Acsfrb24 (Thermodynamic Solution)
Acsfrb24 (Thermodynamic Solution)
= 1 – 100%
AvqZ‡bi cwieZ©b K‡i K…Z Kv‡Ri cwigvY Kiv n‡jv (R = 387
8.3 Jmol–1K–1, CV = 20.8 Jmol–1K–1) [iv. †ev. 23] 827
(K) Zv‡ci hvwš¿K mgZv Kx? = 53.204%
(L) Mvwoi Uvqvi we‡ùvi‡Yi mgq Kx ai‡bi ZvcMZxq ZvcMÖvn‡Ki ZvcgvÎv wظY Ki‡j,
cÖwµqv msNwUZ nq? e¨vL¨v K‡iv|
= 1 –
2T2
100%
(M) DÏxc‡K w¯’i Pv‡ci †ÿ‡Î Af¨šÍixY kw³i cwieZ©b T1
wbY©q K‡iv| 2 387
= 1 –
100%
mgvavb: PdV = nRdT 827
14 = 6.409%
PdV = 8.3 (35 – 30)
28 6.409
PdV = 20.75 Nm GLb, = 53.204
ZvcMwZwe`¨vi cÖ_g m~Îvbyhvqx,
dQ = dU + dW = 0.12 0.5
dU = dQ – dW
= nCPdT – PdV
A_©vr ZvcMÖvn‡Ki ZvcgvÎv wظY Ki‡j `ÿZv A‡a©K
14 n‡e bv| (Ans.)
= (20.8 + 8.3) (35 – 30) – 20.75
28 5| wØ-cvigvYweK M¨vm m¤^wjZ GKwU Kv‡b©v BwÄb 500 K
dU = 52 J ZvcgvÎvi Drm n‡Z Zvc MÖnY K‡i| cÖwZ cÖmvi‡Y Gi
A_©vr w¯’i Pv‡c Af¨šÍixY kw³i cwieZ©b 25 J| (Ans.)
AvqZb wZb¸Y nq| [h. †ev. 23]
(N) w¯’i Pvc cÖwµqv Ges m‡gvò cÖwµqvq DÏxc‡K wb‡Y©q
(K) Zwor w؇giæ Kv‡K e‡j?
K…Z Kv‡Ri gvb mgvb n‡e wK? MvwYwZK we‡kølY Ki|
(L) iæ×Zvcxq ms‡KvP‡bi mgq wm‡÷‡gi Af¨šÍixY kw³
mgvavb: w¯’i Pvc cÖwµqvq, w¯’iPv‡c,
W1 = PdV V2 T2 35 + 273 e„w× cvqÑ e¨vL¨v Ki|
= 20.75 J = = (M) DÏxc‡Ki BwÄbwUi cÖv_wgK `ÿZv wbY©q Ki|
V1 T1 30 + 273
m‡gvò cÖwµqvq, V2 mgvavb: iæ×Zvcxq cÖmvi‡Yi †ÿ‡Î,
= 1.017
W2 = nRT1 ln
V2 V1 –1 –1
T1V1 = T2V2
V1
V1 – 1
W2 = 0.5 8.3 (30 + 273) ln(1.017) T2 =
W2 = 20.581 J
V2 T1
1 1.4–1
W1 > W2 T2 =
A_©vr Dfq‡ÿ‡Î K…Z Kv‡Ri gvb mgvb n‡e bv| 3 500
4| P T2 = 322.197 K
= 1 – 100%
Q1 = 500 J T2
A T1
= 1 –
322.197
100%
B 500
T1 = 827 K = 35.561%
D
A_©vr BwÄbwUi cÖv_wgK `ÿZv 35.561%| (Ans.)
T2 = 827 K C (N) Bwćbi `ÿZv 60% Ki‡Z n‡j Kx e¨e¯’v wb‡Z n‡e?
V [Kz. †ev. 23] MvwYwZK we‡kølY Ki|
wP‡Î GKwU K‡Y©v Bwćbi P-V †jLwPÎ †`Lv‡bv n‡jv|
mgvavb: Kg©`ÿZv 60% Kiv hv‡e `ywU Dcv‡q|
(K) Zvc BwÄb Kv‡K e‡j?
ZvcMÖvn‡Ki ZvcgvÎv cwieZ©b K‡i,
(L) M¨v‡mi †gvjvi Av‡cwÿK Zvc `yB cÖKvi †Kb?
(M) BwÄb KZ…©K K…Z Kv‡Ri cwigvY wbY©q K‡iv T2
= 1 – 100%
mgvavb: Kv‡b©v Bwćbi †ÿ‡Î, T1
Q2 T 2
=
T2 100%
60% = 1 –
Q1 T 1 500
Q1 – Q2 T 1 – T 2 T2
= = 0.4
Q1 T1 500
W 827 – 387
500
=
827
[∵ W = Q1 – Q2] T2 = 200 K
W = 266.022 J ZvcgvÎv Kgv‡Z n‡e = (322.197 – 200) K
A_©vr, BwÄb KZ…©K K…ZKv‡Ri cwigvY 266.022 J (Ans.) = 122.197 K
ZvcMwZwe`¨v Final Revision Batch 3
ZvcDr‡mi ZvcgvÎv cwieZ©b K‡i, Avevi,
V4 –1 T2
= 1 –
T2
100% DA As‡k, =
T1 V1 T1
(1.4–1)
60% = 1 –
322.197 V 4 400
100% =
T1 2.5 10
–3
600
322.197 V4 = 2.94 10–3 m3
= 0.4
T1 (i) n‡Z cvB,
T1 = 805.493 K 2.94 10–3
Q2 = – 1 8.314 400 ln
ZvcgvÎv evov‡Z n‡e = (805.493 – 500) K 5.292 10–3
= 305.493 K = 1954.743 J
Q2
BwÄbwUi `ÿZv 60% Ki‡Z n‡j Zvc Dr‡mi = 0.667
Q1
ZvcgvÎv 305.493 K e„w× A_ev Zvc MÖvn‡Ki ZvcgvÎv
Avevi,
122.197 K n«vm Ki‡Z n‡e| (Ans.)
T2
6| K¬wmqvm wc÷b wmwjÛv‡i GK †gvj nvB‡Wªv‡Rb M¨vm T1
= 0.667
wb‡q P-V Gi †jLwPÎ wb‡¤œ cÖ`wk©Z PµwUi Abyiƒc GKwU Q2 T 2
Pµ †c‡jb| K¬wmqv‡mi g‡Z GwU GKwU cÖZ¨veZ©x Pµ| =
Q1 T 1
[P. †ev. 23] A_©vr K¬vwmqv‡mi `vwewU †hŠw³K|
Y T1 = 600 K 7| [e. †ev. 23]
T2 = 400 K
A(P1, V1, T1)
4
P 105 Nm–2
Q1 A T1 = 500C
B(P2, V2, T1) B
D
2.5 Q2
(P4, V4, T2)
C(P3, V3, T2)
= nRT1ln
V2 T1
=
473
V1
A_©vr m‡gvò cÖmvi‡Y G›Uªwci cwieZ©b 1.268 J/K.
= 1 8.314 600 ln
4.5
2.5 (Ans.)
Q1 = 2932.115 J (N) Dr‡mi ZvcgvÎv w¯’i †i‡L BwÄbwU `ÿZv 1.5 ¸Y Kiv
Q2 = – WCD [∵ m‡gvò ms‡KvPb] m¤¢e wKbv? MvwYwZKfv‡e we‡kølY Ki|
mgvavb: BwÄbwUi `ÿZv, = 1 – T2 100%
T
Q = – nRT ln ...... (i)
V4
2
V3 2 1
= 1 –
V3 –1 T2 200 + 273
BC Ask n‡Z, = 500 + 273 100%
V2 T1
(1.4–1) = 38.81%
V 3 400
=
4.5 10–3 600 `ÿZv 1.5 ¸Y Ki‡j, = 1.5 38.81%
V3 = 5.292 10–3 m3 = 58.215%
nd
4 HSC Physics 2 Paper Chapter-1
T2 100%
= 1 –
9| DÏxcK wP‡Îi Dfq K‡b©vP‡µ Kvh©wbe©vnK e¯‘ wn‡m‡e
T1 1 †gvj wØcvigvYweK M¨vm e¨eüZ n‡q‡Q| Pµ `ywUi cÖwZ P‡µ
T2 ms‡KvPb I cÖmvi‡Yi AbycvZ h_vµ‡g 1 : 3 Ges 1 : 4|
58.215% = 1 – 100%
(R = 8.31 Jmol–1K–1)
500 + 273 [g. †ev. 23]
T2 Y 1g Kv‡b©vPµ Y 2q Kv‡b©vPµ
= 0.418
773
(P) (P)
T2 = 323 K = 50C A(P1, V1) A(P1 , V1 )
T1 = 60C T1 = 70C
A_©vr Dr‡mi ZvcgvÎv w¯’i †i‡L BwÄbwUi `ÿZv 1.5 B(P2, V2) B(P2, V2)
¸Y Kiv m¤¢e| (Ans.) T2 = 211K T2 = 211K
8| Y C(P3, V3) C(P3 , V3 )
D(P4, V4) D(P4 , V4 )
6
Pvc P(105 Nm–2)
T2 = 300 K T1 = 400 K X
5 V V X
A C (K) †iwd«Rv‡iU‡ii Kg©m¤úv`b mnM Kv‡K e‡j?
4
3
(L) mgAvqZb cÖwµqvq wm‡÷‡g cÖ`Ë Zvc m¤ú~Y©UvB
B D Af¨šÍixY kw³ e„w×i Kv‡R e¨eüZ nq| e¨vL¨v K‡iv|
2 (M) DÏxc‡Ki 1g Kv‡b©vP‡µi Kvh©wbe©vnK e¯‘‡K B †_‡K C
1 †Z wb‡Z †gvU K…ZKvR wbY©q K‡iv|
O X mgvavb: iæ×Zvcxq cÖwµqvq,
1 2 3 4 5 nR
(0,0)
AvqZb W= (T – T2)
–1 1
wP‡Î 1 mole cwigvY †Kv‡bv M¨v‡mi †ÿ‡Î `ywU m‡gvò †jL
1 8.31
†`Lv‡bv n‡q‡Q| M¨vmwUi w¯’i AvqZb †gvjvi Av‡cwÿK Zvc = (60 + 273) – 211}
1.4 – 1 {
25.18 J mol–1K–1| [wm. †ev. 23] W = 2534.55 J
(K) GbUªwc Kv‡K e‡j? A_©vr 1g Kv‡b©vP‡µ B †_‡K C-†Z wb‡Z †gvU K…ZKvR
(L) Zvc Drm I ZvcMÖvn‡Ki ZvcgvÎvi g‡a¨ cv_©K¨ K‡g 2534.55 J| (Ans.)
†M‡j Bwćbi `ÿZvI K‡g hvqÑ e¨vL¨v Ki| (N) DÏxc‡Ki Abymv‡i, †Kvb Kv‡b©v PµwU †ewk Kvh©Ki,
(M) CD As‡k K…ZKv‡Ri cwigvY wbY©q K‡iv| MvwYwZK we‡kølY K‡i gZvgZ `vI|
mgvavb: m‡gvò cÖmvi‡Y,
mgvavb: Kg©`ÿZv, = 1 – T2 100%
T
K…ZKvR W = nRT1 lnVD
V 1
1 = 1 –
211
60 + 273 100%
C
= 1 8.314 400 ln
4
2 1 = 36.637%
2 = 1 –
W = 2305.13 J 211
CD As‡k K…ZKv‡Ri cwigvY 2305.13 J| (Ans.) 70 + 273 100%
(N) A n‡Z C †Z wb‡Z Zvckw³i cwieZ©b, B n‡Z D †Z 2 = 38.484%
wb‡Z Zvckw³i cwieZ©‡bi mgvb n‡e wK bv? ∵ 2 > 1
mgvavb: CP = CV + R A_©vr wØZxq Kv‡b©v PµwU †ewk Kvh©Ki| (Ans.)
= 25.18 + 8.314 10| 0C ZvcZgvÎvi 0.07 kg eid‡K GKwU wbw`©ó D”PZv
CP = 33.494 J mole–1 K–1 †_‡K †d‡j †`qv n‡jv| G‡Z wefe kw³i 55% Zv‡c
A n‡Z C †Z, iƒcvšÍwiZ n‡jv Ges GB Zvc mg¯Í eid‡K Mwj‡q w`‡jv|
Zvckw³i cwieZ©b, wKQz mgq ci eidMjv cvwbi ZvcgvÎv 5C G DbœxZ n‡jv|
dQAC = dU + dWAC †`qv Av‡Q, eid Mj‡bi Av‡cwÿK myßZvc 3.36 105 J
= nCP(T1 – T2) + PAC (VC – VA) kg–1 Ges cvwbi Av‡cwÿK Zvc 4200 Jkg–1k–1. [Xv. †ev. 22]
= 1 33.494 (400 – 300) + 4 105 1 (K) ZvcMwZwe`¨vi wØZxq m~ÎwU wee„Z Ki|
dQAC = 403349.4 J (L) mgAvqZb cÖwµqvq KvR k~b¨ †Kb? e¨vL¨v `vI|
B n‡Z D †Z, (M) eid LÐwU KZ D”PZv †_‡K †djv n‡qwQj?
