    𝑑𝑧        𝑑𝑧       𝑑𝑧
                                                                            𝑛=−∞
                                                  2                ∞
                                𝑑          𝑑
                           ⇒       𝑋(𝑧) + 𝑧 2 𝑋(𝑧) ↔ ∑ 𝑛2 𝑥(𝑛)𝑧 −𝑛−1
                                𝑑𝑧         𝑑𝑧
                                                               𝑛=−∞
                                                      2           ∞
                                 𝑑            𝑑
                           ⇒𝑧       𝑋(𝑧) + 𝑧 2 2 𝑋(𝑧) ↔ ∑ 𝑛2 𝑥(𝑛)𝑧 −𝑛
                                 𝑑𝑧           𝑑𝑧
                                                                   𝑛=−∞
   Ans d
6. We have 𝑋(𝑧) = ∑∞
                   𝑛=−∞ 𝑥(𝑛)𝑧
                              −𝑛
                                 . Since 𝑥(𝑛) is real,
                                     ∞                         ∞
                        ∗ (𝑧)             ∗ (𝑛)(𝑧 ∗ )−𝑛
                    𝑋           = ∑ 𝑥                     = ∑ 𝑥(𝑛)(𝑧 ∗ )−𝑛 = 𝑋(𝑧 ∗ )
                                 𝑛=−∞                       𝑛=−∞
   Hence, if 𝑧0 is a zero of 𝑋(𝑧), then 𝑧0∗ is also a zero of 𝑋(𝑧)
   Ans a
7. Given 𝑋(𝑧) = ∑∞   𝑛=−∞ 𝑥(𝑛)𝑧
                                 −𝑛
                                    . Hence,
                           ∞                                    ∞
             𝑑                            𝑑
                𝑋(𝑧) = ∑ −𝑛𝑥(𝑛)𝑧 −𝑛−1 ⇒ −𝑧 𝑋(𝑧) = ∑ 𝑛𝑥(𝑛)𝑧 −𝑛
             𝑑𝑧                           𝑑𝑧
                        𝑛=−∞                                   𝑛=−∞
   Ans c
                                         𝑑𝑋(𝑧)
8. Note that 𝑛𝑥(𝑛) has 𝑧 −transform −𝑧         . Hence, 𝑛𝑎𝑛 𝑢[𝑛] has 𝑧 −transform
                                          𝑑𝑧
        𝑑 𝑧         𝑑      𝑎                𝑎        𝑎𝑧       𝑎𝑧 −1
    −𝑧          = −𝑧 (1 +     ) = −𝑧 × −         =        =
       𝑑𝑧 𝑧 − 𝑎     𝑑𝑧    𝑧−𝑎            (𝑧 − 𝑎)2 (𝑧 − 𝑎)2 (1 − 𝑎𝑧 −1 )2
   Ans b
                  1 −𝑛+1                 1 𝑛+2
9. Given signal (2)        𝑢(−𝑛 − 4) + (6)       𝑢(𝑛 − 2). Its ROC can be evaluated as
   follows
                    1 −𝑛+1             1
                   ( )     𝑢(−𝑛 − 4) = × 2𝑛 𝑢(−𝑛 − 4) ⇒ |𝑧| < 2
                    2                  2
                   1 𝑛+2             1 2   1 𝑛                 1
                  ( )    𝑢(𝑛 − 2) = ( ) × ( ) 𝑢(𝑛 − 2) ⇒ |𝑧| >
                   6                 6     6                   6
          1
   ROC is 6 < |𝑧| < 2
    Ans a
10. For a discrete time LTI system to be neither causal nor anti-causal, the ROC of the
    𝑧 −transform of its impulse response must be of the form 𝑟1 < |𝑧| < 𝑟2
    Ans b
                                                  Solution-7
1. For a discrete time LTI system to be anti-causal, the ROC of the z-transform of its
   impulse response must be of the form |𝑧| < 𝑟min
   Ans d
                           2𝑧 2 −11𝑧         3𝑧            𝑧
2. It can be seen that                 = 𝑧+2 − 𝑧−3. Give system is causal, ROC is |𝑧| > 3, the
                            𝑧 2 −𝑧−6
   inverse z-transform is
                                            3 × (−2)𝑛 𝑢(𝑛) − 3𝑛 𝑢(𝑛)
   Ans a
                                       𝑧3
3. The inverse z-transform of 𝑧−𝑎 with ROC |𝑧| < |𝑎| can be found as follows
                                   𝑧
                                       ↔ −𝑎𝑛 𝑢(−𝑛 − 1)
                                 𝑧−𝑎
                              𝑧2         𝑧
                         ⇒        =𝑧         ↔ −𝑎𝑛+1 𝑢(−𝑛 − 2)
                            𝑧−𝑎        𝑧−𝑎
                              𝑧3        𝑧2
                         ⇒        =𝑧         ↔ −𝑎𝑛+2 𝑢(−𝑛 − 3)
                            𝑧−𝑎        𝑧−𝑎
   Ans c
                                   −1
4. The inverse 𝑧 −transform of 𝑒 𝑎𝑧 with ROC |𝑧| > |𝑎| can be evaluated as follows.
                    −1               1           1              1
                𝑒 𝑎𝑧 = 1 + 𝑎𝑧 −1 + 𝑎2 𝑧 −2 + 𝑎3 𝑧 −3 + ⋯ ↔ 𝑎𝑛 𝑢(𝑛)
                                     2           3!             𝑛!
