Production of Glyoxylic Acid
Production of Glyoxylic Acid
ﻛﻠﯾﺔ اﻟﮭﻧدﺳﺔ
ﻗﺳم اﻟﮭﻧدﺳﺔ اﻟﻛﯾﻣﯾﺎوﯾﺔ
٢٠١٨-٢٠١٧
اﻋداد اﻟطﻠﺑﺔ
زﯾﻧب ﺣﺎﻛم ﻣﺎﺟد
ھﺑﮫ زﯾد ﻓﯾﺻل
ﻧور اﻟﺣﺳﯾن ﺣﻣﯾد ﻋﺑود
Table of content
References
Objective
1.Design plant for production glyoxylic acid from glyoxal with a production
capacity
Recommendation
1.Design a process for produc on glyoxylic acid by electrochemical
method
Introduction
Chemical Structure:
Formula Weight: 74.04
Assay: 50%MIN
Other Names: Oxalaldehydic acid,2-oxoethanoic acid ,GA,oxo-
acetic acid,Glyoxalate, Glyoxylic acid 50% in water;glyoxylic
acid free acid;aldehydoformic acid;alpha-Ketoacetic acid.
Capacity: 5500MT per month.
Sample: available
Applications Summary : hair dye,hair care product,skin care
product
plastic drum, 25 kg
plastic drum, 250kg
IBC drum, 1250 kg
ISO-TANK, 20-22tons
Physical Properties
Glyoxylic acid crystallizes as the monohydrate
upon controlled concentration of its aqueous
solution. When dry, the monohydrate has mp
52 – 53 C. The dissociation constant in aqueous
solution is 4.7×10 4, and the specific heat
is 1.80 kJ kg 1 K 1. The density of a 50%aqueous
solution of the acid, the only commercial
form, is 1.34 g/cm3 at 20 C; the refractive index
(20 C) is 1.416.
The use of NMR spectroscopy (1H [6] and
13C[7]) has confirmed the existence of glyoxylic
acid in aqueous solution as the
dihydroxy acid (1) together
with a small Proportion of the
linear dimer (2)
'
Chemical Properties
Oxidation
F2
31.6% HNO3
68.4 H2O
Oxidation
Glyoxal 28.3%
F1 F3Glyoxlic acid 15.329%
H2O 71.7% Glyoxal acid 1.387%
F4
6944/74.64=93.03 kmol
Yelid=84%
Conv=90%
F1=glyoxal+H2O
Glyoxal=8267.2/0.283=29212.7Kg/hr
Themean reaction
CHO-CHO+HNO3 CHO-COOH+NO+H2O
CHO-CHO+HNO3 CHO-COOH+NO+H2O
H2O 152.192%
Exchange resin
Oxalic acid 1%
OxalicFacid F6 F8
0.7576%
f
Glyoxal
1.3342% EXChange2
H2O 79.948%
Glyoxlic
Glyoxal 1.3444%
18.5656%
Glyoxlic 18.707% F9
material F6 Wt% F8 Wt% F9 Wt%
Oxlic acid 468 0.007576 468 1
glyoxal 824.2 0.013342 824.2 0.013444
Glyoxlic 11468.16 0.185656 11468.16 0.18707
H2O 49010.35 1.52192 49010.35 0.79948
Evapora on[1]
Glyoxal 1.344% F9
Glyoxlic acid 18.707% H2O 1%
Evaporation
H2O 79.948%
d
F13 F12
Glyoxal 4.6714%
H2O 30.33%
Glyoxal 4.6714%
Glyoxal 4.6714% F14 H2o 30.33%
glyoxlic 65%
Glyoxlic 65%
F13
H2O 30.33% COOLER[1]
Glyoxal 7.3118%
F14
Glyoxlic diss 50.869%
Filter
F15
Glyoxalic 32.5% H2o 41.818%
Glyoxal 4.671%
H2o 30.32%
F15 F16
Soild 90%
H2O 10%
glyoxal 9.342%
glyoxlic 65%
H2o 41.818%
Evapor on[2]
Glyoxal 7.3118% F16
H2o 25.65%
