0% found this document useful (0 votes)
34 views11 pages

Calculo

This document contains 6 problems involving calculating derivatives of functions. The problems include finding derivatives of polynomials, exponential functions, and implicit functions. Formulas are provided for taking derivatives.
Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content, claim it here.
Available Formats
Download as PDF, TXT or read online on Scribd
0% found this document useful (0 votes)
34 views11 pages

Calculo

This document contains 6 problems involving calculating derivatives of functions. The problems include finding derivatives of polynomials, exponential functions, and implicit functions. Formulas are provided for taking derivatives.
Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content, claim it here.
Available Formats
Download as PDF, TXT or read online on Scribd
You are on page 1/ 11

Serie 2: Derivadas

1) f(x) c) f(x)
2xt 3x 3x3 1x2
X3
7
-

=
-

+ - -
=

14x
y 18x + 9x 8x
-

=
-

y (2)(1) (x 3)(0)
-
-

12/2

y =

2 =

/
3) f(x) = - x+ x -
1 4) f(x) =
-

Ex Ex - +
2

y = (2)( 3x) -

+ 1) -

( x3 + x 1)(0)
- -

y =
-

33x 22x +

(2)2

y =
=
6x
4
+ 2
y (x= +
+ +

5) f(x) 6) f(x)
= t = 4x
-

=
+ -

Im (
L -

y=

=
y ((x3)(0)) (( C)(3xi)
j (x)(0) (3)(2x)
-

=
- -

=
3xz -
(3 (x + h)2)
.

(X3)2 (x )2
2

lim (x2)(x + h)2

h -
0 h

3xi -
(3x + 6xh + 3h2)
y = 6x
Xt
=

&
lim (x2)(x *
+2xh + hz)
h >0 h

y
-

3 - x2 6xh 3h2
= -

y +
3 -

1
S
-
-

lim xx + 2xh + x
h)
h-
-
lim-6xh-3h
:

h -
0 xh + 2xh2 + x243

lim hi -
bx -

3h)
h yo
h(x + 2xzh + ht)
-

=
x

lim -
6x -

3h =
-
6x -
310) = - 6x =-

h -

>0 x + 2xh + x h) x + 2xi(0) + xi() XT x3 II


7) f(x) = X) -
1 U

(x 1)2
+ v
8) f(x) =
5x -

3x
3
U

X5 j

y xy =

x + 1

y' (x5)(20x 9x) (5x 3x9(5x)


-

=
-

(x5)2

y (xi + (x + 1)((x) (x
x)(2x + 2)
-
-

(x + 2x + 1)2
y' = 20xi -
9x7
X16
-

(25x* 15x) -

y' 2x + 4x + 2x (2x + 2x 2x 2)
-
-
-

(x2 1)2
y'
+ 2x + = 20x 9x7 -
-

25x + 15x7
16

y 2x3
-+ 4xi 2x7x X
= + -

2x + 2x + 2

(x
5x
+ 2x + 1) + 6x
y
-

2x + 4x +2
y
=

(x2 + 2x + 1)2
y 6)
=
= X ( -

5x +
x3
y' = 2(x2 + 2x + 1)
(x2 + 2x + 1)
= 5x + 6
y
-

X3
Il
y=
/
x3
y
=

1 /2
1
= & (x)
Y 2
9) f(x) 1 U
10) f(x) x3 3 x
y
-

3x
= =
=

X3v

(x (0))
y ()))]
- 3
x

I y
= =

((x) (x)
Y2
2(x)
Y

Y y
=

5
3x
y =

3 y =

2-
y
=

3x
2

y 3 y =
=

3 2
y
=- X -

233x
11) f(x) =
-

3X -

23 ↑
5

uv
u v
=:

: x5
3X 23 X5
Y
-

y Y
=
-

= 3 (0) 2 5
- X2
y
X
- .
t
-

y
-
.

