0% found this document useful (0 votes)
11 views22 pages

Integration

The document contains mathematical equations and calculations related to integration, gradients, and normal equations. It includes various examples of finding equations of tangents and normals, as well as solving for areas under curves. The content appears to be a mix of algebraic manipulations and calculus concepts.

Uploaded by

aishashafiq1917
Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content, claim it here.
Available Formats
Download as PDF, TXT or read online on Scribd
0% found this document useful (0 votes)
11 views22 pages

Integration

The document contains mathematical equations and calculations related to integration, gradients, and normal equations. It includes various examples of finding equations of tangents and normals, as well as solving for areas under curves. The content appears to be a mix of algebraic manipulations and calculus concepts.

Uploaded by

aishashafiq1917
Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content, claim it here.
Available Formats
Download as PDF, TXT or read online on Scribd
You are on page 1/ 22

IIII S

11 / / /
111 -

Integration
·
Ja
=

/132 1)" +

= "(B
:
=(
: +
: 5 -

1 56
=
.

=
5

3
= 2
Gradient of normal : -I
Equation :

y 3 -
=
-

2(x 3) -

y -
3 = Ex 3 -
+

y :
-

[x + 2
[x + y =
z
9
x +
2y =

i
J y 3 - 3 C +
=

3 = 33)3 + C -

3 : 9 + C

Just c

y
=

:
-
6

35 -- -
6
2
J6(42-3)
=

·
Ezei
i)y iii) Va
= gynda 2
2x x +
y
= + =

:
2x 2x
- 2
x4 + 4x 1
yz
- +
=

f(x
x2
4x
2x
- 4x
+
+
=

=
= C +2

= 2 + 1
23 =+ ]
ii) (x-
z =
c =

o (( + C(2))
z) (E
-
+
2)
q))
2x =

5
2x3 = 2
- +

( +
5&
x3 1 54 6
7
=
.

= :

x = 1

+1 nature
x a
y
:

23
= 12 + 2
I

-
=
2 +

= 3

so , (1 , 3) = 6 (positive so

minimum)
. of
5
(finding equation a function given its derivative)

=
x 5x + C (3 8)
y= - ,

8 =

(43)3 -
5(3) + c

8 = 18 -

15 + C

. 3
8 + C

c = 5

3 5
y=
so, _
5x +
="42z
ii) An
i) y
=
y =(
-
=
22
*
= (8)

Gradient of normal : = 85 -
85
= -

2x - = 16 -
8
z
2(4)
-

S
=
- =

-
:

= 4

Equation :

2 4(x 4)
y
= -
-

2 4x 16
y
-
: -

14
y 4x
= -

When x= 0 when 0
y
=

4(0) 14 0 : 4x-14
y
-

14 x 3 5
y
=
-
= .

so Q= (0 -14) ,
Sop =
(3 . 5 , 0)

length = 10 -1-14)2 + 13 5-0)


.

= 14 4 .
i) Gradient of normal at P:

J
· 2
-

:2
4(6 -

2x)

a
-E
=

Equation of normal :

y
-
8 = -

((x -

1)
8 = -
8 +
c

y 8 16
+x t
-
- - + c =

y
Y
= 1

= -

(x 1 +

2y = 17 -
x
y : 2x +
16

When When
a =
0
y =0
2y : k -
0 2(0) = 17 2 -

85 x =
17
y =
.

so 10 8 , .
5) so (17 0)
,

midpoint :

( 854) ,

= (8 . 5 ,
4 .

25)
! b

z3 3x2 9x 1 iii) 32.6a


i) y
y
=
-
-
+ =

3x
= 3x2 6n - -
90
0 = 3x2 6x -
-
9 x= - 1 ,
x = 3
x2 - 2x -
3 = 0 -
1243
x2 -
32 + 2 -
3 = 0 "

x(x 3)
(x + 1)(x 3)
-
+

-
1(x 3)
=
-

0
=
c iv)
O
((a3 -
3x2 9x
-
+ 2))dx

x =

point
-1
,

>
-
%

(3
=

,
3

0)
-
:
3
9273
-

0= 33 3(3)2 9(3) + 1
-
-

0 27 k
- -
:
-

27 -
27 + =

1 =
27

33 75
=

-
.