F17 H2O 1%
Glyoxal 9.342%
Glyoxal 9.342%
H2o 25.65%
COOLER[20]
Glyoxlic 65% C Glyoxlic diss 32.5%
F19
H2O 25.65%l
Glyoxlic soild 32.5%
F18
= 5734.08 * 0.5
= 2867.04
Filter
F19 F21
Glyoxlic soild
32.5% filter Glyoxal 14.62%
H2o 9.99%
2867.04/0.9= 3185.6
Dryer
F22
F20
Dryer Total
Glyoxlic 90%
9533.64
H2O 9.99%
H2O
955.78
F23
Chapter three
Energy Balance
1-Oxidation
Cp=1.80 kj/kg.kglyoxlic acid=48.56
H2o A B C
Q= H
H=H out- H in
H in=H1-H2
H1=0 ,H2=0
H out=H3+H4
H4=m cp T
Cp=33.227+(-2.3628*10^-2)(353)+5.3156*10^-5
=24.886
H4=174*24.886*(353-298)
=238159.02 J
H glyoxalic =m cp T
= 122.9*48.56(353-298)
=328241.32 J
H glyoxal =14.2*28.16*(353-298)
=21998.8J
H H2O =m cp T
Cp = a+bT+cT^2
=92.053+(-3.9953*10^-2)(353)+(-2.1103*10^-4*353)^2
=77.95J/mole.k
HH2O =2591.6*77.95*(353-298)
=11110910.94J
H Oxalic =m cp T
Cp =0.206+5.0483*10^-1*353+(-4.6577*10^-4*353)^2
=178.4
H Oxalic=178.4*5.2*(353-298)
=51022.4J
H HNO3 =m cp T
Cp =214.478+(-7.6762*10^-1*353)+(1.4970*10^-3*353)^2
= -56.212
=42.16*-56.212*(353-298)
=-130359.8
H out =51022.4+11110910.94+328241.32+21998.8-130359.8
=11381813.66 J
H =H out-H in
CHO-CHO+HNO3-CHO-COOH+NO+H2O
Hf H2O =-285.48KJ/mole
Hfglyoxlic = -458.75KJ/mole
H NO=90.37KJ/mole
Hf HNO3 = -173.23KJ/mole
Hr = (90.37*128.2-458.75*128.2-285.84-(-193.86*128.2-173.23*128.2)
= -36810.066
Q = H + Hr
= 11381813.66*10^-3 -36810.066
= -25428.25
2-Evaporation
H = H out – H in
H in =Hf9
H glyoxalic =m cp T
= 154.84*48.56*(313 – 298)
=112821.87
H glyoxal =14.2*28.16*(313-298)
=5998.08
=79.55
H H2O|=2722.74*79.55*(313-298)
=3248977.73
= 3367797.73
F12 H H2O = m cp T + ƛm
=2425.52*79.55*(313-298)+2425.52*2406.0
=8730052.86
= 354724.05
H glyoxalic =154.89*48.56*(313-298)
=112822.90
H glyoxal =14.2*28.16*(313-298)
=5998.08
H F13=5998.08+112822.90+354724.05
=473545.03
H out=Hf12+Hf13
=2894251.74+473545.03
=3367796.77
H=H out-H in
=3367796.77-3367797.73
=+5835800.16
3-Cooler(1)
H in =Hf13
H out=Hf14
=354724.05+112822.90+5998.08
=473545.03
H14=glyoxalic(s)+glyoxal(l)+glyoxal+H2O
H glyoxal=14.2*28.16*(293-298)
=-1999.36
H H2O=m cp T
Cp=92.053-3.9953*10^-2*293+(-2.1103*10^-4)
=80.35
H H2O=297.27*80.35*(293-298)
=-119428.22
H glyoxalic=m Cp T
=154.89*48.56*(293-298)
=-37607.29
H out =-1999.36-119428.22-37607.29
=-159034.87
H=H out –H in
H=-159034.87-473545.03
=632579.9
4-Filter
H in= H f14
H out =H f15+Hf16
H in=-159034.87
H glyoxalic=m cp T
=77.44*48.56*(293-298)
=-18802.43
H H2O=m Cp T
=35.39*80.35*(293-298)
=-14217.93
H 15=-33020.36
H glyoxalic=-18802.43
H Glyoxal=-1999.36