   Ans c
5. For a discrete time LTI system to be BIBO stable, the ROC of the 𝑧 −transform of its
   impulse response must include the unit-circle
   Ans a
                              2𝑧 2 −5𝑧            𝑧            𝑧
6. It can be seen that                      = 𝑧−3 + 𝑧−2. Given ROC is 2 < |𝑧| < 3, the inverse
                             𝑧 2 −5𝑧+6
   𝑧 −transform is
                                            −3𝑛 𝑢(−𝑛 − 1) + 2𝑛 𝑢(𝑛)
   Ans d
                                                                   sin(Ω )𝑧
7. The 𝑧 −transform of sin(Ω𝑜 𝑛) 𝑢(𝑛) is 𝑧 2−(2 cos 𝑜Ω
                                                                          𝑜 )𝑧+1
                                                                   𝜋
                                   𝑧                           (sin )𝑧
                                                                   4
   Given z-transform of 𝑧 2−√2𝑧+1 = √2                                 𝜋   with ROC |𝑧| > 1. Hence the inverse
                                                       𝑧 2 −2 cos 𝑧+1
                                                                       4
                                 𝜋
   𝑧 −transform is √2 sin ( 4 𝑛) 𝑢(𝑛)
   Ans c
                                        𝑧
8. The inverse z-transform of                , with ROC |𝑧| < |𝑎|, is −𝑎𝑛 𝑢(−𝑛 − 1)
                                       𝑧−𝑎
                                                  𝑧
   Hence, inverse z-transform of − 𝑧+𝑎, with ROC |𝑧| < |𝑎|, is (−𝑎)𝑛 𝑢(−𝑛 − 1)
   Ans b
                                                                                      1
9. The coefficient 𝜆𝑟−𝑘 corresponding to the term                                 (𝑧−𝑝𝑖 )𝑟−𝑘
                                                                                               in the partial fraction
                  𝑋(𝑧)      1 𝑑𝑘                      𝑋(𝑧)
   expansion of          is 𝑘! 𝑑𝑧 𝑘 (𝑧 − 𝑝𝑖 )𝑟                 |
                   𝑧                                   𝑧        𝑧=𝑝𝑖
                                                                                  1             1
   Now set 𝑘 = 𝑟 − 1. Hence, 𝜆1 corresponding to (𝑧−𝑝 )𝑟−(𝑟−1) = 𝑧−𝑝 is
                                                                              𝑖                     𝑖
                                      1     𝑑 𝑟−1            𝑟
                                                               𝑋(𝑧)
                                                   (𝑧 − 𝑝𝑖 )        |
                                   (𝑟 − 1)! 𝑑𝑧 𝑟−1              𝑧 𝑧=𝑝
                                                                                          𝑖
   Ans a
                          3𝑧 2 −19𝑧      4𝑧    𝑧
10. It can be seen that               = 𝑧+3 − 𝑧−4. Give system is stable, ROC is |𝑧| < 3, the
                          𝑧 2 −𝑧−12
   inverse z-transform is
                             −4 × (−3)𝑛 𝑢(−𝑛 − 1) + 4𝑛 𝑢(−𝑛 − 1)
   Ans a
                                           Solution-8
1. The condition 𝑥(𝑡) can be unbounded at a finite number of discontinuities in any
   interval is NOT one of the Dirichlet conditions. In fact, the Dirichlet conditions state
   that 𝑥(𝑡) is finite at all the discontinuities
   Ans b
                                                                1
2. The Fourier transform of the unit-step function is 𝜋𝛿(𝜔) + 𝑗𝜔
   Ans d
3. Given periodic signal 𝑥(𝑡) with fundamental frequency 𝜔0 and complex exponential
   Fourier series ∑∞𝑘=−∞ 𝑐𝑘 𝑒
                              𝑗𝑘𝜔0 𝑡
                                     , its power is ∑∞        2
                                                     𝑘=−∞|𝑐𝑘 | . This follows from the