ii) 23 3x2 9x + 2)
y
= -
-

=
( 1)3 3) 1)2 97 1) +27
-
-
-
- -

=
32
max >
-
(- 1 32) ,
i) y =
x(x 1)(x - -

2) Point of intersection C :

y (x2 x)(x
= -
-

2) 1 x - =
2x -
4

Y = x3 -
2x2 - x2 + 2x 1 + 4 =
2x + x

y = x3 -
3x2 + 22 3x = 5

A :
3 - 2 x=
5
Gradient at A (1 :
, 0)
3(1) 6(1) ii) Ax
"Glus-322- 221)de
2
= - + 2 = ,

=
3 -
6 +2
O

-
:
=

Gradient at B (2 0 :
,

6(2) + 2
=
3(2)2 =

=
=
12 -
12 + 2

= 2 = 4 -
8 + 4 - 0

Equation of tangent at A : = O
y 0 -
= -
1(x -

1)
y = -

x + 1 The areas above the x-axis and below the


y :
1 -

x x-axis are
cancelling each other out that
, means

Equation of
tangent at B
: R, and Re are equal
y - 0 2(x 2) = -

y :
2x -
4
Va =

uffy-de y
: 3x

9
y2 =

-9
=
=(6x]
= (6(x) 6(1)]
-

= (48 6]
-

= 425
:
((-2)da 4x
- +
3 = -

1 + 10

4x
y
1 +
++
-

9 4(2)
2 x2 8x x 1 = 0
-

+
-
= + -

x2 + 9x -
14 = 0

9 = 8 -
2 + x2 - 9x + 14 = 0

c = 3 x2-(x -
2x + 14 = 0

3 x(x 7) 2(x 7)
4x
-
0
y
=
-
-
-
:
+

(x 2)(x 3)
- -
= 0

x = =7
2
ii) Gradient of :
normal at P
4
= x
y =
z 10
-

+
-

= 4-2
2 18
-
=
=
+
= -
Equation : =
6 5 .

y -9 =
-

z(x 2) -

Q - ( ,
6 .
5)
y -
9 =
-
Ex + 1

y -
=

Ex +
15
Sa
+
y
=

2
3x + 1
y
=
-

3x =
y2 -
1

2
x =

= (y2-1)

i)
Ay =Jody ii) Va
= de

= -1 da line y 2 ye 4
: =
,
= curve :
y' Sa +

j4dx =((x
= + 1)dx

-3) S

= (4x] =
5 (1-4) ( 1)
· -
-

(4
(3 G
=
-
0) =

: (5-15)) 45
=

S
:

=
E-Ert == .
4
iii) Y=x+

y = (3x + 1)
-
1) (3)
+(3x
= +

=
-(3x + 1)
2

Gradient at P :
(0 , 1) Gradient at Q :
(1 2)
,

3(3(0)
+
1)-
= (3(1) + 1)

&(1) =
=

tan 0 =
Am

1 + m, mz

z - -
=
()(a)
:
=
tanc = 6
17

0 : 19 40.
(3x5 6 da 3 6
is ii) 0
-
- =

35 = 6

= 6 E =

4
2

2 x =

=
Y = 2x - 6x + c
3
2 = 2(9)2 -
6(9) +
C =
2xt
2
2 = 54 -

54 + C

=
C = 2

2x2 6x + 2
y
-

i
= 0 .
75 -
positive su minimum point
Va =
Syndx y=

Chr
= Gain dis
y2
24r = ? (a)
na
y = ax
-
z

240x =

ya)) ( ( +))
- -

24 = 2a ?
3

a? = 36
a = 6
find limits
y (x -2)"
2) D 2x =
: :
, y+
7 2x
y
= -

(x 2) -
= 7 -
2x

x2 -
4x + 4 = 7 32-

x2 -

2x -
3 =
0

x -
3x 2
+ -

3 = 0

(x + 1)(x 3) -
= 0

x =
-
1 ,
x =
3

Total area : Area under the curve:

fla-2)
·
da
((7-2x)d
- (
=(x x2)
-
-

=
((3) -
9) -

(3) 1)
- -
( - 1)2)