H H2O=261.88*80.35(293-298)
=-105210.29
H16=-18802.43-1999.36-105210.29
= -126012.08
H out =Hf15+Hf16
= -33020.36 – 126012.08
= -159032.44
H = H out – H in
=-159032.44-(-159034.87)
H = 2.43
5-Evaporater
H in = Hf16
H glyoxalic = 77.44*48.56*(313-298)
= 56407.29
H H2O = 261.1*79.55*(313-298)
=311557.57
H in = f16 =373962.94
=136.13*79.55*(313-298)
=489965.9
H glyoxalic = 77.44*48.56*(313-298)
= 56407.29
H glyoxal = 5998.08
H H2O = 125.74*79.55*(313-298)
= 150039.255
Hf18= 212444.62
= 489965.9 + 212444.62
= 702416.52
H = H out – H in
= 702410.52 -373962.94
= 328447.58
6-Cooler(2)
Hf18 = 212444.62
H glyoxal = 14.2*28.16*(293-298)
= -1999.36
H glyoxalic = m cp T
= 77.44*48.56*(293-298)
= -18802.43
H H2O = m cp T
= 125 .74*80.35*(293-298)
= -50516.045
= -71317.83
H = H out – H in
= -71317.83 – 212444.62
= - 283762.45
Chapter four
1- evaporator :
we select forced circulation evaporator it consist of heat exchanger &condenser
& drum as shown in fig.6.1
Density (mean)=∑Xiρi
Density(ρmean)=XρH2O+Xρglyoxal+Xρglyoxylic
ρmean=(0.79948*1000)+(0.01344*1270)+(0.18707*1490)
ρmean=1095.2831kg/m3
viscosity (µmean)=∑Xiµi
viscosity(µmean)=7.9948*10^-4 m pa s
Specific heat Cpmean=∑Xicpi
Cpmean =X H2O *Cp H2O + X glyoxal*Cpglyoxal + X glyoxylic*Cpglyoxylic
Cpmean= 0.79948*79.55 + 0.01344*28.16 + 0.18707*48.56
= 73.0612236 KJ/Kg.K
Thermal conductivity (Kmean)=∑Xiki
kmean= X H2O *K H2O+ X glyoxal*K glyoxal + X glyoxylic*K glyoxylic
kmean = 0.79948*0.196+ 0.01344*0.155 + 0.18707*0.168
kmean= 0.19020904 w/m. K
At T=80 C
Density (mean)=∑Xiρi
ρ mean =1095.2831 Kg/m3
Liquid phase
Density (ρmean)L= X H2O *ρ H2O
(ρmean)L=0.79948*1000
(ρmean)L=799.48 kg/m3
we will use the shell & tube heat exchanger type in this process
Calculate temperature mean
T1=temperature of hot fluid (steam) inlet
t1=temperature of cold fluid (stream 22)
T2=temperature of hot fluid (steam) outlet
t2=temperature of cold fluid (stream 27)
Tlm= [(T1-t2)-(T2-t1)]/ln[(T1-t2)/ (T2-t1)]
For a split-ring floating head exchanger the typical shell clearance from Figure
6.2=57mm=0.057m
the shell inside .diameter Ds=Db +shell clearance
Ds=0.4+0.057=0.47m
Re=ρ*ut*di/µ
Re=1000*0.45288*0.021/ 0.001
Re= 9510.48
Pr=µ*cp/k
Pr= 0.001*4200/0.65
Pr=6.4615
L/di=2000mm/0.021mm=95.24
Figure 6.3.tube side heat transfer factor
1/Xtt=[0.815/(1-0.815)]0.9*[880.1157/0.425]0.5*[0.386*10-3/0.0047]0.1
1/Xtt= 134.6206
Figure 6.4.convective boiling enhancement factor
hcb= 72716+0.2hcb
0.8hcb = 72716
hcb = 72716/0.8=90895w/m2. K
