Integration
Integration
11 / / /
111 -
Integration
·
Ja
=
/132 1)" +
= "(B
:
=(
: +
: 5 -
1 56
=
.
=
5
3
= 2
Gradient of normal : -I
Equation :
y 3 -
=
-
2(x 3) -
y -
3 = Ex 3 -
+
y :
-
[x + 2
[x + y =
z
9
x +
2y =
i
J y 3 - 3 C +
=
3 = 33)3 + C -
3 : 9 + C
Just c
y
=
:
-
6
35 -- -
6
2
J6(42-3)
=
·
Ezei
i)y iii) Va
= gynda 2
2x x +
y
= + =
:
2x 2x
- 2
x4 + 4x 1
yz
- +
=
f(x
x2
4x
2x
- 4x
+
+
=
=
= C +2
= 2 + 1
23 =+ ]
ii) (x-
z =
c =
o (( + C(2))
z) (E
-
+
2)
q))
2x =
5
2x3 = 2
- +
( +
5&
x3 1 54 6
7
=
.
= :
x = 1
+1 nature
x a
y
:
23
= 12 + 2
I
-
=
2 +
= 3
so , (1 , 3) = 6 (positive so
minimum)
. of
5
(finding equation a function given its derivative)
=
x 5x + C (3 8)
y= - ,
8 =
(43)3 -
5(3) + c
8 = 18 -
15 + C
. 3
8 + C
c = 5
3 5
y=
so, _
5x +
="42z
ii) An
i) y
=
y =(
-
=
22
*
= (8)
Gradient of normal : = 85 -
85
= -
2x - = 16 -
8
z
2(4)
-
S
=
- =
-
:
= 4
Equation :
2 4(x 4)
y
= -
-
2 4x 16
y
-
: -
14
y 4x
= -
When x= 0 when 0
y
=
4(0) 14 0 : 4x-14
y
-
14 x 3 5
y
=
-
= .
so Q= (0 -14) ,
Sop =
(3 . 5 , 0)
= 14 4 .
i) Gradient of normal at P:
J
· 2
-
:2
4(6 -
2x)
a
-E
=
Equation of normal :
y
-
8 = -
((x -
1)
8 = -
8 +
c
y 8 16
+x t
-
- - + c =
y
Y
= 1
= -
(x 1 +
2y = 17 -
x
y : 2x +
16
When When
a =
0
y =0
2y : k -
0 2(0) = 17 2 -
85 x =
17
y =
.
so 10 8 , .
5) so (17 0)
,
midpoint :
( 854) ,
= (8 . 5 ,
4 .
25)
! b
3x
= 3x2 6n - -
90
0 = 3x2 6x -
-
9 x= - 1 ,
x = 3
x2 - 2x -
3 = 0 -
1243
x2 -
32 + 2 -
3 = 0 "
x(x 3)
(x + 1)(x 3)
-
+
-
1(x 3)
=
-
0
=
c iv)
O
((a3 -
3x2 9x
-
+ 2))dx
x =
point
-1
,
>
-
%
(3
=
,
3
0)
-
:
3
9273
-
0= 33 3(3)2 9(3) + 1
-
-
0 27 k
- -
:
-
27 -
27 + =
1 =
27
33 75
=
-
.