Zvckw³i cwieZ©b, mgvavb: cÖkœg‡Z,
dQBD = dU + dWBD 55% wefekw³ = cÖ‡qvRbxq Zvckw³
= nCP(T1 – T2) + PBD (VD – VB) 0.55 mgh = mlf
= 1 33.494 (400 – 300) + 2 105 2 lf 3.36 105
h= =
dQBD = 403349.4 J 0.55 g 0.55 9.8
dQAC = dQBD h = 62337.662 m
A_©vr A n‡Z C †Z wb‡Z Zvckw³i cwieZ©b, B n‡Z A_©vr eid LÐwU †djv n‡qwQj 62337.662 m
D †Z wb‡Z Zvckw³i cwieZ©‡bi mgvb n‡e| (Ans.) D”PZv †_‡K| (Ans.)
ZvcMwZwe`¨v Final Revision Batch 5
(N) eid Mjb Ges eidMjv cvwbi ZvcgvÎv e„w× †Kvb cwiewZ©Z ÿgZvq MÖvn‡Ki Zvckw³i cwieZ©b:
†ÿ‡Î cwi‡e‡ki Dci AwaK cÖfve co‡e? GbUªwci Q2
= 1 – 100%
Av‡jv‡K e¨vL¨v Ki| Q1
dQ Q2
mgvavb: G›Uªwci cwieZ©b, dS = T 0.64 = 1 –
1250
Q Q2 = 450 J
1g †ÿ‡Î, dS1 = T 1
1 ZvcgvÎv n«vm = Q2 – Q2
mlf = (700 – 450)
=
T = 250 J
0.07 3.36 105 A_©vr Dr‡mi ZvcgvÎv 694.444 J e„w× K‡i ev MÖvn‡Ki
=
273 ZvcgvÎv 250 J n«vm K‡i `ÿZv e„w× Kiv m¤¢e| (Ans.)
dS1 = 86.154 J/K 12| [g. †ev. 22]
T P(atm)
2q †ÿ‡Î, dS2 = ms lnT2 1 atm = 105 Nm–2
1
5.27 A = 1.4
= 0.07 4200 ln
278
273 D we›`y‡Z ZvcgvÎv = 330 K
dS2 = 5.336 J/K 4 B
∵ dS1 > dS2 2 D
A_©vr eid Mj‡b cwi‡e‡ki Dci AwaK cÖfve co‡e|
V(m3)
(Ans.) 500 1000
11| GKwU Kv‡b©v BwÄb 500 k ZvcgvÎvq Drm †_‡K 1250 J (K) Zwor Pz ¤ ^ K xq Zi½ Kx?
Zvc MÖnY K‡i Ges Zvc MÖvn‡K 700 J Zvc eR©b K‡i| (L) †iW‡bi Aa©vqy 2.83 w`b ej‡Z Kx eyS?
(M) DB ms‡KvP‡b K…ZKv‡Ri gvb wbY©q Ki|
Bwćbi Zvc Drm I ZvcMÖvnK Df‡qiB Zvckw³i cwieZ©b
mgvavb: PV = nRT
mv‡c‡ÿ Bwćbi `ÿZv 20% e„w× Kiv m¤¢e| [g. †ev. 22] PV
(K) Af¨šÍixY kw³ Kv‡K e‡j? n=
RT
(L) ÔDòZvwgwZ c`v_© wnmv‡e cvi` e¨envi myweavRbKÕÑ 2 105 1000
=
e¨vL¨v Ki| 8.314 330
(M) Zvc MÖvn‡Ki ZvcgvÎv wbY©q Ki| n = 72896.392 mol
mgvavb: Kv‡b©v Bwćbi †ÿ‡Î, K…ZKvR,
W = – nRT ln
VB
Q1 Q2
=
T1 T2 VD
= – 72896.392 8.314 330 ln
500
1250 700
= 1000
500 T2
W = 1.386 108 J
T2 = 280 K A_©vr DB ms‡KvP‡b K…ZKvR 1.386 108 J (Ans.)
A_©vr Zvc MÖvn‡Ki ZvcgvÎv 280 K| (Ans.) (N) DB Ges DA c‡_ GKB cwigvY ms‡KvP‡b `ywU †j‡Li
(N) DÏxc‡Ki BwÄbwUi `ÿZv e„w× Kiv msµvšÍ Z_¨wU Rb¨ ZvcgvÎv GK bq †Kb? MvwYwZKfv‡e we‡kølY Ki|
MvwYwZKfv‡e we‡kølY Ki| mgvavb: DB c‡_ m‡gvò ms‡KvPb nq| G c‡_ ZvcgvÎvi
mgvavb: Kg©`ÿZv, = 1 – T2 100%
T †Kv‡bv cwieZ©b nq bv| A_©vr TB =TD|
1 DA c‡_ A_©vr iæ×Zvcxq ms‡KvP‡b Zv‡ci Av`vb
280 cÖ`vb N‡U bv ZvB AvqZb Kgvi mv‡_ AšÍt¯’ kw³ e„w×
500 100%
= 1–
cvq Z_v ZvcgvÎv e„w× cvq|
= 44% iæ×Zvcxq cwieZ©‡b,
–1 –1
= (44 + 20)% = 64% TDV = TAVA
cwiewZ©Z ÿgZvq Dr‡mi Zvckw³i cwieZ©b: VD –1
TA = TD
VA
= 1 –
Q2
100%
Q1 =
1000(1.4–1)
330
700 500
0.64 = 1 – TA = 435.438 K
Q1
Avevi,
Q1 = 1944.444 J TB = 330 K
ZvcgvÎv e„w× = Q1 – Q1 ∵ TA TB
= (1944.444 – 1250) A_©vr Dfq‡ÿ‡Î GKB cwigvY ms‡KvP‡bi Rb¨ ZvcgvÎv
= 694.444 J GK bq| (Ans.)
nd
6 HSC Physics 2 Paper Chapter-1
13| Zvc mycwievnx I Acwievnx c`v‡_©i •Zwi `ywU Nl©Ynxb (N) DÏxc‡Ki dzUe‡ji wfZi †_‡K wbM©Z evZvm cvwicvwk¦©‡Ki
wc÷bhy³ wmwjÛv‡i 3 105 Pa Pv‡c I 750 K ZvcgvÎvq 1 Zzjbvq Mig nIqvi KviY Kx? MvwYwZKfv‡e we‡kølYc~e©K
mol bvB‡Uªv‡Rb M¨vm Av‡Q| AZtci Dfq wmwjÛv‡i Pv‡ci e¨vL¨v Ki|
mgvavb: iæ×Zvcxq cÖwµqvq,
cwigvY A‡a©K Kiv n‡jv| bvB‡Uªv‡R‡bi †ÿ‡Î = 1.4 Ges
–1 –1
1–
1–
G‡ÿ‡Î,
R = 8.31 Jmol K . [P. †ev. 22] T1P1 = T2P2 P1 = 1 atm
(K) cvwbi •Îa we›`y Kv‡K e‡j? 1–
P1( ) P2 = 2 atm
(L) CV < CP †Kb? e¨vL¨v Ki| T2 = T1
P2
(M) Acwievnx wmwjÛv‡ii P~ovšÍ ZvcgvÎv wbY©q Ki| 1–1.4
=
mgvavb: iæ×Zvcxq cÖwµqvq, 1 1.4
1– 1– 2 (27 + 273)
T1P 1 = T2P 2 T2 = 365.704 K
T2 P1 1–
= = 92.704C
T1 P2 T2 > T1
(1 –1.41.4) A_©vr, iæ×Zvcxq cÖwµqvq dzUej †_‡K wbM©Z evZv‡mi
T2 = (2) 750
ZvcgvÎv †ewk nIqvq Zv cwicvwk¦©K Gi Zzjbvq Mig
T2 = 615.252 K
nq| (Ans.)
A_©vr Acwievnx wmwjÛv‡ii P‚ovšÍ ZvcgvÎv 615.252 K|
15| `yÕwU Zvc BwÄb 400 K Ges 800 K ZvcgvÎvi e¨eav‡b
(Ans.)
Kvh©Ki| BwÄb `yÕwU‡Z e¨eüZ R¡vjvbxi Av‡cwÿK Zvc
(N) wmwjÛvi؇qi g‡a¨ K…Z Kv‡Ri Zzjbv Ki|
h_vµ‡g 2000 JKg–1K–1 Ges 1500 JKg–1K–1| BwÄb
mgvavb: Zvc mycwievnx wmwjÛv‡i, `yÕwU‡Z 10 gm f‡ii wfbœ Kvh©Ki c`v_© e¨envi Kiv n‡q‡Q|
V2 [wm. †ev. 22]
K…ZKvR, W1 = nRlnV
1 (K) •Îa we›`y Kv‡K e‡j?
P1 (L) ÒGbUªwci cwieZ©b me©`v abvZ¥KÓÑ e¨vL¨v Ki|
= 1 8.31 750 ln
P2 (M) cÖ_g Bwćbi `ÿZv 10% evov‡Z n‡j Dr‡mi
[∵ m‡gvò cÖwµqvq P1V1 = P2V2] ZvcgvÎv KZ evov‡Z n‡e?
W1 = 8.31 750 ln(2) mgvavb: Kg©`ÿZv, = 1 – T 2 100%
T
= 4320.04 J 1
= 1 –
Acwievnx wmwjÛv‡i, 400
nR 800 100%
K…ZKvR, W2 =
–1 1
(T – T2) = 50%
`ÿZv 10% evov‡Z,
1 8.31
=
1.4 – 1 (750 – 615.252) (50 + 10)% = 1 –
T2
100%
T1
W2 = 2799.39 J
400
∵ W1 > W2 0.6 = 1 –
T1
A_©vr, mycwievnx wmwjÛv‡ii K…ZKv‡Ri cwigvY †ewk|
T1 = 1000 K
(Ans.)
ZvcgvÎv evov‡Z n‡e = (1000 – 800) K
14| GKRb dzUejvi Abykxjb Kivi mgq nVvr jÿ¨ Kij = 200 K
†h, dzUejwU †d‡U evZvm †ei n‡”Q| †m AviI jÿ¨ Kij A_©vr Dr‡mi ZvcgvÎv 200 K evov‡Z n‡e| (Ans.)
†h, dzUej †_‡K †h evZvm †ei n‡”Q Zv cvwicvwk¦©‡Ki (N) DÏxc‡Ki Av‡jv‡K †Kvb BwÄbwU †ewk cwi‡ekevÜe
Zzjbvq Dò| dzUe‡ji Af¨šÍi¯’ evqyi ZvcgvÎv 27C, evqyi n‡e? †Zvgvi gZvgZ MvwYwZKfv‡e we‡kølY Ki|
Pvc 2 atm, evqyi AvqZb 1 m Ges = 1.4 wQj|
3 T
mgvavb: GbUªwci cwieZ©b, dS = mslnT2
[wm. †ev. 22] 1
Kv‡Ri cwigvY GKB n‡e wKbv? MvwYwZKfv‡e hvPvB dSCD = – 0.455 J/K
Ki| †gvU G›Uªwci cwieZ©b
mgvavb: m‡gvò cÖmvi‡Y, = dSAB + dSBC + dSCD + dSDA
= 0.455 + 0 – 0.455 + 0
W1 = nRT1 ln
V2
V1 =0J
= 1 8.31 (327 + 273) ln(6)
A_©vr BwÄbwU cÖZ¨vMvgx| (Ans.)
W1 = 8933.713 J 18| wP‡Î 1 gm cvwb Zij n‡Z ev®úxf~Z nevi `ywU ¯Íi †`qv
m‡gvò ms‡KvP‡b, Av‡Q| D we›`y‡Z ev‡®úi AvqZb 1700 CC| (cvwbi
Av‡cwÿK Zvc 4200 Jkg–1K–1) [Kz. †ev. 22]
W2 = –nRT2ln
V1
V2 ZvcgvÎv (C)
= – 1 8.31 293.016 ln
1 D
6 100C
W2 = 4362.63 J
A B
∵ W1 W2 50C
A_©vr m‡gvò cÖmviY I ms‡KvP‡b m¤úvw`Z Kv‡Ri
cwigvY GKB n‡e bv| (Ans.) Zvc (J)
17| wb‡Pi wP‡Î Kv‡b©v Bwćbi Kvh©Kix c`v‡_©i PviwU avc (K) ZvcMwZwe`¨vi k~ b ¨Zg m~ Î wU wjL|
†`Lv‡bv n‡jvÑ [Kz. †ev. 22] (L) Kv‡b©vi Bwćb wØZxq av‡c ZvcgvÎv n«vm N‡U †Kb?
P(Nm )–2 (M) AB c‡_ G›Uªwci cwieZ©b wbY©q Ki|
A Q1 = 500J Q ml
T1 = 1100K mgvavb: G›Uªwci cwieZ©b, dS = T = TV
0.001 2.268 106
4.6×105 B =
(50 + 273)
dS = 7.022 J/K
D AB c‡_ G›Uªwci cwieZ©b 7.022 J/K| (Ans.)