de=4.5288/25*(31.25^2-0.917*25^2)
de=17.75mm
Volumetric flow of shell side (Vs) =msteam/(3600s*ρ)
(Vs) = 2708.21kg /(3600s*1000)
(Vs)= 0.4762m3/s
Shell side velocity ut=(Vs) /As = 0.4762/0.03=15.8733m/s
Re=ρ*ut*de/µ
Re=1000* 4.5288 *0.01775/0.001
Re =268.9173
Pr=µ*cp/k
Pr=0.001*4200/0.65
Pr =0.488
Ӷv=4368.3/(3600*97.07* *0.025)
Ӷv = 0.1336kg/m.s
Rec=4* 0.1336/0.00011 = 4858.2
Pr=µL*cpL/kL
3
Pr=0.00011*4.32*10 /0.685=0.6937
Figure 6.5Condensation coefficient for vertical tubes
0.18
hc=0.18*0.685[(0.00011)2/{918*(918-2.548)*9.81}]-1/3
hc=10849.6824w/m2.K
from table 12.2 fouling factor hod=7500w/m2.C ,hid=5000w/m2.C
thermal conductivity for stainless steel=16.269w/m. C
the overall coefficient based on the outside area of the tube W/m2.C=Uo
outside fluid film coefficient W/m2.C=ho
inside fluid film coefficient W/m2.C=hi
outside dirt coefficient (fouling factor) W/m2.C=hod
inside dirt coefficient W/m2.C=hid
thermal conductivity of the tube wall material W/m2.C=kw
tube inside diameter m=di
tube outside diameter m.=do
1/Uo= (1/10849.6824)+ (1/7500)+[0.025*ln(25/21)/(2*16.269)]
+[25/(5000*21)] +[25/(21*1038.8W)]
Uo=1275.3W/m2. C
Tube side pressure drop
S=T2-T1/T1-T2=25-10/40-10=0.5
F=0.8
Tm =F* Tm
= 0.8*12.33 =9.864
Assume OD = 20mm
ID=16 mm L=4.83 m
D b = do (N1/K1)^1/N1
D b = dandle diameter mm
K= 0.249 N=2.207
D b =20(423/0.249)^1/2.207 =581.5 mm
Use a split – ring o ng head type from gure(12-10) vol(6) dandle diameter
clearance = 60
Shell diameter Ds = D b+ D b
581.5+60 = 641.5 mm
Mean Water Temperature = ( 25+ 10) /2 = 17.5
Q = m*Cp* T
Q = m*Cp * T
T= water temperature
V= water velocity
Pr =cpµ /K1
Jh = 3*10^ -3
=298.83
= 14.4
Temperature = (40+20) / 2
= 30C
X glyoxal = 4.6714
X glyoxlic = 65
X H2O = 30.33
= 102780.9
Km = 29.841
Re = (Gs*de)/µ
=(298.83*14.4)/1*10^-3
= 4.303
Pr = µ*(cp/kf)
= 1*10^-3 *(4200/0.6)
= 6.5
Overall Coefficient
= 27.6
V = 600
Pressure drop
= 2*(8*0.8*(4.83*10^-3/16)^1*10^-3 +2.5)*(995*2.49^2/2)
= 7499.21 N/m^2
-Mechanical design
1- thickness of shell
P = 12 bar
P = (12-1)*1.1
= 12 bar
P = 1.21 N/mm^2
e = P* Di/2*f - P
= 0.109
e = 0.109 +2
= 2.109 mm
2- demand head
Flat heat
Use Cp = 0.4
e = Cp*De* √p/√f
= 9.83*10^-5 mm
3- Weight load
Wc = total weight
Cv = 1.08
H=2m
Dm = (Di + t *10^-3)
Dm = 0.584 + 5.103*10^-3
= 0.5891m
= 3.143337 KN
= 314.337N
4- Skirt support
Wind Loading
Assume t = 5.103 mm
e = 50 mm (insula on)
= 0.419
Fw = Pw + Deff
Mx = fw *h^2/2
Mx = 536.32*4.83^2/2
= 6255.877N
Mx = 6.255877KN
Bending = Mx *h^2 /2
= 6.255877*5.83^2/2
= 106.315 KN/m