*
2x 3
)
y
=
-

103
3
X2
g
=

55(x
y -
=

2
3

513
xx
X

y
=

= 3 10 3 *
Y
- -

2x 3
I

(2) f(x) x
-x 15x
-

=
-
-

>
-
/
3
y
=
~

c
x
I .
15x
y y y
=
- = =

-* 3
(15)
y
=
((15x)
y
= [(
z))3x)) Y
-

3 X y =
3
x
y=
=

2
x
6
y
=
-

5x
15
y
=
-

x -
-

215X
Il
(3) +(x) =
-

-x3 -
2x5 -

5x

3
y -
=

c
*
(

= 10x
q
10x
y
-
x -
-

Il
uv

14) f(x)
x y
a 3
X
y
=
= X =
X

v
= x. = 1 X 1
1 Y
. .

Y
.

x)(
1
3x)2x 2

y=
t

E
y 3x
3
3 X =

3
X
Y 2 X

= XY3
Y 3x"3
t

2 x/2

y =

x +

2 x6
y 23X +
=
3

j : +
=

x eX
y
=

-
y' E : x .
1

y =

-x)23x +3
-

xx)(2 y
=
1

z X

S
R
/X
2

2x + 3x
y
= ~

y
= 2 1(x)" (4)
Z ((x)*
y
= (1)

15) f(x) 2x 3 x =
= j 3.x
+
y 22
=
=

x
-X

y= [( x)1 ) 1
y= 2
-

+
3.x)
-

[(rx + +

2x 3 -
x

xx)z 2

-
y
=

Y2

= (x)

I
y
=

2x
16 f(x) = x
*
-

x3 + 3)9 17) f(x) =


(x2 2) -

4(x5 x + 3)5x 3x) 2(x 2 2)(2x)


y
=
- -

y =

20x4 12x2x5 x3 33 y
4x(x 2)
y
-

+ =
-
-

4x
y 8x/
-

18) f(x) = (x -
1)(xy1)2 y
=
(x + 1)

(x + 1)
y (X 1)(2x + 2)
y 2(x 1)(1)
=
-

+ 1 = +

2x2
y'
'

2x (x 1) (x +2
2x 2
y
= + -
-
+ +

2x 2 + x2 2x + 1
y =
-
+

y = 2x3 + 2x -

1/

f(x (x * *
+ 3)
(9) f(x) 3)9 20)
x
-

= (x5 x3 -

+ =

4(x5 x3 + 3)(5x 3x) (x5 x3 + 3) (5x


y
=

y + 3x)
-
- -
-

y
20xt 12x2)(x5 x3 +
333/ y 5x-3
- -

=
=

/
5x3 x3 + 3
Y
-

*
35
y y(x5 x3 (5x 3x2)
=
- + -

5
21) f(x) = x5 -

x3 +3
22) f(x) =
1
y = 5x1 -

3x
* - 55(x5 x3 + 3)9
35
y y(x5 (5x 3x2)
-

=
-
x3 + -

X x3 + 3-

y 5x1 3x
y
5x1 - x +30 1
3
- -

=
=

55(x5 x3
379/
-
+

2
(5x5 -
x3 + 3)

5x1 3x -

=
y 3
-
xi x + 3

5x5 x3 + 3)2-

=
Y z5X-3 3
I
23) f(x) 3 X5 X3a
+3 X5
x3
y
+
=
- -

V
X3

4 S

y z(x5 x3 +3 3x x3 6
y (xz)(5x 3x) (x* x3 +
3)(2x)]
- - -
- -
=
-

x X3
(x2))

y
= 3x5 x 6
y 5x 3x 2x + 2x 6x
-

-
= - - -

3x33 XI
XS x + 32 -

X
Il y' = 3x -

x 6x -

= X(3x - xi -
6)
X X(x3)