C (N) BD c‡_ AšÍt¯’ kw³ wbY©q Kiv m¤¢eÑ MvwYwZKfv‡e
T2 = 550K hvPvB Ki|
O V(m3) mgvavb: dW = PdV
(K) Af¨šÍixY kw³ Kv‡K e‡j?
= nRdT [∵ PV = nRT]
(L) RM‡Zi GbUªwc e„w× cv‡”QÑ e¨vL¨v Ki| 1
(M) C we›`y‡Z Pvc wbY©q Ki| = 8.314 (100 – 50)
18
mgvavb: iæ×Zvcxq cÖmvi‡Y, dW = 23.094 J
1– 1–
TP
( ) = T P( )
dQ = msdT
1 1 2 2 = 0.001 2100 (100 – 50)
T1( ) dQ = 105 J
P2 =
1–
P1 ZvcMwZwe`¨vi cÖ_g m~Îvbyhvqx,
T2
1.4 dQ = dU + dW
dU = dQ – dW
=
1100 1–1.4
4.6 10 5
550 = 105 – 23.094
P2 = 40658.64 atm dU = 81.906 J
A_©vr C we›`y‡Z Pvc 4068.64 atm. (Ans.) A_©vr BD c‡_ AšÍt¯’ kw³ 81.906 J| (Ans.)
nd
8 HSC Physics 2 Paper Chapter-1
19| [w`. †ev. 22] 20| wb‡¤œi P–V wb‡`©kK wP‡Î GKwU Kv‡b©v P‡µ Kvh©Ki
P(atm) c`v_© Øviv m¤úvw`Z KvR †`Lv‡bv n‡jv: [h. †ev. 22]
C Y A (V1 = 3×10–3m3, P1)
5.28 T1 = 500K
B (V2 = 6×10–3m3, P2)
= 1.4
Pvc (P)
4 n = 2 mole
B
2 A
D(V4, P4) C(V3, P3)
T2 = 300K
X
V(Litre) AvqZb (V)
10 20
wP‡Î P–V †jLwPÎ Øviv GKwU Pµxq cÖwµqv †`Lv‡bv n‡q‡Q| (K) AcÖZ¨veZ©x cÖwµqv Kv‡K e‡j?
GLv‡b, A we›`y‡Z ZvcgvÎv = 300 K (L) wek¦RMr µ‡g µ‡g Zvcxq g„Zy¨i w`‡K GwM‡q Pj‡QÑ
w¯’i AvqZ‡b †gvjvi AvšÍtZvc = 20.78 Jmol K –1 –1 e¨vL¨v Ki|
†gvj msL¨v = 1.6 (M) C we›`y‡Z AvqZb wbY©q Ki|
= 1.4 Ges 1 atm = 105Nm–2 mgvavb: VC = 21.5 × 10–3 m3
(K) AšÍt¯’ kw³i msÁv `vI| (N) AB Ges BC ch©v‡q K…ZKvR mgvb n‡e wKbvÑ
(L) Kv‡b©vi Bwćbi Kvh©wbe©vnK e¯‘ cwieZ©b Ki‡j H Bwćbi MvwYwZKfv‡e hvPvB Ki|
`ÿZvi †Kv‡bviƒc cwieZ©b n‡e bv †Kb? e¨vL¨v Ki| mgvavb: WAB WBC
(M) AB c‡_ K…Z Kv‡Ri gvb wbY©q Ki| 21| wmqvg 1 kg eid‡K –10C ZvcgvÎv n‡Z 30C
mgvavb: m‡gvò cÖwµqvq, ZvcgvÎvi cvwb‡Z cwiYZ K‡i| mvwgi 30C ZvcgvÎvi 1
kg cvwb‡K 100C ZvcgvÎvi ev‡®ú cwiYZ K‡i| wmqvg
W = nRT ln
VB
VA `vwe Kij Zvi cÖwµqvwU †ewk k„•Lj|
= 1.6 8.314 300 ln (Sw = 4200 Jkg–1K–1, Lf = 3.36 × 105 Jkg–1, Sice =
10
20 2100 Jkg–1K–1 Ges Lv = 2.26 × 106Jkg–1) [h. †ev. 22]
W = –2766.156 J (K) ZvcMwZwe`¨vi cÖ_g m~Î wee„Z Ki|
A_©vr AB c‡_ K…ZKvR –2766.156 J| (Ans.)
(L) iæ×Zvcxq cÖmviY Ges ms‡KvP‡b AšÍt¯’ kw³i cwieZ©b
(N) DÏxc‡Ki Pµxq cÖwµqvq G›Uªwci cwieZ©b k~b¨ n‡e
e¨vL¨v Ki|
wKbvÑ MvwYwZK we‡køl‡Yi mvnv‡h¨ gZvgZ `vI|
(M) mvwg‡ii cÖwµqvq †gvU cÖ‡qvRbxq Zvc wbY©q Ki|
mgvavb: AB c‡_, dU = 0
mgvavb: Q1 = msw
dQ = dW = – 2766.156 J
= 1 4200 (100 – 30)
dQ
S1 = Q1 = 294000 J
T
–2766.156 Q2 = mlv
=
300 = 1 2.26 106
S1 = –9.221 J/K Q2 = 2.26 106 J
PB PC cÖ‡qvRbxq Zvc, Q = Q1 + Q2
BC c‡_, =
TB TC = 294000 + 2.26 106
5.28 Q = 2554000 J
TC = 300
4 A_©vr †gvU cÖ‡qvRbxq Zvc 2554000 J| (Ans.)
= 396 K (N) wmqv‡gi `vwe mwVK wK bvÑ MvwYwZK we‡køl‡Yi gva¨‡g
TC hvPvB Ki|
S2 = nCVln
TB
mgvavb: wmqv‡gi cÖwµqvq,
= 1.6 20.78 ln
396
300 S1 = msiln
T2
T1
S2 = 9.231 J/K
= 1 2100 ln
273
CA c‡_, S3 = 0 [∵ iæ×Zvcxq cÖwµqv] 263
†gvU Gw›Uªwci cwieZ©b, S1 = 78.367 J/K
S = S1 + S2 + S3 mlf
S2 =
= (–9.221 + 9.231 + 0) T
= 0.01 1 3.36 105
=
S 0 273
A_©vr G›Uªwci cwieZ©b k~b¨ n‡e| (Ans.) S2 = 1230.769 J/K
ZvcMwZwe`¨v Final Revision Batch 9
T3 24| wb‡P GKwU Bwćbi P – V †jLwPÎ †`Lv‡bv n‡jvÑ
S3 = mswln
T2 P A
= 1 4200 ln
303 T1 = 110C
273 Q1
S3 = 437.896 J/K B
SA = S1 + S2 + S3
= 78.367 + 1230.769 + 437.896
D
SA = 1747.032 J/K C
mvwg‡ii cÖwKqvq, Q2 T2 = 0C
T4 V
S4 = msWln [Xv. †ev. 21]
T3
(K) cÖevn NbZ¡ Kx? [3q Aa¨vq]
= 1 4200 ln
373
(L) DÏxcKwU †h Bwćbi †jLwPÎ cÖKvk K‡i Zv e¨vL¨v Ki|
303
(M) DÏxc‡Ki Bwćbi m¤úvw`Z Kv‡Ri cwigvY wbY©q Ki|
S4 = 872.952 J/K
mgvavb: D³ Bwćbi †ÿ‡Î,
mlv
S5 = T2
T4 K=
T1 – T2
1 2.26 106
= (273 + 0)
373 =
(273 + 110) – (273 + 0)
S5 = 6058.981 J/K K = 2.482
SB = S4 + S5 Avevi,
= 872.952 + 6058.981 Q2
SB = 6931.933 J/K K=
W
∵ SA < SB Q2
W=
A_©vr wmqv‡gi `vwe mwVK| (Ans.) 2.482
22| Av`k© ZvcgvÎv I Pv‡c GKwU wmwjÛv‡i GK †gvj W = 0.403 Q2
A_©vr m¤úvw`Z Kv‡Ri cwigvY 0.403Q2|
wnwjqvg M¨vm ivLv Av‡Q| cieZ©x‡Z D³ wnwjqv‡gi AvqZb
(N) DÏxc‡Ki Bwćbi mv‡_ mvaviY Kv‡b©v Bwćbi wfbœZv
cÖ_‡g m‡gvò cÖwµqvq Ges c‡i iæ×Zvcxq cÖwµqvq 1.5 ¸Y
Av‡Q wK? we‡kølYmn gZvgZ `vI|
Kiv n‡jv| [iv. †ev. 22]
mgvavb: wfbœZv¸‡jv n‡jv:
(K) ZvcMwZwe`¨vi cÖ_g m~Î wee„Z Ki| i. g~jbxwZ:
(L) cÖvšÍxq wefe eZ©bxi Zwor PvjK ej A‡cÿv †QvU nq Zvc Drm Zvc Drm
†Kb? e¨vL¨v Ki| T1 T1
(M) iæ×Zvcxq cÖwµqvq M¨vmwUi P~ovšÍ Pvc wbY©q Ki| Q1 Q1
DËi: P2 = 51480.67 Pa
(N) DÏxcK Abyhvqx †Kvb cÖwµqvq †ewk KvR m¤úbœ n‡q‡Q? Zvc Zvc
W = Q 1 – Q2 W = Q 1 – Q2
MvwYwZK we‡køl‡Yi gva¨‡g eywS‡q `vI| BwÄb BwÄb
DËi: m‡gvò cÖwµqvq †ewk KvR T1 > T2
Q2 Q2
23| GKwU BwÄb 321C ZvcgvÎvi Zvc Drm †_‡K 521 J T2 T2
Zvc MÖnY K‡i 21C ZvcgvÎvi Zvc MÖvn‡K wKQz Zvc eR©b Zvc MÖvnK Zvcv avi
K‡i| [Xv. †ev. 21]
wPÎ: †iwd«Rv‡iUi
wPÎ: Zvc BwÄb
(K) f‡ii Av‡cwÿKZv Kx? [8g Aa¨vq] ii. Kvh©cÖYvjx:
(L) CP, CV Gi †P‡q eo wK? e¨vL¨v Ki|
T1 Q1 T1 Q1
(M) DÏxc‡K DwjøwLZ BwÄb Øviv K…ZKvR wbY©q Ki|
DËi: 263.11 J P P
(N) DÏxc‡K DwjøwLZ BwÄbwUi `ÿZv 4 ¸Y Kiv m¤¢e wKbv?
T2 Q T2 Q
MvwYwZKfv‡e we‡kølY Ki| 2 2
T2 = T1
P1
P2 1
1–1.33
C
T2 = (26 + 273)
1 1.33
3 T(K)
(0, 0) 0
T2 = 392.694 K 300 600
T2 = 119.694C (K) cvwbi •Îa we›`y Kx?
A_©vr †P¤^viwUi P‚ovšÍ ZvcgvÎv 119.694C| (Ans.) (L) ZvcMwZwe`¨vi 2q m~‡Îi g~j welq¸‡jv wjL|
ZvcMwZwe`¨v Final Revision Batch 17
(M) OA †iLvi Af¨šÍixY kw³i cwieZ©b wbY©q K‡iv| ¸iæZ¡c~Y© Ávbg~jK cÖ‡kœvËi
mgvavb: Af¨šÍixY kw³i cwieZ©b,
dU = nCVdt Type-1: ZvcgvÎv cwigv‡ci g~jbxwZ
= 2 12.5 (300 – 0)
dU = 7500 J 1. ZvcMwZwe`¨vi k~b¨Zg m~ÎwU wjL| [Xv. †ev., w`. †ev., 23;
A_©vr Af¨šÍixY kw³i cwieZ©b 7500 J| (Ans.) Kz. †ev. 22; iv. †ev. 21; h. †ev. 19; h. †ev, P. †ev. 17]
(N) DÏxc‡Ki ch©‡ÿY MvwYwZKfv‡e we‡kølY K‡iv| DËi: `yBwU e¯‘ hw` Z…Zxq †Kv‡bv e¯‘i mv‡_ Zvcxq
mgvavb: OA As‡k, mvg¨ve¯’vq _v‡K Z‡e cÖ_‡gv³ e¯‘ `ywU ci¯ú‡ii mv‡_
P T nIqvq V aªæeK Zvcxq mvg¨ve¯’vq _vK‡e|
dW1 = PdV = 0 J 2. _v‡g©vwgUvi Kv‡K e‡j? [ivRkvnx K‡jR, ivRkvnx]
AB As‡k,
DËi: †h h‡š¿i mvnv‡h¨ †Kv‡bv e¯‘i ZvcgvÎv mwVKfv‡e
PdV = nRdT
cwigvc Kiv hvq Ges wewfbœ e¯‘i ZvcgvÎvi cv_©K¨ wbY©q
dW2 = 2 8.314 (600 – 300) [∵ dW = PdV]
Kiv hvq Zv‡K _v‡g©vwgUvi e‡j|
dW2 = 4988.4 J
BC As‡k, 3. ZvcgvÎv Kx?