   Parseval’s theorem
   Ans a
4. Given
                                                 ∞
                                       𝑋(𝜔) = ∫ 𝑥(𝑡)𝑒 −𝑗𝜔𝑡 𝑑𝑡
                                                 −∞
                                                  ∞
                                     ⇒ 𝑋(𝑡) = ∫ 𝑥(𝜔)𝑒 −𝑗𝜔𝑡 𝑑𝜔
                                                 −∞
              1         1 ∞ 1         −𝑗𝜔𝑡
                                                 1 ∞ 1
            ⇒ 2 𝑋(𝑡) =   ∫      𝑥(𝜔)𝑒      𝑑𝜔 =   ∫      𝑥(−𝜔)𝑒 𝑗𝜔𝑡 𝑑𝜔
             4𝜋        2𝜋 −∞ 2𝜋                 2𝜋 −∞ 2𝜋
            𝑋(𝑡)     1
   Hence,          ↔ 2𝜋 𝑥(−𝜔)
            4𝜋 2
   Ans c
                                𝑑
5. The Fourier transform of          𝑥(𝑡) is 𝑗𝜔𝑋(𝜔)
                                𝑑𝑡
   Ans a
                                             𝜋
6. The CEFS coefficients of cos2 (𝑡 + 6 ) can be found as follows
                    𝜋     1                    𝜋      1 1            𝑗𝜋 𝑗𝜋
          cos2 (𝑡 + ) = (1 + cos (2𝑡 + )) = + (𝑒 𝑗2𝑡 𝑒 3 + 𝑒 −𝑗2𝑡 𝑒 − 3 )
                    6     2                    3      2 4
                                        1 1 1       √3 1 1         √3
   Therefore, the CEFS coefficients are 2 , 4 (2 + 𝑗 2 ) , 4 (2 − 𝑗 2 )
   Ans c
7. The Fourier transform of the signal function 𝑥(𝑡) = −sgn(𝑡) can be evaluated as
   follows
                            𝑑𝑥(𝑡)
                                  = −2𝛿(𝑡) ↔ −2 = 𝑗2𝜋𝑓𝑋(𝑓)
                             𝑑𝑡
                                               −2      2𝑗
                                   ⇒ 𝑋(𝑓) =        =
                                              𝑗2𝜋𝑓 𝜔
   Ans a
8. Given a real periodic signal 𝑥(𝑡) with fundamental frequency 𝜔0 .
                          ∞                      ∞
                                 𝑗𝑘𝜔0 𝑡
              𝑥(𝑡) = ∑ 𝑐𝑘 𝑒               = 𝑎0 + ∑(𝑎𝑘 cos(𝑘𝜔0 𝑡) + 𝑏𝑘 sin(𝑘𝜔0 𝑡))
                         𝑘=−∞                    𝑘=1
   The coefficient 𝑐𝑘 corresponding to 𝑒 𝑗𝑘𝜔0𝑡 in the complex exponential Fourier series
   and 𝑎𝑘 corresponding to cos(𝑘𝜔0 𝑡) in the trigonometric Fourier series are related as
                                      𝑎𝑘 = 𝑐𝑘 + 𝑐−𝑘
   Since signal is real, we must have
                                       ∞
                        𝑥   ∗ (𝑡)
                                    = ∑ 𝑐𝑘∗ 𝑒 −𝑗𝑘𝜔0𝑡 = 𝑥(𝑡) ⇒ 𝑐−𝑘 = 𝑐𝑘∗
                                      𝑘=−∞
   Therefore,
                              𝑎𝑘 = 𝑐𝑘 + 𝑐−𝑘 = 𝑐𝑘 + 𝑐𝑘∗ = 2 Re{𝑐𝑘 }
   Ans d
                                         𝑡2                               𝜔2
9. The FT of the Gaussian pulse 𝑒 − 𝑎 is 𝑋(𝜔) = √𝜋𝑎𝑒 −𝑎 4 . Hence,
                                                 𝑡2                  𝜔2
                                             −                  −𝑎
                                         𝑒       2𝑎   ↔ √𝜋2𝑎𝑒        2
                                                                               32
                      𝑋(0) = 8 ⟹ √2𝜋𝑎 = 8 ⟹ 2𝜋𝑎 = 64 ⇒ 𝑎 =
                                                                               𝜋
   Ans d
                  ∞
10. The quantity ∫−∞ 𝑋(𝜔)𝑌 ∗ (𝜔
                              ̃ − 𝜔)𝑑𝜔 represents the convolution of 𝑋(𝜔), 𝑌 ∗ (𝜔). It is
                                                  ∞
   the FT of 2𝜋𝑥(𝑡)𝑦 ∗ (−𝑡). Further, ∫−∞ 𝑋(𝜔)𝑌 ∗ (−𝜔)𝑑𝜔 is the convolution evaluated
       ̃ = 0. Hence, it equals the FT of 2𝜋𝑥(𝑡)𝑦 ∗ (−𝑡) at 𝜔 = 0, which is
   for 𝜔
                       ∞                                                  ∞
                 2𝜋 ∫ 𝑥(𝑡)𝑦 ∗ (−𝑡)𝑒 −𝑗𝜔𝑡 𝑑𝑡|                   = 2𝜋 ∫ 𝑥(𝑡)𝑦 ∗ (−𝑡)𝑑𝑡