24) f(x) 5 xi
y=
= + X

X + 1
-

4
xi
y =(x =
+ y

+ 1 X Xy = [(x + 1)(2x +
1)] [(xi + x)(1)]
-

(x + 1)2

y' =

(5x
x + 4x + 1
y = 2x + x + 2x + 1 -
x + x

+ 5)(5xn
+
10x + x
x2 + 2x + 1
X + 1
Il
x + 4x +
y =

x2 + 2x + 1

* 25) f(x) = x + 2x + 1

Xz -

1
x2 + 2x + 1
-
12 y =

X2 1

y -(x)
-

= + 2x + 1
-
4x -
2

X2 -

1 (x2 -
1)2
=
y ((x2 1)(2x + 2)) [(x + 2x + 1)(2x)]
-
-

(x 1)2

y' =
2
-

x2 + 2x +1 1 3 *
2x #2x2 2x- 2 2x *
- & 2- 2x
Y - -

=
-
-

X2 -

1
(x2 =
1)2

4x 2 ! 2x= - 4x 2
y Y
-
-
- -

2 x2 + 2x + 1 (x" 1)2 - (x2 -


1)2
X2 1
Il
-

y =2

*
26) f(x) = xi -
1
y
=

X
X2 2x -

+ 1

2) 4x ((x2 (x + 1)(2x)] [(x) 1)(2x 2)]


y' +
2x2
y
2
-

=
+
- -
- -
-

(x 2x + 1)2
-
(x2 -

2x + 1)2

'
2x 4x2 + 2x (2x3 2x 2x 2)
y
+
= 2x
- -

4x
-

2
-

y
-

+ -

2
exi (x * 2x + 1) (x2 2x + 1)2
-

/
y 2x= -

4x + 2x =x3 + 2x 2 2x -

(x2 -

2x + 1)2

y =
-

2x + 4x2
(x 2x + 1)2 -

* +
29) f(x)
+
27) f(x) 28) f(x) ex
* + 1
= e =
-

3 .

ex = 7 .

* *
3 ex
+ 2
ex +

y'
1
-1/
7 2X
y e
y
. ·
= =
-
= .

/ X2 + 1
14xe
y
=

//

ex
+ x 1

30) =(x) f(x)


-

3 31) ex 32) f(x) 7x


7
-

.
= = =

-
ex
+ x -
(2x + 1) Y (e zx - 1
(n(7)](2x)
y ((e y
3
y
=
- .

= =

* -
3ex
1
(2x)(7 1)
[(n(7)]/
+ x

y
-

6x
y
-

/
=
-
=

e
y=
ex

33) f(x) =
- 1

2x 2x
Y
I

2
y - *
[Ln(2)]
=
=2
Y
*
2 [Ln(2)] *
[)2x)(1)] [(1))22x
=

(24)
y
-

y
=

(2x(
* *** (2
' *
[Ln(21)
y +12
y xx
*

=
-

2 [\n(2))
2 2x
'=
*
2 Sun(2)]
2x y 2 2x
se
y - En
2x

y 2(2x) (Ln(2)]
*
=
-

(2 )(22x)
*

y =

@Cn = El
2x Il
34) f(x) = 2 ** 3 .
5x
* * *
= 2 [(n(2)](1) 3 5 [Ln (3 5)](1)
Y
-

. .

*
**
[2n (3 5))
y [In(2)]
= 2
-

3 5
/
.
.

35) f(x) (2 =
**
-

3 .
5x)3
5)))
*

5) (2 [Lu (3
** **

y = 3(2 -
3 .
(In (21] -

3 3
.
.

+ 1

36) f(x) = 34
+ 1
37)f(x) =
7x
(3x x +
[(n(7)]
y
7 1

Y =+
=
=

(3x
+
-* (z
**
[Ln (3)
2x +1

'= 1
7
**
[Ln(7)]
y 2x + 1 Il
+

[
gx 3
y
:
=

*
Il (x + 1) (1)
Y
1
y
=

2x + 1

e e ex2
3
38) f(x)
y
= e + = +

23x ex
y = 3 + 2x
.
-

* * * x2
(3)(3e
*
(] [(e +e 2xe
y y'
= + (xe -

((3)] = 3e +

13)2
* *

y = 9e + 6xe 3 3e
-
-

39) f(x)
=
*
((n(f)]((x))
*
[(x3)(7 [(7 ((3x4]
y
-

(x3)2

y
=
10) f(x) =

ex
*
)] ((e )(3xt)] *

y ((x3)(2xe
-

(x3)2
ex ex
y' 2x 3x
-

X
Il

7x
41) f(x)