V2 DËi: ZvcgvÎv n‡”Q †Kv‡bv e¯‘i Zvcxq Ae¯’v hv Ab¨
dW3 = nRT ln
V1 †Kv‡bv e¯‘i Zvcxq ms¯ú‡k© Avb‡j H Zvc MÖnY Ki‡e, ev
V2 P 2 Zvc eR©b Ki‡e Zv wba©viY K‡i|
Avevi, T aªæeK _vK‡j V = P = 2
1 1
dW3 = 2 8.314 600 ln(2)
dW3 = 6915.391 J
Type-2: ZvcMwZwe`¨vi cÖ_g m~Î
A_©vr OA, AB I BC As‡ki Kv‡R h_vµ‡g 0 J,
1. Af¨šÍixY kw³ Kv‡K e‡j? [Xv. †ev. 23;
4988.4 J I 6915.391 J| (Ans.) w`. †ev. 23; Kz. †ev. 22]
5| GKwU wW‡Rj Bwćbi wmwjÛv‡i Av`k© M¨v‡mi Pvc, A_ev, AšÍt¯’ kw³i msÁv `vI| [w`. †ev. 22; g. †ev. 22]
AvqZb I ZvcgvÎv cwieZ©‡bi GKwU m¤ú~Y© Pµ †jLwP‡Î A_ev, AšÍt¯’ kw³ Kx? [iv. †ev., Kz. †ev., w`. †ev. 21;
Dc¯’vcb Kiv n‡q‡Q| A I B we›`yi ZvcgvÎv h_vµ‡g mw¤§wjZ †ev. 18]
300K I 600K| X I Y bv‡gi `yB e¨w³ `ywU Kv‡b©v BwÄb DËi: e¯‘i Af¨šÍi¯’ AYy, cigvYy I †gŠwjK KYvmg~‡ni
•Zwi Ki‡jv| X Gi BwÄb B I C we›`yi ZvcgvÎvq Ges Y •iwLK MwZ, ¯ú›`b MwZ I AveZ©b MwZ Ges Zv‡`i ga¨Kvi
Gi BwÄb D I A we›`yi ZvcgvÎvq Kvh©iZ|
cvi¯úwiK e‡ji Kvi‡Y D™¢‚Z †h mnRvZ kw³ KvR m¤úv`b
[miKvwi weÁvb K‡jR, †ZRMuvI, XvKv; wb. cÖ. 18]
Ki‡Z cv‡i Ges Ab¨ kw³‡Z iƒcvšÍwiZ n‡Z cv‡i Zv‡K
Af¨šÍixY kw³ e‡j|
2. wm‡÷g Kx? [e. †ev. 22; e. †ev. 21; wm. †ev. 17]
B C DËi: ZvcMZxq cixÿv-wbixÿvi mgq RoRM‡Zi †h wbw`©ó
16×105 Ask we‡ePbv Kiv nq Zv‡K wm‡÷g e‡j|
3. •Îawe›`y Kv‡K e‡j? [wm. †ev. 22]
Pvc Pa
Pvc, P
V1
†Kv‡bv e¯‘i mv‡_ Zvcxq mvg¨e¯’vq _v‡K Z‡e cÖ_‡gv³ e¯‘
hv wb‡`©kK wP‡Î Ave×
`yBwU ci¯ú‡ii mv‡_ Zvcxq mvg¨ve¯’vq _vK‡e|Ó m~ÎwU †_‡K A B
¯úó †h, cÖwZwU e¯‘i Ggb GKwU ag© Av‡Q hv cwigvYMZfv‡e ABCD †ÿ‡Îi †ÿÎdj| V1dVV2
Ab¨ GKwU e¯‘i mv‡_ mgvb n‡j e¯‘Øq Zvcxq mv‡g¨ _vK‡e| ZvcMwZwe`¨vi P – V AvqZb, V
GB ag©wU n‡jv ZvcgvÎv| †jLwP‡Îi †ÿÎdj †gvU
2. ZvcMwZwe`¨vi k~b¨Zg m~ÎwU e¨vL¨v Ki| [w`. †ev. 17] K…ZKvR cÖKvk K‡i|
DËi: ZvcMwZwe`¨vi k~b¨Zg m~ÎwU n‡jvÑ `ywU e¯‘ hw` Z…Zxq 2. ZvcMwZwe`¨vi cÖ_g m~ÎwU kw³i wbZ¨Zvi GKwU we‡kl
†Kv‡bv e¯‘ (Zvcgvb hš¿) Gi mv‡_ c„_Kfv‡e Zvcxq mv‡g¨ iƒc gvÎÑ e¨vL¨v K‡iv| [e. †ev. 21]
_v‡K Z‡e cÖ_‡gv³ e¯‘ `ywU ci¯ú‡ii mv‡_ Zvcxq mv‡g¨ DËi: ZvcMwZwe`¨vi cÖ_g m~Î: hLb †Kv‡bv wm‡÷‡g Zvckw³
_vK‡e| mieivn Kiv nq ZLb †m Zvckw³i wKQz Ask wm‡÷‡gi
e¨vL¨v: A I B wfbœ ZvcgvÎvi `ywU e¯‘ GKwU Kzcwievnx Af¨šÍixY kw³ e„wׇZ mnvqZv K‡i Ges evwK Ask Øviv
†`Iqvj w`‡q c„_K Kiv Ae¯’vq Z…Zxq GKwU e¯‘ Gi wm‡÷g Zvi cwi‡e‡ki Ici evwn¨K KvR m¤úv`b K‡i|
ms¯ú‡k© ivLv n‡j wKQzÿY ci A I B Dfq e¯‘B Z…Zxq e¯‘ kw³i wbZ¨Zvi m~Î Abyhvqx kw³i †Kv‡bv m„wó ev aŸsm †bB|
C Gi mv‡_ Zvcxq mv‡g¨ †cŠQvq| kw³ †Kej GK iƒc †_‡K Ab¨ iƒ‡c iƒcvšÍwiZ n‡Z cv‡i|
3. wK¬wbK¨vj _v‡g©vwgUv‡ii 0 F †_‡K `vM KvUv _v‡K bv ZvcMwZwe`¨vi cÖ_g m~Î cÖK…Zc‡ÿ kw³i wbZ¨Zv m~‡ÎiB
†Kb? e¨vL¨v Ki| [Kz. †ev. 17] GKwU wee„wZ| weÁvbx K¬wmqvm G m~·K mvaviY iƒ‡c eY©bv
DËi: wK¬wbK¨vj _v‡g©vwgUvi gvbe‡`‡ni ZvcgvÎv cwigv‡ci K‡ib| Zuvi g‡Z, †Kv‡bv wm‡÷‡g Zvckw³ Ab¨ †Kv‡bv
Rb¨ e¨eüZ nq| gvbe‡`‡ni ZvcgvÎv 95 F n‡Z 110 F kw³‡Z iƒcvšÍwiZ n‡j A_ev Ab¨ †Kv‡bv kw³ Zv‡c
Gi g‡a¨ _v‡K e‡j G‡Z 95 F n‡Z 110 F ch©šÍ `vM KvUv iƒcvšÍwiZ n‡j wm‡÷‡gi †gvU kw³i cwigvY GKB _v‡K|
_v‡K| Avevi, my¯’ e¨w³i kix‡ii ZvcgvÎv mvaviYZ 98.4 Q cwigvY Zvckw³ mieivn Kivi d‡j hw` †Kv‡bv
F nq| G me Kvi‡Y wK¬wbK¨vj _v‡g©vwgUv‡i 0 F †_‡K `vM wm‡÷‡gi Af¨šÍixY cwieZ©b U Ges wm‡÷gKZ…©K
KvUv _v‡K bv|
cwi‡e‡ki Ici evwn¨K K…ZKv‡Ri cwigvY W nq, Zvn‡j
4. GKB cwigvY Zvc `ywU wfbœ e¯‘‡Z mieivn Kiv n‡jI
Q = U + W|
ZvcgvÎvi cwigvY wfbœ nq †Kb? e¨vL¨v Ki| [h. †ev. 16]
3. wm‡÷g ev e¨e¯’v Kx?
M„nxZ Zvc
DËi: Avgiv Rvwb, ZvcgvÎv e„w× = DËi: cixÿv-wbixÿvi mgq Ro RM‡Zi †h wbw`©ó Ask
fi Av‡cwÿK Zvc
we‡ePbv Kiv nq Zv‡K wm‡÷g e‡j|
A_©vr †Kv‡bv e¯‘i ZvcgvÎv e„w×i cwigvY wbf©i K‡i H e¯‘i
wm‡÷g wZb cÖKvi, h_vÑ
Av‡cwÿK Zv‡ci Dci| mgcwigvY Zvc `ywU wfbœ e¯‘‡Z
(K) e× wm‡÷g (L) Db¥y³ wm‡÷g (M) wew”Qbœ wm‡÷g|
mieivn Kiv n‡j †h e¯‘i Av‡cwÿK Zvc †ewk Zvi ZvcgvÎv
Kg e„w× cv‡e Avevi hvi Av‡cwÿK Zvc Kg Zvi ZvcgvÎv D`vniY: wc÷bhy³ wmwjÛv‡i Ave× wKQz M¨vm|
†ewk e„w× cv‡e| GRb¨ GKB cwigvY Zvc `ywU wfbœ e¯‘‡Z 4. M¨vm cÖmvi‡Y m‡gvò cÖwµqvq K…Z KvR mgPvc cÖwµqvq
mieivn Kiv n‡j ZvcgvÎvi cwigvY wfbœ nq| K…Z KvR A‡cÿv e„nËiÑe¨vL¨v Ki|
5. GKB cwigvY Zvc `ywU wfbœ e¯‘‡Z mieivn Kiv n‡jI DËi: m‡gvò cÖwµqvq ZvcgvÎv w¯’i _v‡K e‡j wm‡÷‡gi
ZvcgvÎvi cwigvY wfbœ nq †Kb? e¨vL¨v Ki| Af¨šÍixY kw³i †Kv‡bv cwieZ©b nq bv, A_©vr U = 0|
DËi: Zvc n‡jv GK cÖKvi kw³, hv VvÐv I Mi‡gi Abyf~wZ myZivs Zvc MwZwe`¨vi cÖ_g m~Îvbymv‡iÑ Q = W
RvqMvq Ab¨w`‡K ZvcgvÎv n‡jv e¯‘i Zvcxq Ae¯’v| `ywU A_©vr m‡gvò cÖwµqvq wm‡÷‡gi mieivnK…Z Zv‡ci
e¯‘i Zvc mgvb n‡jI G‡`i ZvcgvÎv wfbœ n‡Z cv‡i| KviY m¤ú~Y©UvB Kv‡R iƒcvšÍwiZ nq| Aciw`‡K mgPvc cÖwµqvq
e¯‘i ZvcgvÎv Zv‡`i Zv‡ci cwigv‡Yi Dci wbf©i K‡i bv| wm‡÷‡g mieivnK…Z Zv‡ci m¤ú~Y©UvB Kv‡R iƒcvšÍwiZ nq
wbf©i K‡i e¯‘i Zvcxq Ae¯’vi Dci ZvQvov e¯‘ `ywU GKB bv, Gi wKQz Ask wm‡÷‡gi AšÍt¯’ kw³ e„wׇZ e¨q nq| G
Dcv`v‡bi bv n‡j ZvcgvÎv wfbœ n‡Z cv‡i| Avevi Dcv`vb Kvi‡Y M¨vm cÖmvi‡Y m‡gvò cÖwµqvq K…ZKvR mgPvc
GKB n‡jI f‡ii Kvi‡Y ZvcgvÎv wfbœ n‡Z cv‡i| cÖwµqvq K…Z KvR A‡cÿv e„nËi nq|
nd
20 HSC Physics 2 Paper Chapter-1
Type-3: ZvcMZxq cwieZ©b I KvR ZvcgvÎvi Ici wbf©i K‡i, Gi Pvc ev AvqZ‡bi Ici wbf©i
K‡i bv| G‡K †gqv‡ii cÖKí ejv nq| ¯úóZ Pvc ev AvqZb
1. iæ×Zvcxq cÖmvi‡Y wm‡÷g kxZj nqÑ e¨vL¨v K‡iv|
[Xv. †ev. 23; P †ev. 19; Xv. †ev. 16] cwiewZ©Z n‡jI ZvcgvÎv hw` w¯’i _v‡K Z‡e M¨v‡mi