                      −∞                                 𝜔=0              −∞
   Ans a
                                       Solution-9
                                                          1
1. The impulse response of the Hilbert transform is 𝜋𝑡
   Ans a
2. The Parseval’s relation for a continuous time signal 𝑥(𝑡) is given as
                               ∞
                                               1 ∞
                             ∫ |𝑥(𝑡)|2 𝑑𝑡 =      ∫ |𝑋(𝜔)|2 𝑑𝜔
                              −∞              2𝜋  −∞
   Ans d
                                                                  (100+𝑗𝜔)
3. Given the transfer function 𝐻(𝜔) = 𝐻(𝜔) = (1+𝑗𝜔)(10+𝑗𝜔)(1000+𝑗𝜔)2. For 𝜔 ≫ 1000
   this can be approximated as
                                            𝑗𝜔           1
                                𝐻(𝜔) =                =
                                     𝑗𝜔 × 𝑗𝜔 × (𝑗𝜔)2 𝑗𝜔
   Hence the Bode plot of |𝐻(𝜔)| decreases as 60 dB/ decade
   Ans c
                                                     1
4. The 3 𝑑𝐵 frequency of the 𝑅𝐶 filter in rad/s is
                                                     𝑅𝐶
   Ans c
                                                     (100+𝑗𝜔)2
5. Given frequency response is 𝐻(𝜔) = (1+𝑗𝜔)(10+𝑗𝜔)(1000+𝑗𝜔). Between 100 ≪ 𝜔 ≪
   1000 the Bode magnitude plot is approximately
                             (100 + 𝑗𝜔)2              (𝑗𝜔)2
                                                 ≈
                    (1 + 𝑗𝜔)(10 + 𝑗𝜔)(1000 + 𝑗𝜔) 𝑗𝜔 × 𝑗𝜔 × 1000
   Hence, it is constant
   Ans b
                                           1
6. Given the signal cos(2𝜋60𝑡), its FT is 2 (𝛿(𝑓 − 60) + 𝛿(𝑓 + 60)). After sampling by
   the unit impulse train with sampling frequency 𝑓𝑠 = 150 𝐻𝑧, resulting spectrum is
        ∞
                            𝑓𝑠                          𝑓𝑠
    𝑓𝑠 ∑ 𝑋(𝑓 − 𝑘𝑓𝑠 ) =         (𝛿(𝑓 − 60) + 𝛿(𝑓 + 60)) + (𝛿(𝑓 − 210) + 𝛿(𝑓 − 90))
                            2                           2
      𝑘=−∞
                            𝑓𝑠
                            +  (𝛿(𝑓 + 90) + 𝛿(𝑓 + 210)) + ⋯
                            2
   Hence one can apply an ideal LPF with any cut-off frequency 60 𝐻𝑧 < 𝑓𝑐 < 90 𝐻𝑧
   Ans a
                                                          1
7. The Fourier transform of 𝑥(𝑡) = 𝑒 −𝑎𝑡 , 𝑎 > 0 is 𝑗𝜔+𝑎. Hence, the Fourier transform of
              𝑑    1               1   2       1     2
   𝑡𝑒 −𝑎𝑡 is 𝑗 𝑑𝜔 𝑗𝜔+𝑎 = 𝑗 × −𝑗 (𝑗𝜔+𝑎) = (𝑗𝜔+𝑎)
   Ans c
8. The coefficients are given as
                       𝑇0                                 𝑇0
                  1 2                  1       2
                    ∫ 𝑥(𝑡)𝑒 −𝑗𝑘𝜔0𝑡 𝑑𝑡 = × 𝑇0 ∫ 𝛿(𝑡)𝑒 −𝑗𝑘𝜔0𝑡 𝑑𝑡 = 1
                  𝑇0 −𝑇0               𝑇0      𝑇
                                              − 0
                        2                                     2
   Ans a
9. The Fourier transform of signal 𝑥(𝑡) = 𝑒 −𝑎|𝑡| , 𝑎 > 0 is
                                              1      1      2𝑎
                𝑒 −𝑎𝑡 𝑢(𝑡) + 𝑒 𝑎𝑡 𝑢(−𝑡) =         −      = 2
                                            𝑗𝜔 + 𝑎 𝑗𝜔 − 𝑎 𝜔 + 𝑎2
   Ans c
10. As shown in lecture, for a real periodic signal, 𝑎𝑘 = 2 Re{𝑐𝑘 }
    Ans b
                                        Solution-10
                                                                   𝜔2                𝜔2
                                               2               𝜋                𝜋
1. The FT of the Gaussian pulse 𝑒 −𝑎𝑡 is 𝑋(𝜔) = √𝑎 𝑒 − 4𝑎 . Hence, √ 4 𝑒 − 8 has the
   inverse FT
                             𝜋 𝜔2     1 𝜋 −𝜔 2  1 −2𝑡 2
                            √ 𝑒− 8 =   √ 𝑒 8 ↔    𝑒