( 8) 1 - 9)
(
= 21 -
9 -
- =
-

=
20

28
=

20-28

= = 10
j 4

i)x +
4 = 1-4x2ii) y 5, :25
=
= 5
="
1 1 va
G25dn
= - x

= 5 -
x 22 I
2
1 -
1 =
0 = [25x] xo
22
4 = 5x -
22 =
25(4) -

25(1) x -+

75s
x2 5x 4 0 1
5
+ = =
- =

22 -x -
4x + 4 = 0 y : n + y2 ,
= x2 + 8 + 16x22

x(x -

1) 4(x 1)
-
-
= 0
22 = 4

(x 4)(x 1) 0 2 Vx
((a2 8 16x 2)dx
-
+
-
- =
x = = +

x 4 x = 1
y x
= = +
,

=8
x
A : (1 , 5) B :
(4 , 5)
y 1y
x
1 4
= + = x + = 2 +

=
N

1 4 4
4 1
= + = + =

(( 4)]
5

(4) (
M + (2 , 4) = - 8(4) + 8(1)
+
- - -

= 5 = 5

=
( 2) +

= 575

shaded :

75r-57
-
56 5 .
or 18
i) 3x2 + 2n - 5 > 0

3x2 + 2x -
5 =
0

5
-

3x2 3x -
+ 5x -
5 =
0

3x(x -

1) + 5(x -
1) = 0

(3x + 5) =
0x -
1 =
0

x
-5 x 1
= =

x
5 or ses
-

ii)
(132 + 2x-5)dx

=
y
= 23 + x2 -
5x + c (1, 3)

3 = 13 + 12 - 5(1) + 2

3 =
1 + 1 -
5 + C

3 = -
3 + C

c = 6

y = 23 + 22 5x + - 6
i) 9 23
.

= iii) Y 9-23 =
iii)
y :
-3
An
=(19.23) da
:2
9x3 26 - = 8

x0 - 923 + 8 = 0
:i x-]
0= 2302 = x + 3x2
+
=

9u
(9(2) 2 (4() 7)
v2 - + 8 =
G =
-
-

3x2
=
u2 u -
8u + 8 = 0

8(u 1)
v(u 1)
14-3
-
- - = 0 =

(u 8)(u 1) 0
- -
=
3x0 = 24

26
=
u = 8 u = 1 = 5 25. = 8

8 = x3 1 = 23 x = 1 41
.

3
y 8x 4)
-

x = 2 x = =
C = 1 .

a= 1 ,
b= 2 Ax
=J8x-3da
]
= i( 32-2]-

( 4(2) 2) ( 4(1) 2)
-
-

-
- -
=

= -
1 +4 = 3
5. 25 -

3 = 2 25.
Limit

I 5
n= - 1

Y
=-+
x2

Yet
5
x+ 1 =

Vy= Sign - 1) dy
·
+

=
x -
1

= Y +

ii)
Je-I dy Ayy( -

- -

3) = -

+3 5 + +
3)
= -
y
= E 2) Ex - 1) + + - + +

(2 -

2) -

(2 1)
-

- y +
( 55]
=
-
= -

-
=
4 + 5
1
=
=

= 5 24 .
i) y) 2x-1
y
=

=
gy
ii) An
=5J(2-1 de

=
=
3 En= = 2n -
1 =
((2(5)-1 _
9(2x -

1 = 422 -
42 + /
=

18x -

9 = 422 - 42 + 1

422 -
4x1 -
18x + 1 + 9 =
0 = 9 -
0

4x2 -
22x + 10 =
0 = 9

2x2 -
11x +
5 =
0

2x2 -
10x

2x(x 5) 1(x 5)
-
-

-
x + 5
-
= 0

= 8
An
In-de
=

=
(2x 1)(x 5) 0
- - =

x = 2 or =5a = 5
2

= (52
-5) -
(2)
(2)]
·
9
-
= 27
4

= = 2 25
.
= SRx-Ide S
212 2
-
- 6

x2 x C
=
+
y
= =

-63
x2 x + c = 0 - 10 =

32 -
3 +
c = 0

6 9
0 10
q 18 C
+ c =
-

=
-

-
+

c = - 6

C = 2
2
x2 -
x -
6 = 0

x 2 - 3x 6
y : Gx
2x
+
+ - = 0

x(x 3) - +
2(x 3) - =
0

(x + 2)(x 3) 0
-(2)
-
=
=

x = 2 or 2 = 3
-

- 2
= - + 12 + 2
2

105
· :

1-2 , 10)

You might also like