DËi: iƒ×Zvcxq cÖmvi‡Y wm‡÷‡gi Af¨šÍixY kw³ Z_v Af¨šÍixY kw³I w¯’i _vK‡e| ZvB m‡gvò cÖwµqvq Af¨šÍixY
ZvcgvÎv n«vm cvIqvq wm‡÷g kxZj nq| kw³i cwieZ©b k~b¨|
†h‡nZz iƒ×Zvcxq cÖwµqvq wm‡÷‡g †Kv‡bv Zvc cÖ‡ek Ki‡Z 6. mgAvqZb cÖwµqvq wm‡÷‡g cÖ`Ë Zvc m¤ú~Y©UvB
cv‡i bv ev wm‡÷g †_‡K †Kv‡bv Zvc †ei n‡q †h‡Z cv‡i bv f¨šÍixY kw³‡K e„wׇZ e¨eüZ nq| e¨vL¨v K‡iv| [g. †ev. 23]
myZvivs dQ = 01| AZGe, ZvcMwZwe`¨vi cÖ_g m~Î †_‡K DËi: †h cÖwµqvq wm‡÷‡gi AvqZ‡bi †Kv‡bv cwieZ©b nq bv
Avgiv cvB, 0 = dU + dW Zv‡K mgAvqZb cÖwµqv e‡j|
G‡ÿ‡Î dV = 0 nIqvq, dW = P.dV
dW = – dU
= P.0
iæ×Zvcxq cÖmvi‡Y wm‡÷g KZ…©K m¤úvw`Z KvR wm‡÷‡gi =0
Af¨šÍixY kw³ Øviv m¤úvw`Z nq e‡j wm‡÷‡gi Af¨šÍixY myZivs ZvcMwZwe`¨vi cÖ_g m~Î n‡Z †jLv hvq, dQ = dU
kw³ Z_v ZvcgvÎv n«vm cvq| ZvB iæ×Zvcxq cÖmvi‡Y wm‡÷g A_©vr wm‡÷‡g cÖ`Ë Zv‡ci m¤ú~Y©UvB Af¨šÍixY kw³ e„w×i
kxZj nq| Kv‡R e¨eüZ nq|
2. Mvwoi Uvqvi we‡ùvi‡Yi mgq Kx ai‡bi ZvcMZxq 7. mgAvqZb cÖwµqvq KvR k~b¨ †Kb? e¨vL¨v K‡iv|
cÖwµqv msNwUZ nq? e¨vL¨v K‡iv| [iv. †ev. 23] [Xv. †ev. 22; iv. †ev. 21]
DËi: Mvwoi Uvqvi we‡ùvi‡Yi mgq iƒ×Zvcxq cÖwµqv DËi: †h ZvcMZxq cÖwµqvq wm‡÷‡gi AvqZ‡bi †Kv‡bv
msNwUZ nq| cwieZ©b nq bv Zv‡K mgAvqZb cÖwµqv e‡j|
†h cÖwµqvq wm‡÷g Zvc MÖnY wKsev eR©b K‡i bv Zv‡K G‡ÿ‡Î, dV = 0 nIqvq, dW = P.dV
= P.0
iæ×Zvcxq cÖwµqv e‡j| Uvqvi we‡ùviY cÖwµqvwU LyeB `ªæZ,
=0
AvKw¯§Kfv‡e msNwUZ nIqvq Uvqv‡ii †fZ‡ii evB‡ii
AvqZb aªæeK _vKvq K…ZKvR k~b¨|
cwi‡e‡ki mv‡_ Zv‡ci Av`vb cÖ`vb Kivi ch©vß mgq cvq 8. iƒ×Zvcxq cÖmviY I ms‡KvP‡b AšÍt¯’ kw³i cwieZ©b
bv| A_©vr dQ = 0| myZivs cÖwµqvwU iƒ×Zvcxq| e¨vL¨v K‡iv| [h. †ev. 22]
3. M¨v‡mi †gvjvi Av‡cwÿK Zvc `yB cÖKvi †Kb? e¨vL¨v K‡iv| DËi: iƒ×Zvcxq cÖmvi‡Y wm‡÷g KZ…©K m¤úvw`Z KvR
[Kz. †ev. 23; h. †ev. 15]
wm‡÷‡gi Af¨šÍixY kw³ Øviv m¤úvw`Z nq e‡j wm‡÷‡gi
DËi: ZvcgvÎvi cwieZ©‡bi Rb¨ c`v‡_©i Pvc Ges AvqZ‡bi
Af¨šÍixY kw³ Z_v ZvcgvÎv n«vm cvq| ZvB iƒ×Zvcxq
cwieZ©b N‡U| KwVb I Zij c`v‡_©i Rb¨ GB cwieZ©b bMb¨ cÖmvi‡Y wm‡÷g kxZj nq|
nIqvq Zv D‡cÿv Kiv hvq| M¨v‡mi †ÿ‡Î ZvcgvÎv iƒ×Zvcxq ms‡KvP‡bi mgq evB‡i †_‡K kw³ mieivn K‡i
cwieZ©‡bi Rb¨ Pvc I AvqZ‡bi cwieZ©b A‡bK †ewk| ZvB wm‡÷‡gi Dci KvR m¤úvw`Z nq e‡j wm‡÷‡gi Af¨šÍixY
M¨v‡mi Av‡cwÿK Zv‡ci msÁv †`Iqvi mgq Pvc I kw³ e„w× cvq| d‡j wm‡÷‡gi ZvcgvÎvI e„„w× cvq A_©vr
AvqZ‡bi kZ© wbw`©ó K‡i †`Iqv cÖ‡qvRb| AvqZb w¯’i †i‡L wm‡÷g Dò nq|
wbw`©ó cwigvY M¨v‡mi ZvcgvÎv wbw`©ó cwigvY e„w× Ki‡Z †h 9. m‡gvò cwieZ©‡bi †ÿ‡Î M¨v‡mi Av‡cwÿK Zvc
cwigvY Zvc jv‡M, Pvc w¯’i †i‡L H wbw`©ó cwigvY M¨v‡mi e¨vL¨v K‡iv| [iv. †ev. 21]
ZvcgvÎv GKB cwigvY e„w× Ki‡Z wfbœ nq| ZvB M¨v‡mi Rb¨ DËi: †Kv‡bv M¨v‡mi GK G‡gv‡ji DòZv GK †Kjwfb e„w×
w¯’i Pv‡c Ges w¯’i AvqZ‡b `yB cÖKvi †gvjvi Av‡cwÿK Zvc Ki‡Z cÖ‡qvRbxq Zvc‡K H M¨v‡mi †gvjvi Av‡cwÿK Zvc
cvIqv hvq| e‡j|
4. iæ×Zvcxq ms‡KvP‡bi mgq wm‡÷‡gi Af¨šÍixY kw³ m †gvj M¨v‡mi ZvcgvÎv T †Kjwfb e„w× Ki‡Z Q Ryj
e„w× cvqÑ e¨vL¨v K‡iv| [h. †ev. 23; P. †ev. 23; Zvckw³ cÖ‡qvRb n‡j †gvjvi Av‡cwÿK Zvc, C = Q
wm. †ev. 22; w`. †ev. 23; iv. †ev. 17] mT
DËi: †h‡nZz iƒ×Zvcxq cÖwµqvq wm‡÷‡g †Kv‡bv Zvc cÖ‡ek wKš‘ m‡gvò cÖwµqvq ZvcgvÎv w¯’i _v‡K| ZvB T = 0
Ki‡Z cv‡i bv ev wm‡÷g †_‡K †Kv‡bv Zvc †ei n‡q †h‡Z C=
cv‡i bv myZivs dQ = 0| AZGe, ZvcMwZwe`¨vi cÖ_g m~Î m‡gvò cÖwµqvq M¨v‡mi Av‡cwÿK Zvc Amxg|
†_‡K Avgiv cvB, 0 = dU + dW 10. m‡gvò cÖwµqvq M¨vm Øviv m¤úvw`Z KvR mieivnK…Z
dW = – dU Zvckw³i mgvb nqÑ e¨vL¨v K‡iv|
iƒ×Zvcxq ms‡KvP‡bi mgq evB‡i †_‡K kw³ mieivn K‡i [h. †ev.21; P. †ev. 21; Xv. †ev. 19]
DËi: †h ZvcMZxq cÖwµqvq wm‡÷‡gi ZvcgvÎv w¯’i _v‡K
wm‡÷‡gi Dci KvR m¤úvw`Z nq e‡j wm‡÷‡gi Af¨šÍixY
Zv‡K m‡gvò cÖwµqv e‡j|
kw³ e„w× cvq| d‡j wm‡÷‡g ZvcgvÎvI e„w× cvq A_©vr
m‡gvò cÖwµqvq ZvcgvÎv w¯’i _v‡K e‡j wm‡÷‡gi Af¨šÍixY
wm‡÷g Dò nq| kw³i †Kv‡bv cwieZ©b nq bv| A_©vr, dU = 0
5. m‡gvò cÖwµqvq Af¨šÍixY kw³i cwieZ©b k~b¨ †Kb? myZivs ZvcMwZwe`¨vi cÖ_g m~Î †_‡K Avgiv cvB,
e¨vL¨v K‡iv| [e. †ev. 23] dQ = 0 + dW
DËi: m‡gvò cÖwµqvq wm‡÷‡gi ZvcgvÎv w¯’i _v‡K| dW = dQ
A‡bK cixÿv-wbixÿvi ci weÁvbx Ryj wm×v‡šÍ DcbxZ nb A_©vr m‡gvò cÖwµqvq †Kv‡bv wm‡÷g KZ…©K K…ZKvR wm‡÷‡g
†h, †Kv‡bv wbw`©ó cwigvY M¨v‡mi Af¨šÍixY kw³ ïay Gi mieivnK…Z Zvckw³i mgvb|
ZvcMwZwe`¨v Final Revision Batch 21
11. iƒ×Zvcxq cÖwµqvq cv‡Îi †`Iqvj Acwievnx ivLv nq Type-4: Zvcxq BwÄb I †iwd«Rv‡iUi
†Kb? e¨vL¨v K‡iv| [g. †ev. 21]
1. Zvc Drm I Zvc MÖvn‡Ki ZvcgvÎvi cv_©K¨ K‡g †M‡j
DËi: cwi‡e‡ki mv‡_ Zv‡ci Av`vb-cÖ`vb †iva Kivi Rb¨ Bwćbi `ÿZvI K‡g hvqÑ e¨vL¨v K‡iv| [wm. †ev. 23]
iæ×Zvcxq cÖwµqvq cv‡Îi †`Iqvj Acwievnx ivLv nq|
DËi: Zvc Bwćbi `ÿZv, = 1 – T2 100%
T
†h cÖwµqvq wm‡÷g †_‡K Zvc evB‡i hvq bv ev evB‡i †_‡K 1
†Kv‡bv Zvc wm‡÷‡g Av‡m bv Zv‡K iæ×Zvcxq cÖwµqv e‡j| T1 – T2
wm‡÷gwU‡K cwi‡ek †_‡K Zvcxqfv‡e AšÍwiZ K‡i A_ev = 100%
T1
M¨vm‡K `ªæZ cÖmvwiZ A_ev m¼zwPZ Ki‡j iæ×Zvcxq cÖwµqv †hLv‡b, T1 Zvc Dr‡mi ZvcgvÎv Ges T2 Zvc MÖvn‡Ki ZvcgvÎv|
cvIqv hvq| G cÖwµqvq wm‡÷‡gi †h cwieZ©b nq Zv‡K T1 – T2
iæ×Zvcxq cwieZ©b e‡j| wm‡÷g‡K Zvcxqfv‡e AšÍwiZ Zvc Bwćbi Kg©`ÿZv, Drm I MÖvn‡Ki mgvbycvwZK,
Kivi Rb¨ cv‡Îi †`Iqvj Acwievnx ivLv nq| ZvB, Zvc Drm I Zvc MÖvn‡Ki ZvcgvÎvi cv_©K¨ K‡g †M‡j
12. P-V †jLwP‡Î iæ×Zvcxq †iLv‡K mgGbUªwc †iLv ejv Bwćbi `ÿZvI K‡g hvq|
nq †Kb? [iv. †ev. 19] 2. Kv‡b©v Bwćbi wØZxq av‡c ZvcgvÎv n«vm cvq †Kbv?