                             4       √2 2      √2
   Ans c
2. Given 𝑥(𝑡) = cos(2𝜋𝑓0 𝑡) ⟹ 𝑥̂(𝑡) = sin(2𝜋𝑓0 𝑡)
                            𝑥(𝑡) cos(2𝜋𝑓𝑐 𝑡) − 𝑥̂(𝑡) sin(2𝜋𝑓𝑐 𝑡)
                     = cos(2𝜋𝑓0 𝑡) cos(2𝜋𝑓𝑐 𝑡) − sin(2𝜋𝑓0 𝑡) sin(2𝜋𝑓𝑐 𝑡)
                                    = cos(2𝜋(𝑓𝑐 + 𝑓0 )𝑡)
   Ans d
                                           1
3. Given the signal cos(2𝜋100𝑡), its FT is 2 (𝛿(𝑓 − 100) + 𝛿(𝑓 + 100)). After sampling
   by the unit impulse train with sampling frequency 𝑓𝑠 = 250 𝐻𝑧, resulting spectrum is
                                               ∞
                                         𝑓𝑠 ∑ 𝑋(𝑓 − 𝑘𝑓𝑠 )
                                             𝑘=−∞
             𝑓𝑠                                𝑓𝑠
          = (𝛿(𝑓 − 100) + 𝛿(𝑓 + 100)) + (𝛿(𝑓 − 350) + 𝛿(𝑓 − 150))
             2                                 2
                            𝑓𝑠
                         + (𝛿(𝑓 + 150) + 𝛿(𝑓 + 350)) + ⋯
                            2
   Hence one can apply an ideal LPF with any cut-off frequency 100 𝐻𝑧 < 𝑓𝑐 < 150 𝐻𝑧
   Ans a
                                        2𝜋                                      2𝜋
4. As shown in the lectures, 𝑇𝑠 = 𝜔 , when sampled by ∑∞
                                                       𝑘=−∞ 𝛿 (𝑡 − 𝑘 𝜔 ) the Fourier
                                         𝑠                                       𝑠
   transform of the resulting signal is
                            ∞                              ∞
                       1                  𝜔𝑠
                          ∑ 𝑋(𝜔 − 𝑘𝜔𝑠 ) =    ∑ 𝑋(𝜔 − 𝑘𝜔𝑠 )
                       𝑇𝑠                 2𝜋
                          𝑘=−∞                     𝑘=−∞
                            𝜔𝑠   ∞              2𝜋
   Hence, when sampled by      ∑       𝛿 (𝑡 − 𝑘 𝜔 ), FT is
                             2𝜋 𝑘=−∞             𝑠
                                         ∞
                                   𝜔𝑠2
                                        ∑ 𝑋(𝜔 − 𝑘𝜔𝑠 )
                                  4𝜋 2
                                       𝑘=−∞
   Ans c
5. Given 𝑥(𝑡) = sin(2𝜋𝑓0 𝑡) ⟹ 𝑥̂(𝑡) = − cos(2𝜋𝑓0 𝑡)
                            𝑥(𝑡) cos(2𝜋𝑓𝑐 𝑡) − 𝑥̂(𝑡) sin(2𝜋𝑓𝑐 𝑡)
                    = sin(2𝜋𝑓0 𝑡) cos(2𝜋𝑓𝑐 𝑡) + cos(2𝜋𝑓0 𝑡) sin(2𝜋𝑓𝑐 𝑡)
                                     = sin(2𝜋(𝑓𝑐 + 𝑓0 )𝑡)
   Ans b
                            sin(𝑎𝑡)
6. The Fourier transform of         is 1 for |𝜔| ≤ 𝑎 and 0 otherwise
                                𝜋𝑡
                                 sin(2𝑡)
   Hence, Fourier transform of               is 𝜋 for |𝜔| ≤ 2 and 0 otherwise
                                    𝑡
                                             2
                         sin(2𝑡)    2 sin (𝜋 𝜋 𝑡)              1
                                 =𝜋               ↔ 𝜋 for |𝑓| ≤ , 0 otherwise
                            𝑡       𝜋 𝜋2𝑡                      𝜋
                                           𝜋
                                    = 𝜋 for |𝜔| ≤ 2, 0 otherwise
   Ans a
7. Given 𝑅𝐶 circuit with 𝑅 = 36 𝑀Ω and 𝐶 = 285 𝑝𝐹. The rise time is given as
              2.1972 𝑅𝐶 = 2.1972 × 36 × 106 × 285 × 10−12 ≈ 22.5 𝑚𝑠
   Ans c
                                                                       cos(2𝜔) sin(𝜔)
8. Given signal 𝑥(𝑡) has the Fourier transform 𝑋(𝜔) = 2                               . Use the principle
                                                                               𝜔
       sin(𝑎𝜔)                                                                     sin(𝜔)         1
   2             has IFT 𝑝2𝑎 (𝑡) = 1 for |𝑡| ≤ 𝑎 and 0 otherwise. Hence,                 has IFT 2 𝑝2 (𝑡).
