Final One
Final One
(b)
(c)
Match List I (ROC of system function) with List II
(Stability and causality) and choose the correct
answer using the codes given below
List-I List-II
P. Re(s) < – 2 1. Unstable and non-causal
Q. –2 < Re(s) < –1 2. Unstable and causal (d)
R. –1 < Re(s) < 1 3. Unstable and anti-causal
S. Re(s) > 1 4. Stable and non-causal
Codes: d −2t
6. The Laplace transform of et e u (−t ) is
P Q R S dt
(a) 1 4 2 3 1− s 1− s
(a) , Re( s ) −1 (b) , Re( s ) −1
(b) 2 4 1 3 s +1 s +1
s −1 s −1
(c) 3 1 4 2 (c) , Re( s ) −1 (d) , Re( s ) −1
s +1 s +1
(d) 4 1 3 2
2
(a)
−( s 2 + 4s + 2)
(b)
( s 2 + 4 s + 2)
X (s) =
( )
10 1 − e − ks
( s + 2s + 2) ( s + 2 s + 2)
( s2 + 4)
2 2 2 2
( s 2 + 2 s + 2) −( s 2 + 2s + 2)
(c) (d) What is the value of k in the expression?
( s 2 + 4 s + 2) 2 ( s 2 + 4s + 2) 2
Common Data for Q.No.-8 and 9
Consider the one-sided Laplace transform pair given
below.
2s
x ( t ) ⎯→
L
s +2 2
(c)
5 5
u (t ) − 5u (t − 1) + 5u (t − 2) + u (t − 3) Where, x1(t ) = e−2t u (t ) and x2 (t ) = e−3t u (t ) then
3 3 y(t) at t = 5 is _______.
5 5
(d) u (t ) + 5u (t − 1) − 5u (t − 2) + u (t − 3)
3 3
3
16. The unilateral Laplace transform of a signal x(t) is 19. A system is described by the differential equation
2s 2 + 11s + 16 + e −2 s d2y dy
X (s) = +5 + 6 y(t ) = x(t )
(s 2
+ 5s + 6 ) dt 2 dt
Let x(t) be a rectangular pulse given by
The time signal x(t) is
1 0 t 2
(a) 2(t ) + 3e−2t − 2e−3t u (t − 2) x(t ) =
0 otherwise
(b) 2(t ) + 2e−2t − 2e−3t + e−2(t −2) + e−3(t −2) u (t ) Assuming that y ( 0 ) = 0,
dy
= 0 at t = 0, the Laplace
dt
2(t ) + 2e −2t − e −3t u (t ) transform of y(t) is
(c)
+ e −2t − e −3t u ( t − 2 ) e−2 s
(a)
s ( s + 2 )( s + 3)
2(t ) + 2e−2t − e −3t u (t )
1 − e−2 s
(d) (b)
+ e−2(t −2) − e−3(t −2) u (t − 2) s ( s + 2 )( s + 3)
17. The Laplace transform of the waveform shown in e−2 s
(c)
the figure is ( s + 2 )( s + 3)
1 − e−2 s
(d)
( s + 2 )( s + 3)
K
20. If sF ( s) = then, lim f (t ) is given by
( s + 1)( s 2 + 4) t →
K
(a) (b) Zero
1 4
2
1 + Ae− s + Be−4s + Ce−6s + De−8s
s (c) Infinite (d) Undefined
What is the value of D? 27 s + 97
21. If 2 is the Laplace transform of f(t), then
(a) – 0.5 (b) – 1.5 s + 33s
(c) 0.5 (d) 2.0 ( )
f 0+ is
18. The impulse response of the system shown in figure
(a) Zero (b) 97/33
is
(c) 27 (d) Infinity
22. The transfer function H(s) of a stable system is
s 2 + 5s − 9
H (s) =
( s + 1) ( s 2 − 2s + 10 )
The impulse response is
1
(a) u (t ) − (t − ) (a) −e−t u (t ) + et sin 3t + 2et cos3t u (t )
1
u (t ) − u (t − ) (b) −e−t u (t ) − et sin 3t + 2et cos3t u ( −t )
(b)
23. A causal LTI system with impulse response h(t) 25. Given that h(t ) = 10e−10t u (t ) , and e(t) = sin (10t)u(t),
satisfies the following properties:
the Laplace transform of the signal
1. When the input of the system is x(t ) = e2t then t
f (t ) = h(t − )e()d is given by
1
output is y (t ) = e2t . 0
6
10
(a)
2. h(t) satisfies the differential equation ( s + 10)( s 2 + 100)
d
h(t ) + 2h(t ) = e −4t u (t ) + bu (t ) 10( s + 10)
dt (b)
( s 2 + 100)
Determine the impulse response of the system.
100
1 (c)
(a) 1 + e −4t u ( t ) ( s + 10)( s 2 + 100)
2
1
1 (d)
(b) 1 − e −4t − 2e −2t u ( t ) ( s + 10)( s 2 + 100)
2
26. Let x(t) be the input and y(t) be the output of a
1
1 − e −4t u ( t )
continuous time LTI system described by following
(c)
2 differential equation,
1 d 2 y (t ) 9 y(t ) dx(t )
(d) 1 − e −4t + 2e −2t u ( t ) + + 2 y(t ) = 5 + 2 x(t )
2 dt 2 dt dt
Answer Key
1. (b) 18. (b)
2. (a) 19. (b)
3. (c) 20. (d)
4. (a) 21. (c)
5. (c) 22. (b)
6. (a) 23. (c)
7. (a) 24. (b)
8. (a) 25. (c)
9. (b) 26. (d)
10. (b) 27. (b)
11. (3.14) 28. (b)
12. (-1) 29. (a)
13. (c) 30. (d)
14. (1.414) 31. (b)
15. (0.2) 32. (b)
16. (d) 33. (d)
17. (a) 34. (b)