DËi: Avgiv Rvwb, iæ×Zvcxq cÖwµqvq GbUªwc w¯’i _v‡K| [Kz. †ev. 22]
ZvB P-V †jLwP‡Î iæ×Zvcxq †iLvi me©Î GbUªwc mgvb DËi: Kv‡b©v Bwćbi wØZxq av‡c iƒ×Zvcxq cÖmviY NUvq
_v‡K| GKvi‡Y P-V †jLwP‡Î iæ×Zvcxq †iLv‡K mgGbUªwc ZvcgvÎv n«vm cvq| †h‡nZz iƒ×Zvcxq cÖwµqvq wm‡÷‡g
†iLv ejv nq| †Kv‡bv Zvc cÖ‡ek Ki‡Z cv‡i bv ev wm‡÷g †_‡K †Kv‡bv
13. ewW †¯úª e¨env‡ii mgq VvÐv Abyf~Z nq †Kb? e¨vL¨v Ki| Zvc †ei n‡q †h‡Z cv‡i bv myZivs dQ = 0| AZGe,
[w`. †ev. 19] ZvcMwZwe`¨vi cÖ_g m~Î †_‡K Avgiv cvB, 0 = dU + dW
DËi: ewW †¯úª e¨env‡ii mgq VvÐv Abyf~Z nq KviY hLb dW = – dU
†¯úª Kiv nq ZLb ewW †¯úª-Gi ivmvqwbK c`v_©¸‡jv Zij iƒ×Zvcxq cÖmvi‡Y wm‡÷g KZ…©K m¤úvw`Z KvR wm‡÷‡gi
_v‡K wKš‘ kix‡ii ms¯ú‡k© G‡m kixi †_‡K Zvc MÖnY K‡i
Af¨šÍixY kw³ Øviv m¤úvw`Z nq e‡j wm‡÷‡gi Af¨šÍixY
Zij ivmvqwbK c`v_©¸‡jv M¨v‡m cwiYZ nq ZvB ewW †¯úª
kw³ Z_v ZvcgvÎv n«vm cvq| ZvB iæ×Zvcxq cÖmvi‡Y wm‡÷g
e¨env‡ii mgq VvÐv Abyf~Z nq|
kxZj nq|
14. m‡gvò cÖwµqvq dW = dQ †Kb? e¨vL¨v Ki| [Xv. †ev. 19]
3. CV < CP †Kb? e¨vL¨v K‡iv| [P. †ev. 22; e. †ev. 19]
DËi: ZvcMwZwe`¨vi 1g m~Î Abymv‡i, dQ = dU + dW
DËi: hLb †Kv‡bv M¨v‡mi AvqZb w¯’i †i‡L DËß Kiv nq
m‡gvò cÖwµqvq wm‡÷‡gi ZvcgvÎv w¯’i _v‡K e‡j dU =
ZLb Gi Pvc ev‡o| G‡ÿ‡Î ZvcgvÎv evo‡bvi Rb¨ wKQz
nCvdT m¤úK© Abymv‡i dU = 0 A_©vr wm‡÷‡gi AšÍt¯’ kw³i
cwigvY Zv‡ci `iKvi nq| wKš‘ M¨vm‡K hw` DËß Kiv nq
†Kvb cwieZ©b nq bv| d‡j m¤úK©wU `uvovq dQ = dW|
Ges Pvc w¯’i †i‡L cÖmvwiZ n‡Z †`Iqv nq ZLb †h ïay
15. iæ×Zvcxq ms‡KvP‡b ZvcgvÎv e„w× cvq †Kb?
[wm. †ev. 15] ZvcgvÎv evov‡bvi Rb¨B Zvc cÖ‡qvRb nq Zv bq, cÖmviYkxj
DËi: iæ×Zvcxq ms‡KvP‡b M¨vm msKzwPZ nq| G ms‡KvP‡bi M¨vm †h evwn¨K Pv‡ci weiƒ‡× KvR K‡i Zvi Rb¨ wKQz
mgq evB‡i †_‡K kw³ mieivn K‡i wm‡÷‡gi Dci KvR AwZwi³ Zv‡ci cÖ‡qvRb nq|
m¤úvw`Z nq e‡j wm‡÷‡gi AšÍt¯’ kw³ e„w× cvq, d‡j myZivs Pvc w¯’i †i‡L 1 †gvj M¨v‡mi ZvcgvÎv 1 K evov‡Z
wm‡÷‡gi ZvcgvÎv e„w× cvq| G ms‡KvP‡b AšÍt¯’ kw³, †h Zvc jv‡M, Zv AvqZb w¯’i †i‡L 1 †gvj M¨v‡mi ZvcgvÎv
dW = – dU, KviY dQ = 0. 1 K evov‡Z cÖ‡qvRbxq Zv‡ci †P‡q †ewk nq| ZvB CP me©`v
16. Uvqvi dvU‡j VvÐv evZvm †ei nq †Kb? CV Gi †P‡q eo nq|
[†bvqvLvjx miKvwi gwnjv K‡jR, †bvqvLvjx] 4. Kv‡b©v Bwćbi Kvh©wbe©vnx e¯‘ cwieZ©b Ki‡j H Bwćbi
DËi: Uvqvi dvU‡j nVvr Pvc n«vm cvq ZvB Gi Af¨šÍixY `ÿZvi †Kv‡bviƒc cwieZ©b n‡e bv †Kb? e¨vL¨v K‡iv|
M¨v‡mi Lye `ªæZ m¤úªmviY N‡U| G Kvi‡Y D³ M¨vm [w`. †ev. 22]
DËi: Kv‡b©v Bwćbi `ÿZv, = 1 – T2 100%
cwi‡e‡ki mv‡_ Zv‡ci Av`vb-cÖ`vb Kivi Rb¨ h‡_ó mgq T
cvq bv| ZvB G cÖwµqvwU n‡jv iæ×Zvcxq| nVvr AvqZb 1
A‡bK †e‡o †M‡j AvqZb m¤úªmviYRwbZ KvR m¤úbœ nq| Bwćbi `ÿZvi mgxKiY n‡Z ¯úó †h, Kv‡b©v Bwćbi `ÿZv
GRb¨ †h kw³i cÖ‡qvRb nq Zv M¨v‡mi Af¨šÍixY kw³ n‡Z †Kej Drm Ges MÖvn‡Ki ZvcgvÎvi Ici wbf©i K‡i| ZvB
†kvwlZ nq| G Kvi‡Y Uvqvi dvU‡j VvÐv evZvm †ei nq| Drm I MÖvn‡Ki ZvcgvÎv w¯’i †i‡L Kvh©wbe©vnx e¯‘ cwieZ©b
17. DòZvwgwZK ag© I DòZvwgwZK c`v_© ej‡Z Kx †evS? Ki‡j Bwćbi `ÿZvi †Kv‡bv cwieZ©b n‡e bv|
DËi: DòZvwgwZK ag©: ZvcgvÎv cwigv‡c Dc‡hvMx c`v‡_©i 5. DòZvwgwZ c`v_© wn‡m‡e cvi` e¨envi myweavRbKÑ
†hme ag© Kv‡R jvMv‡bv nq, c`v‡_©i H ag©¸‡jv‡K e¨vL¨v K‡iv| [g. †ev. 22; w`. †ev. 21]
DòZvwgwZK ag© e‡j| †hgb: GKwU miæ KvP b‡ji g‡a¨ DËi: DòZvwgwZ c`v_© wn‡m‡e cvi` e¨env‡ii myweavÑ
Zij ¯Í‡¤¢i •`N©¨, w¯’i AvqZ‡bi M¨v‡mi Pvc e„w× ev w¯’i i. cvi` weï× Ae¯’vq cvIqv hvq|
Pv‡c M¨v‡mi AvqZb, cwievnx ev Aa©cwievnxi Zwor †iva ii. D¾¡j A¯^”Q c`v_© nIqvq mn‡RB KuvP b‡ji †fZi
BZ¨vw` DòZvwgwZK a‡g©i D`vniY| G‡K †`Lv hvq|
DòZvwgwZK c`v_©: †hme c`v‡_©i DòZvwgwZK ag© e¨envi K‡i iii. mvaviY ZvcgvÎvq cvi‡`i ev®úPvc Lye Kg| KuvPb‡ji g‡a¨
_v‡g©vwgUvi •Zwi Kiv nq Zv‡`i‡K DòZvwgwZK c`v_© e‡j| cvi‡`i Ic‡ii ¯’vb Aí cwigvY cvi`ev®ú aviY K‡i|
nd
22 HSC Physics 2 Paper Chapter-1
6. Kxfv‡e Bwćbi `ÿZv e„w× Kiv hvq? e¨vL¨v K‡iv| Type-5: GbUªwc
[g. †ev. 21]
1. RM‡Zi GbUªwc e„w× cv‡”Q| e¨vL¨v K‡iv| [Kz. †ev. 22]
DËi: Zvc Bwćbi `ÿZv, = 1 – T2 100%
T
DËi: cÖK…wZ‡Z mewKQzB mvg¨ve¯’v †c‡Z †Póv K‡i| GKwU
1
wm‡÷g hZB mvg¨ve¯’vi w`‡K GwM‡q hvq ZZB Zvi KvQ
T1 – T2
= 100% †_‡K KvR cvIqvi m¤¢vebv K‡g hvq, mvg¨ve¯’vq †cuŠQv‡j
T1
wm‡÷g †_‡K Avi †Kv‡bv KvRB cvIqv hv‡e bv| wm‡÷‡gi
†hLv‡b, T1 Zvc Dr‡mi Zvc Dr‡mi ZvcgvÎv Ges T2 Zvc
GB kw³i iƒcvšÍ‡ii AÿgZv ev Am¤¢ve¨ZvB n‡”Q GbUªwc|
MÖvn‡Ki ZvcgvÎv| GK ev GKvwaK wm‡÷g hZ mvg¨ve¯’vi w`‡K GwM‡q hvq
T2 Zv‡`i GbUªwcI ZZ evo‡Z _v‡K| mvg¨ve¯’v¨q GbUªwc
T1
AbycvZwU hZ †Qv‡Uv n‡e Bwćbi `ÿZv ZZ evo‡e|
me‡P‡q †ewk nq| A_©vr hLb †Kv‡bv wm‡÷g †_‡K Avi KvR
Zvc Dr‡mi ZvcgvÎv evov‡j Ges Zvc MÖvn‡Ki ZvcgvÎv cvIqv hvq bv ZLb Zvi GbUªwc nq me©vwaK| Avgiv Av‡MB
n«vm Ki‡j Bwćbi `ÿZv e„w× Kiv hvq| †`‡LwQ †h, mKj ¯^Ztù‚Z© cwieZ©b me©`v mvg¨v¯’vi w`‡K
7. Bwćbi Kg©`ÿZv I †iwd«Rv‡iU‡ii Kvh©m¤úv`K ¸Yv‡¼i cwiPvwjZ nq| myZivs mKj ¯^Ztù‚Z© cwieZ©‡b GbUªwc e„w×
g‡a¨ cv_©K¨ wbiƒcY Ki| [mKj †evW© 18] cvq| †h‡nZz cÖK…wZ‡Z mewKQzB mvg¨ve¯’v †c‡Z Pvq, ZvB
DËi: Bwćbi Kg©`ÿZv, ejv hvq †h, RM‡Zi GbUªwc µgvMZ evo‡Q|
2. wek¦RMr µ‡g µ‡g Zvcxq g„Zz¨i w`‡K GwM‡q P‡j‡QÑ
BwÄb Øviv Kv‡R iƒcvšÍwiZ Zvckw³
= e¨vL¨v K‡iv| [h. †ev. 22]
BwÄb Øviv †kvwlZ Zvckw³
DËi: cÖK…wZ‡Z mewKQzB mvg¨ve¯’v †c‡Z †Póv K‡i| GKwU
T1 – T2 T2
= =1– wm‡÷g hZB mvg¨ve¯’vi w`‡K GwM‡q hvq ZZB Zvi KvQ
T1 T1
†_‡K KvR cvIqvq m¤¢ebv K‡g hvq, mvg¨e¯’vq †cuŠQv‡j
Q T
†iwd«Rv‡iU‡ii Kvh©m¤úv`K ¸Yv¼, K = Q –2Q = T –2T wm‡÷g †_‡K Avi †Kv‡bv KvRB cvIqv hv‡e bv| wm‡÷‡gi
1 2 1 2
GB kw³i iƒcvšÍ‡ii AÿgZv ev Am¤¢ve¨ZvB n‡”Q GbUªwc|
Dc‡iv³ `ywU mgxKiY †_‡K GwU ¯úó †h Bwćbi Kg©`ÿZv
GK ev GKvwaK wm‡÷g hZ mvg¨ve¯’vi w`‡K GwM‡q hvq
1 Gi †P‡q †QvU †hLv‡b †iwd«Rv‡iU‡ii Kvh©m¤úv`K ¸Yv¼ 1 Zv‡`i GbUªwcI ZZ evo‡Z _v‡K| mvg¨ve¯’vq GbUªwc
Gi †P‡q eo| me‡P‡q †ewk nq| A_©vr hLb †Kv‡bv wm‡÷g †_‡K Avi KvR
8. Bwćbi `ÿZv KL‡bvB 100% n‡Z cv‡i bvÑ e¨vL¨v Ki| cvIqv hvq bv ZLb Zvi GbUªwc nq me©vwaK| Avgiv Av‡MB
[wm. †ev. 17] †`‡LwQ †h mKj ¯^Ztù‚Z© cwieZ©b me©`v mvg¨ve¯’vi w`‡K
DËi: Bwćb GKwU Zvc Drm I Zvc MÖvnK _v‡K| Zvc cwiPvwjZ nq| myZivs mKj ¯^Ztù‚Z© cwieZ©‡bB GbUªwc
Dr‡mi ZvcgvÎv T1 Zvc MÖvn‡Ki ZvcgvÎv T2 A‡cÿv †ewk e„w× cvq| †h‡nZz cÖK…wZ‡Z mewKQzB mvgve¯’v †c‡Z Pvq, ZvB