         𝜔                                                                           𝜔
                                      1              1                             cos(2𝜔) sin(𝜔)
   Further, cos 2𝜔 has IFT 2 𝛿(𝑡 + 2) + 2 𝛿(𝑡 − 2). Therefore, 2                                 has IFT
                                                                                            𝜔
   1                     1                                                 1
    𝑝 (𝑡     − 2) + 2 𝑝2 (𝑡 + 2) = 𝑥(𝑡). It follows that 𝑥(−2) = 2
   2 2
                         sin(𝜔) sin(2𝜋𝑓) 1             sin(𝜋𝑓2) 1
                                 =            = ×2              ↔ 𝑝2 (𝑡)
                            𝜔         2𝜋𝑓        2        𝜋𝑓2      2
                                                           1          1
                 cos(2𝜔) = cos(4𝜋𝑓) = cos(2𝜋2𝑓) ↔ 𝛿(𝑡 − 2) + 𝛿(𝑡 + 2)
                                                           2          2
                               sin(𝜔)         1           1          1
                2 cos(2𝜔) ×           ↔ 2 × 𝑝2 (𝑡) ∗ ( 𝛿(𝑡 − 2) + 𝛿(𝑡 + 2))
                                  𝜔           2           2          2
                              1               1                      1
                            = 𝑝2 (𝑡 − 2) + 𝑝2 (𝑡 + 2) ⇒ 𝑥(−2) =
                              2               2                      2
   Ans a
                 sin(8𝜋𝑡)                 sin(8𝜋𝑡)                                      1
9. Given                     cos(8𝜋𝑡).               has     Fourier   transform       𝑝 (𝑓). Hence,
                   2𝜋𝑡                      2𝜋𝑡                                       2 8
   sin(8𝜋𝑡)                                              1             1                1
              cos(8𝜋𝑡) has Fourier transform 4 𝑝8 (𝑓 − 4) + 4 𝑝8 (𝑓 + 4)              = 4 𝑝16 (𝑓), where
       2𝜋𝑡
    𝑝16 (𝑓) = 1 for −8 ≤ 𝑓 ≤ 8. Hence, the minimum sampling frequency required is
    twice the maximum frequency = 16 𝐻𝑧
    Ans d
                                             1
10. Given the signal cos(10000𝜋𝑡), its FT is 2 (𝛿(𝑓 − 5000) + 𝛿(𝑓 + 5000)). After
   sampling by the unit impulse train with sampling frequency 𝑓𝑠 = 7.5 𝑘𝐻𝑧, resulting
   spectrum is
                                 ∞
                                                     𝑓𝑠
                             𝑓𝑠 ∑ 𝑋(𝑓 − 𝑘𝑓𝑠 ) =         (𝛿(𝑓 − 5𝑘) + 𝛿(𝑓 + 5𝑘))
                                                     2
                               𝑘=−∞
           𝑓𝑠                               𝑓𝑠
          + (𝛿(𝑓 − 12.5𝑘) + 𝛿(𝑓 − 2.5𝑘)) + (𝛿(𝑓 + 2.5𝑘) + 𝛿(𝑓 + 12.5𝑘))
           2                                2
           𝑓𝑠                            𝑓𝑠
          + (𝛿(𝑓 − 20𝑘) + 𝛿(𝑓 − 10𝑘)) + (𝛿(𝑓 + 10𝑘) + 𝛿(𝑓 + 20𝑘)) + ⋯
           2                             2
        𝑓𝑠                               𝑓𝑠
       + (𝛿(𝑓 − 27.5𝑘) + 𝛿(𝑓 − 17.5𝑘)) + (𝛿(𝑓 + 27.5𝑘) + 𝛿(𝑓 + 17.5𝑘)) + ⋯
        2                                2
   Ans b
6. Discrete Time Fourier Transform (DTFT) is best suited to represent a discrete time
   aperiodic signal 𝑥(𝑛) of infinite duration
   Ans a
7. 𝑦(𝑛) = ∑𝑛𝑘=−∞ 𝑥(𝑘) = 𝑥(𝑘) ∗ 𝑢(𝑘). Hence,
                                                 1                       𝑋(Ω)
       𝑌(Ω) = 𝑋(Ω)𝑈(Ω) = 𝑋(Ω) (𝜋𝛿(Ω) +             −𝑗Ω
                                                       ) = 𝜋𝑋(0)𝛿(Ω) +
                                              1−𝑒                      1 − 𝑒 −𝑗Ω
   Ans d
8. The DTFT of cos(Ω0 𝑛) is
                                 𝜋𝛿(Ω − Ω0 ) + 𝜋𝛿(Ω + Ω0 )
   Ans c
9. Given 𝑋(Ω) = 1, |Ω| ≤ 𝑊 and 0 for 𝑊 < |Ω| ≤ 𝜋. As shown in lectures, its inverse
   DTFT is
                                     sin(𝑊𝑛)
                                        𝜋𝑛