g
=
X
* *
(((2x)(7 (((n(t))) ((7 ((3x4]
-

Y
2
* *

7x 2x ) [Ln(7)3
-

(7 -

(7 ((3x )
2
(x3)2
y *
=
X3 2x(z )((n(7)] (7 ((3x)
*

y'
-

X =

X
y (x (7xi)((n(7)]
*
=
-

(7 )(3x)
2 x6
7x I

(n(x 3)
y
<
= -

42) f(x) = (n(x + 3) 43) f(x) = 7x + (n(x 3) -

y X =

y =

x
+ 3 y = 7 +
y
/ /

44) f(x) = (n(x) 3x + 2) -

15)f(x)
=
y' bx 2(2x 3)
-

y +
=
(((n(x 1](0)] [(1)(x 1)]
y'
-

= -

= (In(X 1))2
y 25
-

/
y' -X-12
,
I
=

y =

(x -

1)[(n(x 1)72-

Il
y X2 1
y =X
=

46) f(x) (nXi 1 -

X2 2x + 1 X2 2x +
- 1
[(x) (x + 1)(2x)] [(xi
y 1)(2x 2)]
-
= - -

y (x) 1)" (x" 2x + 1)


-

1
-

=
2x2 + 4x 2
y
-
-

= ·

X2 2x + 1
Exi
-

Xz - 1 (2 * +
)(X" -
2x + 1) y = 2x 4xi
- + 2x =
+ 2x + 2x -
1

(2x) *
(X2 -
2x + 1)

y t
X2 2x -
+ 1 =
-
xx2 + ex -
2

(x2 -

2x + 1)
!
y 2x2 + 4x 2
2x2 + 4x
-

2
-

Y
-
-

(x) 2x + 1)2
(2
-

)(x2 2x 1)
y= -C x
-

+
,
+

4)7) f(x) = Sen(x + 1) 18) f(x) = sen(2x + 2xi))


cos(2xi + 2x) (4xi + 4x)(6xi + (x)
y' =
cos(x + 1)(1)
y
=

//
cos(x + 1)
y =

/
(2x + 2x2)2
y=
=

2(2x + 2x)(6x + 4x)


Y (x + +xy)(6x + dx)
y
=

49) f(x) sen(x + 1) = + 5x 50) f(x) = (Sen(x + 1)


*
1) = (sen 1)] (cos(x + 1))
y *
cos(x
5/
+ (x +
y
= +

sen(x + 1) '= cos(x + 1)


y y
=

2
y = cs(x + 1) Sen(x + 1)
/

51) f(x) cos(3x +3) = 52) f(x) = cos(3x2 + 3x)


Sen(3xx + 3x)(6x
y =
-

Sen(3x + 3)(3)
y =
-
+ 3)

3 sen (3x + 3) 6x
y y = + 3sen(3xx +
3x)//
-

53) f(x) =

Sen (x + 1)

'=
y [sen(x 1)(0)] ((1)[cos(x 1)]]
+ -

ISen (x + 1))2

y' =

-
54) f(x) =
1 t
1
Sen(x
v
COS X + 1)
V

y= (cosx)(0)] [(1)( Sen(x)) - -

y = [(sen(x + 1)(0)] -

[(1)[cos(x + ))]

(Cos X)2 (Sen(x + 1)]2

cos(x + 1)
y
=

y Sex
-

[sen(x + 1)]

y =
Sen(x) -
cos(x + 1)

[cos(x1]2 [sen(x +
1)]2//
cos(x)
y
=

55) f(x) =
1
-
1 [sen(x)]2
Sen X Cos(X 1) '= 1)
-

Sen(x
y
L
-

[cos(x- 1)]2

y = cos(x)

[sen(x)]a
Sen(x

[cos(x-1)]2
-
1)

Il

56) f(x) = "(oc(3x + 3)

y- =
(cos(3x + 315-3( -

3sen(3x + 3)

y -3 sen 3x
=

II

You might also like