n‡jB †Kej Zv‡ci ¯’vbvšÍi m¤¢e nq| `ÿZvi m~Î n‡jv, (T1 ejv hvq †h, RM‡Zi GbUªwc µgvMZ evo‡Q| RM‡Zi GbUªwc
– T2) T1 100%| †h‡nZz mgxKi‡Y T1 > T1 – T2, hLb m‡e©v‡”P †cuŠQv‡e ZLb mewKQzi ZvcgvÎv GK n‡q
hv‡e| d‡j Zvckw³‡K Avi hvwš¿K kw³‡Z iƒcvšÍwiZ Kiv
†m‡nZz Bwćbi `ÿZv KL‡bv 100% n‡Z cv‡i bv|
hv‡e bv| GB Ae¯’v‡K RM‡Zi Z_vKw_Z Zvcxq g„Zz¨ (Heat
9. Zvc BwÄb I †iwd«Rv‡iUi-Gi Kvh©c×wZi g~j cv_©K¨ death of the universe) bv‡g AwfwnZ Kiv n‡q‡Q|
e¨vL¨v Ki| [Kz. †ev. 16] 3. AcÖZ¨vMvgx cÖwµqv GKwU GKgyLx cÖwµqv| e¨vL¨v K‡iv|
DËi: Zvc BwÄb I †iwd«Rv‡iUi-Gi Kvh©c×wZi g~j cv_©K¨ [e. †ev. 22]
n‡jv Zvc Bwćb D”P ZvcgvÎvi Drm n‡Z wb¤œ ZvcgvÎvi DËi: †h cÖwµqv wecixZgyLx n‡q cÖZ¨veZ©b Ki‡Z cv‡i bv
wms‡Ki w`‡K Zvc cÖevwnZ nq Ab¨w`‡K †iwd«Rv‡iU‡i wb¤œ A_©vr m¤§yLeZ©x I cðvrgyLx cÖwZ ¯Í‡i Zvc I Kv‡Ri djvdj
mgvb I wecixZ nq bv Zv‡K AcÖZ¨veZ©x cÖwµqv e‡j|
ZvcgvÎvi wmsK †_‡K Zvc D”P ZvcgvÎvi Dr‡mi w`‡K
cÖK…wZ‡Z ¯^Zù‚Z© cwieZ©b¸‡jvi me©`vB GKwU wbw`©ó w`‡K
cÖevwnZ nq| G‡Z Zvc Bwćb wm‡÷g Øviv KvR m¤úvw`Z nq
cwiPvwjZ nq| †hgbÑ Zvc D”PZvcgvÎv †_‡K wb¤œ
Aciw`‡K †iwd«Rv‡iU‡i wm‡÷‡gi Dci KvR m¤úvw`Z nq| ZvcgvÎvi w`‡K mÂvwjZ nq, GKwU Roe¯‘ my‡hvM †c‡jB
10. †c‡Uªvj BwÄb MÖx®§Kv‡ji Zzjbvq kxZKv‡j wKQzUv †ewk DuPz †_‡K wbPz‡Z co‡Z _v‡K, A_©vr wefekw³ n«vm cvq|
Kvh©KiÑ Kv‡Y©v Bwćbi bxwZi Av‡jv‡K e¨vL¨v Ki| cÖK…wZ Gme NUbv KL‡bB ¯^vfvweKfv‡e wecixZ w`‡K
[Ave`yj Kvw`i †gvjøv wmwU K‡jR, biwms`x] cÖZ¨veZ©b K‡i Avw` Ae¯’vq hvq bv| cÖK…wZi mKj ¯^Ztù‚Z©
V2 = V1
800 J KvR m¤úv`b Ki‡j M¨vm KZ…©K †kvwlZ Zv‡ci P1
P2
cwigvY KZ Ryj? [iv. †ev. 19]
1
=
0 400 1 1.4
800 900 1 + 0.05 V1
DËi: 800 V2 = 0.966 V1
e¨vL¨v: m‡gvò cÖwµqvq, V1 – 0.966 V1
V = 100%
dQ = dW V1
dQ = 800 J = 3.42%
nd
28 HSC Physics 2
Paper Chapter-1
51. wb‡Pi †Kvb †jLwU GKwU Av`k© M¨v‡mi iæ×Zvcxq 55. iæ×Zvcxq cÖwµqvq GKwU Av`k© M¨v‡mi Pvc I
m¤úªmviY‡K cÖKvk K‡iÑ [h. †ev. 23] ZvcgvÎvi g‡a¨ m¤úK©Ñ [h. †ev. 22]
lnT lnT P–1 T = aªæeK
P T +1
= aªæeK
–1 1–
P T = aªæeK P T = aªæeK
lnP lnP
1–
DËi: P T = aªæeK
lnT lnT 56. evqy gva¨‡g kã mÂvjb †Kvb ai‡bi cÖwµqv? [Xv. †ev. 21]
m‡gvò mgPvcxq
lnP lnP
mgvqZb iæ×Zvcxq
lnT
DËi: iæ×Zvcxq
DËi: 57. iæ×Zvcxq cÖmvi‡Y †KvbwU mwVK? [Xv. †ev. 21]
lnP
1– [GLv‡b W = evwn¨K KvR, U = AšÍt¯’ kw³i
e¨vL¨v: TP =K cwieZ©b, Q = cÖhy³ Zvc]
1–
W = U W = – U
ln TP ( )= lnK
Q = U Q = U
1–
lnT + lnP = lnK DËi: W = – U
58. iæ×Zvcxq cwieZ©‡bi mgq Av`k© M¨v‡mi †ÿ‡Î Pvc I
1–
lnT = lnP + lnk ZvcgvÎvi m¤úK© n‡jvÑ
[P. †ev. 21; g. †ev. 21]
1– 1–
hv, y = mx + c Gi Abyiƒc = =
TP aªæeK PT aªæeK
5
52. = Gi Rb¨ †KvbwU mwVK? [P. †ev. 23; iv. †ev. 16]
3 TP1 – = aªæeK PT1 – = aªæeK
5 5 1–
Cp = R Cv = R
3 3 DËi: TP = aªæeK
3 59. †h †f․Z cÖwµqvq GbUªwc w¯’i _v‡K Zv n‡jvÑ
Cv = R Cv = 2R
2 [Kz. †ev. 21; e. †ev. 16]
3 iƒ×Zvcxq cÖ wµqv m‡gvò cÖwµqv
DËi: Cv = R
2
mgPvc cÖwµqv mgAvqZb cÖwµqv
e¨vL¨v: CP = R DËi: iƒ×Zvcxq cÖwµqv
–1
60. iƒ×Zvcxq cwieZ©‡b †Kvb †f․Z ivwkwU cwieZ©b nq bv?
5
3
[e. †ev. 21; h. †ev. 15]
R
5 Pvc AvqZb
3
–1 ZvcgvÎv GbUªwc
5
CP = R DËi: GbUªwc
2
1 61. m‡gvò †iLvi Xvj iƒ×Zvcxq †iLvi Xvj A‡cÿv KZ¸Y
CV = R Lvov?
–1 [Xv. †ev. 21]
=
1 1
R + +
5 – 1
3 1
– –
3
CV = R
2 1
53. CO2 M¨v‡mi Rb¨ Gi gvb KZ? DËi: +
[P. †ev. 23]
1.33 1.40 62. iƒ×Zvcxq 1 atm Pv‡c ivLv M¨vm‡K cÖmvwiZ K‡i wظY
1.67 1.69 Kiv n‡j †h P~ovšÍ Pvc nq, m‡gvò cÖwµqvq †mB GKB
DËi: 1.33 Pvc †c‡Z M¨vm‡K KZ¸Y cÖmvwiZ Ki‡Z n‡e?
54. iæ×Zvc cÖwµqvi †ÿ‡Î †KvbwU mwVK? [e. †ev. 23] [P. †ev. 21; g. †ev. 21]
dS = 0 dV = 0 1.4 2.6
dQ 0 dW = dU 5.2 7.8
DËi: dS = 0 DËi: 2.6
ZvcMwZwe`¨v Final Revision Batch 29
e¨vL¨v: P1V1 = P2V2 e¨vL¨v: P1V1 = P 2V 2
V1
P2 = P2 =
V1
V2 P1 V2 P1
1 1.4
1 1.4
=
P2 = 1
P1 2 3
m‡gvò cÖwµqvq, P2 = 0.215 atm
P1V1 = P2V2 68. mgPv‡c I 17C ZvcgvÎvq 2 wjUvi‡K evqy‡Z 3 wjUvi
V2 P1 AvqZb Kivi Rb¨ ZvcgvÎv KZ n‡e?
= = (2)1.4
V1 P2 100C 152C
V2 = 2.6 V1 162C 262C
63. iæ×Zvcxq cÖmvi‡Yi †ÿ‡Î †KvbwU mwVK? [wm. †ev. 17] DËi: 162C
wm‡÷‡gi Ici KvR m¤úbœ nq V V
e¨vL¨v: T 1 = T 2
1 2
ZvcgvÎv w¯’i _v‡K 2 3
AšÍt¯’ kw³ n«vm cvq =
(17 + 273) T2
Zvc ewR©Z nq T2 = 435 K
DËi: AšÍt¯’ kw³ n«vm cvq T2 = 162C
64. †Kv‡bv M¨vm‡K iƒ×Zvcxq cÖwµqvq msKzwPZ Ki‡j wb‡Pi 69. 127C ZvcgvÎvq †Kvb wbw`©ó cwigvY M¨vm nVvr
†KvbwU N‡U? msKzwPZ n‡q 1/3 AvqZb jvf K‡i| ZvcgvÎvi
cwieZ©b KZ? [ = 1.40]
Af¨šÍixY kw³ e„w× cvq, ZvcgvÎv n«vm cvq
620.74C 347.74C
Af¨šÍixY kw³ n«vm cvq, ZvcgvÎv e„w× cvq
220.74C 127C
Af¨šÍixY kw³ I ZvcgvÎv DfqB e„w× cvq
DËi: 220.74C
Af¨šÍixY kw³ I ZvcgvÎv DfqB n«vm cvq –1 –1
e¨vL¨v: T1V 1 = T2V2
DËi: Af¨šÍixY kw³ I ZvcgvÎv DfqB e„w× cvq
[]
V1 –1
T2 = T1
65. iƒ×Zvc cÖwµqvi †ÿ‡Î wb‡¤œi †KvbwU mwVK bq? V2
ZvcgvÎv aªæe _v‡K bv wKš‘ Zv‡ci cwieZ©b nq bv = (127 + 273) (3)1.4–1
A_©vr dQ = 0 T2 = 620.738 K
GwU GKwU axi cÖwµqv T = (620.738 – 273) – 127
= 220.74C
GB cÖwµqvq Zvc eR©b ev †kvlY Kiv nq bv
GB cÖwµqvq M¨v‡mi Pvc I AvqZ‡bi m¤úK©: cÖZ¨veZ©x I AcÖZ¨veZ©x cÖwµqv
PV = aªæeK
70. cÖZ¨veZ©x cÖwµqvi †ÿ‡ÎÑ [w`. †ev. 22]
DËi: GwU GKwU axi cÖwµqv GwU ¯^Ztù~Z© cÖwµqv
66. M¨v‡mi iƒ×Zvcxq ms‡KvP‡bi mgq 350 J KvR GwU axi cÖwµqv
m¤úvw`Z nq D³ e¨e¯’vq AšÍt¯’ kw³i cwieZ©‡bi gvb ZvcMZxq mvg¨ve¯’v eRvq _v‡K bv
KZ n‡e? kw³i AcPq nq
50 J – 150 J DËi: GwU axi cÖwµqv
350 J – 350 J 71. `y B wU e¯‘i g‡a¨ Nl©‡Yi d‡j Drcbœ Zvc †Kvb cÖwµqv
DËi: 350 J AbymiY K‡i? [P. †ev. 21; g. †ev. 21; w`. †ev. 17]
e¨vL¨v: iæ×Zvcxq cÖwµqv, cÖZ ¨veZ© x cÖ wµqv AcÖZ¨veZ©x cÖwµqv
dW = – dU iƒ×Zvcxq cÖwµqv m‡gvò cÖwµqv
– 350 = – dU DËi: AcÖZ¨veZ©x cÖwµqv
dU = 350 J 72. cÖ Z ¨veZ© x cÖwµqv m¤ú‡K© mwVK Z_¨ bq wb‡Pi †KvbwU?
67. evqy‡K iƒ×Zv‡c cÖmvwiZ K‡i Gi AvqZb wZb¸Y Kiv cwieZ©b Lye ax‡i ax‡i msNwUZ nq
GwU g~jZ •¯’wZK
n‡jv| hw` cÖv_wgK Pvc 1 evqygÛjxq Pvc nq Zvn‡j
Aeÿqx djvdj _v‡K
P~ovšÍ Pvc KZ n‡e? ( = 1.4)
•e`y¨wZK †iv‡ai ga¨ w`‡q ax‡i ax‡i we`y¨rcÖevn
2.176 104 Nm–2 31.76 104 Nm–2 cÖZ¨veZ©x cÖwµqv
2.176 103 Nm–2 31.76 105 Nm–2 DËi: •e`y¨wZK †iv‡ai ga¨ w`‡q ax‡i ax‡i we`y¨rcÖevn
DËi: Blank cÖZ¨veZ©x cÖwµqv
nd
30 HSC Physics 2 Paper Chapter-1
73. cÖZ¨vMvgx cÖwµqv †KvbwUÑ [h. †ev. 16] 81. †Kvb M¨v‡mi Rb¨ iƒ×Zvcxq †jL AwaK Lvov?