   Ans d
                                                     2𝜋
10. The 2 × 2 DFT matrix is given as follows. 𝑊2 = 𝑒 −𝑗 2 = 𝑒 −𝑗𝜋 = −1. The DFT matrix
    is
                                   1      1      1 1
                                  [         ]=[          ]
                                   1 𝑊2−1        1 −1
    Ans c
                                                  Solution-12
1. Given phase response 𝜙(𝜔). Its group and phase delays, respectively, at 𝜔 = 𝜔0 are
   given as
                                     𝑑𝜙(𝜔)          𝜙(𝜔0 )
                                   −       |     ,−
                                      𝑑𝜔 𝜔=𝜔          𝜔0
                                                                        0
   Ans c
                     𝑒 −𝑗Ω
2. The IDFT of                  2   can be evaluated as follows
                  (1−𝑎𝑒 −𝑗Ω )
                                                          1
                                             𝑎𝑛 𝑢(𝑛) ↔
                                                      1 − 𝑎𝑒 −𝑗Ω
                                                            𝑒 −𝑗Ω
                                        𝑎𝑛−1 𝑢(𝑛 − 1) ↔
                                                         1 − 𝑎𝑒 −𝑗Ω
                                                                                                 2
                             𝑛                𝑛−1                           −𝑗Ω
                                                                                         1
                       ⇒ 𝑎 𝑢(𝑛) ∗ 𝑎                 𝑢(𝑛 − 1) ↔ 𝑒                    (           )
                                                                                     1 − 𝑎𝑒 −𝑗Ω
   Observe that
                                                            ∞
            𝑎𝑛 𝑢(𝑛) ∗ 𝑎𝑛−1 𝑢(𝑛 − 1) = ∑                              𝑎𝑚 𝑢(𝑚)𝑎𝑛−1−𝑚 𝑢(𝑛 − 1 − 𝑚)
                                                            𝑚=−∞
                                      𝑛−1
                         = (∑                𝑎𝑛−1 ) 𝑢(𝑛 − 1) = 𝑛𝑎𝑛−1 𝑢(𝑛 − 1)
                                      𝑚=0
   This can also be seen as follows
                                              2
                                      1
                                (            ) ↔ (𝑛 + 1)𝑎𝑛 𝑢(𝑛)
                                  1 − 𝑎𝑒 −𝑗Ω
                                            2
                                     1
                             ⇒(            )  𝑒 −𝑗Ω ↔ 𝑛𝑎𝑛−1 𝑢(𝑛 − 1)
                               1 − 𝑎𝑒 −𝑗Ω
   Ans a
3. The DFT is given as
                                                    {2,3,2,3,2,3,2,3}
                                              3                                      3
                                                           2𝑛𝑘                  𝑘             2𝑛𝑘
                                                     𝑗2𝜋                  𝑗2𝜋
                             𝑋(𝑘) = 2 ∑ 𝑒                   8    + 3𝑒           8   ∑ 𝑒 𝑗2𝜋    8
                                             𝑛=0                                    𝑛=0
                                              3                              3
                                                     𝑗𝜋𝑘             𝜋𝑘              𝑗𝜋𝑘
                                                         𝑛
                                      = 2∑𝑒           2      + 3𝑒 𝑗 4 ∑ 𝑒             2
                                                                                         𝑛
                                            𝑛=0                             𝑛=0
                                                                      3
                                                                𝜋𝑘           𝑗𝜋𝑘