ii) 23 3x2 9x + 2)
y
= -
-
=
( 1)3 3) 1)2 97 1) +27
-
-
-
- -
=
32
max >
-
(- 1 32) ,
i) y =
x(x 1)(x - -
2) Point of intersection C :
y (x2 x)(x
= -
-
2) 1 x - =
2x -
4
Y = x3 -
2x2 - x2 + 2x 1 + 4 =
2x + x
y = x3 -
3x2 + 22 3x = 5
A :
3 - 2 x=
5
Gradient at A (1 :
, 0)
3(1) 6(1) ii) Ax
"Glus-322- 221)de
2
= - + 2 = ,
=
3 -
6 +2
O
-
:
=
Gradient at B (2 0 :
,
6(2) + 2
=
3(2)2 =
=
=
12 -
12 + 2
= 2 = 4 -
8 + 4 - 0
Equation of tangent at A : = O
y 0 -
= -
1(x -
1)
y = -
x x-axis are
cancelling each other out that
, means
Equation of
tangent at B
: R, and Re are equal
y - 0 2(x 2) = -
y :
2x -
4
Va =
uffy-de y
: 3x
9
y2 =
-9
=
=(6x]
= (6(x) 6(1)]
-
= (48 6]
-
= 425
:
((-2)da 4x
- +
3 = -
1 + 10
4x
y
1 +
++
-
9 4(2)
2 x2 8x x 1 = 0
-
+
-
= + -
x2 + 9x -
14 = 0
9 = 8 -
2 + x2 - 9x + 14 = 0
c = 3 x2-(x -
2x + 14 = 0
3 x(x 7) 2(x 7)
4x
-
0
y
=
-
-
-
:
+
(x 2)(x 3)
- -
= 0
x = =7
2
ii) Gradient of :
normal at P
4
= x
y =
z 10
-
+
-
= 4-2
2 18
-
=
=
+
= -
Equation : =
6 5 .
y -9 =
-
z(x 2) -
Q - ( ,
6 .
5)
y -
9 =
-
Ex + 1
y -
=
Ex +
15
Sa
+
y
=
2
3x + 1
y
=
-
3x =
y2 -
1
2
x =
= (y2-1)
i)
Ay =Jody ii) Va
= de
= -1 da line y 2 ye 4
: =
,
= curve :
y' Sa +
j4dx =((x
= + 1)dx
-3) S
= (4x] =
5 (1-4) ( 1)
· -
-
(4
(3 G
=
-
0) =
: (5-15)) 45
=
S
:
=
E-Ert == .
4
iii) Y=x+
y = (3x + 1)
-
1) (3)
+(3x
= +
=
-(3x + 1)
2
Gradient at P :
(0 , 1) Gradient at Q :
(1 2)
,
3(3(0)
+
1)-
= (3(1) + 1)
&(1) =
=
tan 0 =
Am
1 + m, mz
z - -
=
()(a)
:
=
tanc = 6
17
0 : 19 40.
(3x5 6 da 3 6
is ii) 0
-
- =
35 = 6
= 6 E =
4
2
2 x =
=
Y = 2x - 6x + c
3
2 = 2(9)2 -
6(9) +
C =
2xt
2
2 = 54 -
54 + C
=
C = 2
2x2 6x + 2
y
-
i
= 0 .
75 -
positive su minimum point
Va =
Syndx y=
Chr
= Gain dis
y2
24r = ? (a)
na
y = ax
-
z
240x =
ya)) ( ( +))
- -
24 = 2a ?
3
a? = 36
a = 6
find limits
y (x -2)"
2) D 2x =
: :
, y+
7 2x
y
= -
(x 2) -
= 7 -
2x
x2 -
4x + 4 = 7 32-
x2 -
2x -
3 =
0
x -
3x 2
+ -
3 = 0
(x + 1)(x 3) -
= 0
x =
-
1 ,
x =
3
fla-2)
·
da
((7-2x)d
- (
=(x x2)
-
-
=
((3) -
9) -
(3) 1)
- -
( - 1)2)
( 8) 1 - 9)
(
= 21 -
9 -
- =
-
=
20
28
=
20-28
= = 10
j 4
i)x +
4 = 1-4x2ii) y 5, :25
=
= 5
="
1 1 va
G25dn
= - x
= 5 -
x 22 I
2
1 -
1 =
0 = [25x] xo
22
4 = 5x -
22 =
25(4) -
25(1) x -+
75s
x2 5x 4 0 1
5
+ = =
- =
22 -x -
4x + 4 = 0 y : n + y2 ,
= x2 + 8 + 16x22
x(x -
1) 4(x 1)
-
-
= 0
22 = 4
(x 4)(x 1) 0 2 Vx
((a2 8 16x 2)dx
-
+
-
- =
x = = +
x 4 x = 1
y x
= = +
,
=8
x
A : (1 , 5) B :
(4 , 5)
y 1y
x
1 4
= + = x + = 2 +
=
N
1 4 4
4 1
= + = + =
(( 4)]
5
(4) (
M + (2 , 4) = - 8(4) + 8(1)
+
- - -
= 5 = 5
=
( 2) +
= 575
shaded :
75r-57
-
56 5 .