bs = 4MS/[π(Ds + ts )*ts*Ds ]
= 105.0872 N/mm^2
ws = W/[π(Ds+ts)*(ts) ]
ts = thickness = 5.23
Ds =0.5
= 72567.24N
= 79472.24N
Ws = 72567.24/[π(500+5.103)*5.103]
= 8.96N/mm^2
Ws(Operate) = 79472.08/[π(500+5.103)*5.103]
= 9.814N/mm^2
Criteria desing
θ= 90
COST ESTIMATION
Present cost = original cost ( index value at present time/ index value
at time
original cost was
obtained)
=200488335*(567.5/550.8)
=206567048.1
b- Installation cost:
(35 - 45% of PEC) Assume 40 % ,where PEC , Purchased
equipment cost
= 206567048.1*0.4=82626819.24
= 206567048.1* 0.12=24788045.77
Indirect cost:
Expenses which are not directly involved with material and labour
of actual installation or complete facility
= 493695245.02 * 0.15=74054286.75
b- Construction expenses: (10% of DC)
= 493695245.02 *0.10=49369524.5
= 493695245.02 * 0.04=19747809.8
= 715858105.3*0.10=71585810.53
b-Local taxes: (3-4% of TPC= FCI) Assume 3.5 %
= 715858105.3 * 0.035=25055033.69
c- Insurances(0.4-1% of FCI) Assume 0.7 %
= 715858105.3 * 0.007=5011006.737
d-Rent: (8-12% of FCI) Assume 10 %
= 715858105.3*0.10=71585810.53
Therefore total fixed charges = a + b + c + d
=173237661.5
But, Fixed charges = (10-20% of TPC) Assume 20%
Therefore Total product cost = total fixed charges / 0.2 or * 100/20
=173237661.5/0.2
=866188307.5
Direct production:
a- Raw material: (10-50% 0f TPC) Assume 25%
=866188307.5*0.25=216547076.9
b- Operating labor(OL): (10-20% of TPC) Assume 15 %
=866188307.5*0.15=129928246.1
c- Direct supervisory and electric labor (10-25% of OL) Assume 20 %
=129928246.1*0.2=25985649.23
d- Utilities (10-20% of TPC) Assume 15 %
=866188307.5*0.15=129928246.1
e- Maintenance (2-10% of FCI) Assume 6 %
=715858105.3*0.06=42951486.32
f- Operating supplies (OS): (10-20% of maintenance) Assume 15 %
=42951486.32*0.15=6442722.948
g- Laboratory charges (10-20% of OL) Assume 12 %
=129928246.1*0.12=15591389.53
h- Patent and royalties (2-6% of TPC) Assume 4 %
=866188307.5*0.04=34647532.3
General expenses:
a- Administration cost: (40-60% of OL) ASSUME 55 %
=129928246.1*0.55=71460535.36
b- Distribution and selling price (2-30% of TPC) Assume 20 %
=866188307.5*0.2=173237661.5
c- Research and development cost: (3% of TPC)
=866188307.5*0.03=25985649.23
Therefore general expenses(GE) = A + B + C
=270683846.1
Therefore manufacturing cost(MC) = Product cost +fixed charges
+Plant overhead expenses
=866188307.5+173237661.5+129262498.1=1168688467
Total production cost:
Total production cost= MC + GE
=1168688467+270683846.1=1439372313