                                          = (2 + 3𝑒 𝑗 4 ) ∑ 𝑒                 2
                                                                                 𝑛
                                                                     𝑛=0
                                        𝜋𝑘 1           𝑗2𝜋𝑘
                                                  −𝑒
                     = (2 +         3𝑒 𝑗 4 )               𝜋𝑘    if 𝑘 = 0,4 and 0 otherwise
                                                       𝑗
                                              1−𝑒           2
                                             𝜋𝑘
                                         𝑗
                        = (2 + 3𝑒             4 )   × 4 if 𝑘 = 0,4 and 0 otherwise
   Therefore, 𝑋(0) = 5 × 4 = 20, 𝑋(4) = (2 − 3) × 4 = −4
                           𝑋(𝑘) = {20,0,0,0, −4,0,0,0}
   Ans c
4. The DFT of 𝑥1 (𝑛)𝑥2 (𝑛) is
                                    1
                                      𝑋 (𝑘) ⊛ 𝑋2 (𝑘)
                                    𝑁 1
   Ans d
                      𝜋𝑛
5. Given 𝑥(𝑛) = cos ( 2 ) = {1,0, −1,0} for 0 ≤ 𝑛 ≤ 3 and ℎ(𝑛) = {2, −1,3, −2}. Let ⨀
   denote element-wise product and sum. The circular convolution of 𝑥(𝑛) and ℎ(𝑛) is
   evaluated as follows
                        𝑌(0) = {2, −1,3, −2}⨀{1,0, −1,0} = −1
                         𝑌(1) = {2, −1,3, −2}⨀{0,1,0, −1} = 1
                         𝑌(2) = {2, −1,3, −2}⨀{−1,0,1,0} = 1
                        𝑌(3) = {2, −1,3, −2}⨀{0, −1,0,1} = −1
   The output is 𝑦(𝑛) = {−1,1,1, −1}
   Ans a
6. Given 𝑥(𝑛) has DFT 𝑋(𝑘), then 𝑋(𝑛) has DFT
                                    𝑁𝑥(−𝑘 mod 𝑁)
                           𝑁−1                          𝑁−1
                       1           𝑘𝑛         1           𝑘𝑛
                 𝑥(𝑛) = ∑ 𝑋(𝑘)𝑒 𝑗2𝜋 𝑁 ⇒ 𝑥(𝑘) = ∑ 𝑋(𝑛)𝑒 𝑗2𝜋 𝑁
                       𝑁                      𝑁
                           𝑘=0                          𝑛=0
                                  𝑁−1                  𝑁−1
                              1            (𝑁−𝑘)𝑛 1         𝑘𝑛
               ⇒ 𝑥(𝑁 − 𝑘) =     ∑ 𝑋(𝑛)𝑒 𝑗2𝜋 𝑁 = ∑ 𝑋(𝑛)𝑒 −𝑗2𝜋 𝑁
                              𝑁                   𝑁
                                  𝑛=0                  𝑛=0
                                 ⇒ 𝑁𝑥(−𝑘 mod 𝑁) ↔ 𝑋(𝑛)
   Ans b
                      𝜋𝑛
7. Given 𝑥(𝑛) = sin ( 2 ) = {0,1,0, −1} for 0 ≤ 𝑛 ≤ 3. ℎ(𝑛) = {4,2,1,3}. Let ⨀ denote
   element wise product and sum. The circular convolution of 𝑥(𝑛) and ℎ(𝑛) is evaluated
   as follows
                            𝑦(0) = {4,2,1,3}⨀{0, −1,0,1} = 1
                            𝑦(0) = {4,2,1,3}⨀{1,0, −1,0} = 3
                          𝑦(0) = {4,2,1,3}⨀{0,1,0, −1} = −1
                           𝑦(0) = {4,2,1,3}⨀{−1,0,1,0} = −3
   Hence, 𝑦(𝑛) = {1,3, −1, −3}
   Ans b
                                                             2𝜋
8. The 2 × 2 IDFT matrix is given as follows. 𝑊2 = 𝑒 −𝑗 2 = 𝑒 −𝑗𝜋 = −1. The DFT
   matrix is
                                 1 1 1        1 1 1
                                    [     1] = [    ]
                                 𝑁    1 𝑊2    2 1 −1
   Ans a
9. The 8 −pt of {4,0,0,0,6,0,0,0} is
                             4𝑘
           𝑋(𝑘) = 4 + 6𝑒 −𝑗2𝜋 8 = 4 + 6𝑒 −𝑗𝜋𝑘 = {10, −2,10, −2,10, −2,10, −2}
   Ans d
                      𝜋𝑛
10. Given 𝑥(𝑛) = cos ( 2 ) = {1,0, −1,0} for 0 ≤ 𝑛 ≤ 3 and ℎ(𝑛) = {−1,2, −3,4}. Let ⨀
   denote element-wise product and sum. The circular convolution of 𝑥(𝑛) and ℎ(𝑛) is
   evaluated as follows
                         𝑌(0) = {−1,2, −3,4}⨀{1,0, −1,0} = 2
                        𝑌(1) = {−1,2, −3,4}⨀{0,1,0, −1} = −2
                        𝑌(2) = {−1,2, −3,4}⨀{−1,0,1,0} = −2
                     𝑌(3) = {−1,2, −3,4}⨀{0, −1,0,1} = 2
The output is 𝑦(𝑛) = { 2, −2, −2,2}
Ans c