or 18
i) 3x2 + 2n - 5 > 0
3x2 + 2x -
5 =
0
5
-
3x2 3x -
+ 5x -
5 =
0
3x(x -
1) + 5(x -
1) = 0
(3x + 5) =
0x -
1 =
0
x
-5 x 1
= =
x
5 or ses
-
ii)
(132 + 2x-5)dx
=
y
= 23 + x2 -
5x + c (1, 3)
3 = 13 + 12 - 5(1) + 2
3 =
1 + 1 -
5 + C
3 = -
3 + C
c = 6
y = 23 + 22 5x + - 6
i) 9 23
.
= iii) Y 9-23 =
iii)
y :
-3
An
=(19.23) da
:2
9x3 26 - = 8
x0 - 923 + 8 = 0
:i x-]
0= 2302 = x + 3x2
+
=
9u
(9(2) 2 (4() 7)
v2 - + 8 =
G =
-
-
3x2
=
u2 u -
8u + 8 = 0
8(u 1)
v(u 1)
14-3
-
- - = 0 =
(u 8)(u 1) 0
- -
=
3x0 = 24
26
=
u = 8 u = 1 = 5 25. = 8
8 = x3 1 = 23 x = 1 41
.
3
y 8x 4)
-
x = 2 x = =
C = 1 .
a= 1 ,
b= 2 Ax
=J8x-3da
]
= i( 32-2]-
( 4(2) 2) ( 4(1) 2)
-
-
-
- -
=
= -
1 +4 = 3
5. 25 -
3 = 2 25.
Limit
I 5
n= - 1
Y
=-+
x2
Yet
5
x+ 1 =
Vy= Sign - 1) dy
·
+
=
x -
1
= Y +
ii)
Je-I dy Ayy( -
- -
3) = -
+3 5 + +
3)
= -
y
= E 2) Ex - 1) + + - + +
(2 -
2) -
(2 1)
-
- y +
( 55]
=
-
= -
-
=
4 + 5
1
=
=
= 5 24 .
i) y) 2x-1
y
=
=
gy
ii) An
=5J(2-1 de
=
=
3 En= = 2n -
1 =
((2(5)-1 _
9(2x -
1 = 422 -
42 + /
=
18x -
9 = 422 - 42 + 1
422 -
4x1 -
18x + 1 + 9 =
0 = 9 -
0
4x2 -
22x + 10 =
0 = 9
2x2 -
11x +
5 =
0
2x2 -
10x
2x(x 5) 1(x 5)
-
-
-
x + 5
-
= 0
= 8
An
In-de
=
=
(2x 1)(x 5) 0
- - =
x = 2 or =5a = 5
2
= (52
-5) -
(2)
(2)]
·
9
-
= 27
4
= = 2 25
.
= SRx-Ide S
212 2
-
- 6
x2 x C
=
+
y
= =
-63
x2 x + c = 0 - 10 =
32 -
3 +
c = 0
6 9
0 10
q 18 C
+ c =
-
=
-
-
+
c = - 6
C = 2
2
x2 -
x -
6 = 0
x 2 - 3x 6
y : Gx
2x
+
+ - = 0
x(x 3) - +
2(x 3) - =
0
(x + 2)(x 3) 0
-(2)
-
=
=
x = 2 or 2 = 3
-
- 2
= - + 12 + 2
2
105
· :
1-2 , 10)