¯^Ztù~Z© cÖwµqv `ªæZ cÖwµqv [e. †ev. 19]
GKgyLx cÖwµqv ZvcMZxq cÖwµqv wg‡_b Aw·‡Rb
DËi: ZvcMZxq cÖwµqv wnwjqvg Kve©b-WvB-A·vBW
74. AcÖZ¨veZ©x cÖwµqvi †ÿ‡Î mZ¨ bq †KvbwU? DËi: wnwjqvg
AcÖZ¨veZ©x cÖwµqv nVvr Ges ¯^Ztù~Z©fv‡e msNwUZ nq 82. wØ-cvigvYweK M¨v‡mi Rb¨ †gvjvi Av‡cwÿK Zvc؇qi
ZvcMZxq mvg¨e¯’v eRvq _v‡K bv
AbycvZ () KZ? [h. †ev. 19]
cÖwµqvwU Ac‡bq cÖwµqv bv‡gI cwiwPZ
e›`yK n‡Z ¸wj †Quvov GKwU AcÖZ¨veZ© cÖwµqv 1.33 1.40
DËi: cÖwµqvwU Ac‡bq cÖwµqv bv‡gI cwiwPZ 1.67 1.69
DËi: 1.40
M¨v‡mi Av‡cwÿK Zvc 83. †Kv‡bv M¨v‡mi `ywU †gvjvi Av‡cwÿK Zv‡ci AbycvZ
T Q2
e¨vL¨v: K = T –2T DËi: K=
Q1 – Q2
1 2
(273 – 8) 98. Kv‡b©v P‡µi PZz_©av‡c wm‡÷‡gi GbUªwcÑ [P. †ev. 19]
= k~b¨ nq e„w× cvq
(273 + 27) – (273 – 8)
K = 7.571 K‡g hvq AcwiewZ©Z _v‡K
91. GKwU Kv‡b©v BwÄb 427C I 227C ZvcgvÎvi cwim‡i DËi: k~b¨ nq
KvR K‡i| Bwćbi `ÿZv KZ? 99. Kv‡b©vi P‡µi PZz_© av‡c wK N‡U? [Kz. †ev. 17]
[wm. †ev. 23; Kz, †ev. 19; Xv. †ev. 17]
m‡gvò cÖmviY m‡gvò ms‡KvPb
28.5% 40%
46.83% 81%
iƒ×Zvcxq ms‡KvPb iƒ×Zvcxq cÖmviY
DËi: 28.5% DËi: iƒ×Zvcxq ms‡KvPb
100. GKwU Kv‡b©v P‡µ iæ×Zvcxq cÖmviY KqwU? [P. †ev. 17]
e¨vL¨v: = 1 – T2 100%
T
1 1wU 2wU
= 1 –
500 3wU 4wU
700 100% DËi: 1wU
= 28.5% 101. †Kvb m~·K Kv‡R jvwM‡q Zvcxq BwÄb I †iwd«Rv‡iUi
92. Kv‡b©v P‡µi †Kvb av‡c Zvc M„nxZ nq? [g. †ev. 23]
•Zwi Kiv nq? [iv. †ev. 16]
cÖ_g wØZxq
ZvcvMwZwe`¨vi k~b¨Zg m~Î
Z…Zxq PZz_©
ZvcMwZwe`¨vi 1g m~Î
DËi: cÖ_g
ZvcMwZwe`¨vi 2q m~Î
93. GKwU Kv‡b©v Bwćbi cvwbi wngv¼ I ùzUbvsK-Gi g‡a¨
ZvcMwZwe`¨vi 3q m~Î
Kvh©Ki `ÿZv KZ? [g. †ev. 22; e. †ev. 22]
100% 26.8%
DËi: ZvcMwZwe`¨vi 2q m~Î
20.6% 0%
102. GKwU †iwd«Rv‡iU‡i Kvh©K…Z mnM K = 2.6; GwU VvÐv
DËi: 26.8%
cÖ‡Kvô n‡Z cÖwZ P‡µ 500 J Zvc AcmviY K‡i, cÖwZ
e¨vL¨v: = 1 – T2 100%
T
1 P‡µ mieivnK…Z Kvn KZ n‡e? [Xv. †ev. 16]
= 1 –
273 1250 J 502.5 J
100%
373 500 J 200 J
= 26.8% DËi: 200 J
nd
32 HSC Physics 2Paper Chapter-1
103. Kv‡b©v P‡µi 1g av‡ci †ÿ‡Î wb‡Pi †KvbwU mwVK? 112. wb¤œ ùzUbv‡¼i †Kv‡bv Zij cwicvk¦© n‡Z jxbZvc ev
[P. †ev. 15] myßZvc MÖnY K‡i cwicvk¦©‡K kxZj K‡i Zv‡K Kx e‡j?
ZvcgvÎv e„w× cvq ZvcgvÎv w¯’i _v‡K wngvqb wngvqK
AšÍt¯’ kw³ n«vm cvq Zvc ewR©Z nq Zvcxq BwÄb †iwd«Rv‡iUi
DËi: ZvcgvÎv w¯’i _v‡K
DËi: wngvqb
104. hw` †Kv‡bv Zvc BwÄb †_‡K Zvc ewR©Z bv nq, Z‡e
113. †Kvb kxZj e¯‘ †_‡K Zvc Dò e¯‘‡Z mÂvwjZ Ki‡Z
Bwćbi ÿgZv KZ n‡e? [iv. †ev. 15]
n‡j hvwš¿K kw³ e¨q Ki‡Z nq| GB e¨e¯’v‡K Kx
0% 1%
e‡j?
50% 100%
DËi: 100% Zvc BwÄb Kv‡b©v BwÄb
105. GKwU Kv‡b©v-P‡µ †gvU GbUªwci cwieZ©b n‡jvÑ Zvc cv¤ú K‡¤úªmi
Q1 – Q2 DËi: Zvc cv¤ú
Zero 114. †iwd«Rv‡iUi Kvh©K…Z mnM K Gi gvb KZ?
T1 –T2
less than zero greater than zero 2 †_‡K 6 3 †_‡K 9
DËi: Zero 5 †_‡K 8 0.5 †_‡K 1.5
106. M„nxZ Zvc Q1 Ges ewR©Z Zvc Q2 n‡j Zvcxq Bwćbi DËi: 2 †_‡K 6
`ÿZv KZ? 115. GKwU †iwd«Rv‡iU‡i Kvh©K…Z mnM K = 4.6; GwU VvÐv
Q1 cÖ‡Kvô n‡Z cÖwZ P‡µ 250 J Zvc AcmviY K‡i, cÖwZ
Q2
P‡µ †iwd«Rv‡iUi Pvjbv Rb¨ Kx cwigvY KvR mieivn
Q2
1 1+
Q
Ki‡Z n‡e?
1
Q2 46 J 54 J
DËi: 1– 56 J 75 J
Q1
107. GKwU Zvc Bwćbi Kvh©Ki e¯‘ 400K ZvcgvÎvi Drm DËi: 54 J
n‡Z 840J Zvc MÖnY K‡i kxZj Avav‡i 420J Zvc
eR©b K‡i| kxZj Avav‡ii ZvcgvÎvÑ GbUªwc
200K 420K 116. 0C ZvcgvÎvq 40g eid‡K 0C ZvcgvÎvq 40g
300K 100K ZvcgvÎvq 40g cvwb‡Z cwienY Ki‡Z G›Uªwci
DËi: 200K cwieZ©b KZ? [iv. †ev. 23]
108. GKwU Kv‡b©v BwÄb 500K ZvcgvÎvi Zvc Drm †_‡K 49.2 JK–1 49.2 102 JK–1
300 cal Zvc MÖnY K‡i Ges Zvc MÖvn‡K 225 cal 49.2 103 JK–1 49.2 103 KJK–1
Zvc eR©b K‡i| Zvc MÖvn‡Ki ZvcgvÎv KZ? DËi: 49.2 JK –1
666.67K 135K ml
300K 375K e¨vL¨v: dS = T f
DËi: 375K 0.04 3.36 105
109. GKwU Kv‡b©v BwÄb 400K ZvcgvÎvi Zvc Drm †_‡K =
273
200 cal Zvc MÖnY K‡i Ges Zvc MÖvn‡K 150 cal dS = 49.2 JK–1
Zvc eR©b K‡i| Zvc MÖvn‡Ki ZvcgvÎv KZ? 117. G›Uªwc ej‡Z eySvqÑ [Kz. †ev. 23]
400K 200K wm‡÷‡gi wek„•Ljv cwigvc
150K 300K iƒcvšÍ‡ii Rb¨ kw³i cÖvßZv
DËi: 300K kw³i iƒcvšÍ‡ii mÿgZv
110. BwÄb A KvR Ki‡Q 500K I 450K ZvcgvÎvq Ges
kw³ iƒcvšÍ‡ii m¤¢ve¨Zv
BwÄb B KvR Ki‡Q 450K I 400K ZvcgvÎvq| BwÄb DËi: wm‡÷‡gi wek„•Ljv cwigvc
B Gi `ÿZv BwÄb A †_‡K KZUzKz †ewk?
118. GbUªwci SI GKK wb‡Pi †KvbwU? [wm. †ev. 23, 22, 19;
0% 1.0% w`. †ev. 23, 21, 15; P. †ev. 22; Xv. †ev. 16; iv. †ev. 15]
1.5% 2.0% JK–1 NK–1
DËi: 1.0% Jkg K–1 –1
JK–1mol–1
111. †iwd«Rv‡i›U m¤úwK©Z mwVK Z_¨ bq †KvbwU? DËi: JK –1
G‡`i ùzUbv¼ Kÿ ZvcgvÎv †_‡K A‡bK †ewk 119. iæ×Zvcxq cÖwµqvq †Kvb †f․Z ivwk w¯’i _v‡K?
Giv M¨vmxq Ae¯’vq _v‡K [Xv. †ev. 22; g. †ev. 22; wm. †ev. 17; h. †ev. 17]
Pvc cÖ‡qv‡M Zi‡j cwiYZ nq ZvcgvÎv Pvc
†d«qb GKwU †iwd«Rv‡i›U GbUªwc Af¨šÍixY kw³
DËi: G‡`i ùzUbv¼ Kÿ ZvcgvÎv †_‡K A‡bK †ewk DËi: GbUªwc
ZvcMwZwe`¨v Final Revision Batch 33
120. cÖZ¨vMvgx cÖwµqvq G›UªwcÑ [e. †ev. 22] 129. GbUªwc cwigvc K‡i wm‡÷‡giÑ [w`. †ev. 16]
w¯’i _v‡K e„w× cvq ZvcgvÎv AšÍt¯’¨kw³
n«vm cvq k~b¨ nq k„•Ljv wek„•Ljv
DËi: e„w× cvq DËi: wek„•Ljv
121. m f‡ii Ges s Av‡cwÿK Zv‡ci †Kv‡bv e¯‘i D”P 130. 10C ZvcgvÎvi 5 kg cvwb‡K 100C ZvcgvÎvi
ZvcgvÎv T1 †_‡K wb¤œ ZvcgvÎvi T2 †Z cwiewZ©Z cvwb‡Z DbœxZ Ki‡Z GbUªwci cwieZ©bÑ [iv. †ev. 16]
n‡j Gi GbUªwci cwieZ©b n‡e †KvbwU? [iv. †ev. 22]
5978.76 JK–1 6978 JK–1
ms (ln T2 – ln T1) ms (ln T1 – ln T2)
5798.76 JK–1 6000 JK–1
ms ln (T2 – T1) ms ln (T1 – T2)
DËi: 5798.76 JK–1
DËi: ms (ln T2 – ln T1)
T
122. wm‡÷‡gi †Kvb Ae¯’vq GbUªwc Kg cvIqv hvq? e¨vL¨v: dS = ms ln T2
1
[iv. †ev. 21; w`. †ev. 17; Xv. †ev. 15]
= 5 4200 ln
Zij cøvRgv 273 + 100
273 + 10
M¨vmxq KwVb –1
dS = 5798.76 JK
DËi: KwVb
123. 100C ZvcgvÎvq 4kg cvwb‡K 100C ZvcgvÎvq
wewea
ev‡®ú cwiYZ Kiv n‡jv| GbUªwc e„w× KZ? [iv. †ev. 21]
2.24 × 104 JK–1 22.4 × 104 JK–1 131. wb‡Pi †Kvb¸‡jv ZvcMZxq PjK wb‡`©k K‡i? [Kz. †ev. 16]
24.32 × 104 JK–1 25.42 × 104 JK–1 P, V, T, M P, T, F, U
DËi: Blank P, V, T, S P, V, T, Q
ml DËi: Blank
e¨vL¨v: dS = T v
[we.`ª.: mwVK DËi †bB]
4 2.26 106
= 132. 500 m DuPz Rj cÖcv‡Zi Zj‡`k I kxl©‡`‡ki cvwbi
373
ZvcgvÎvi cv_©K¨ KZ n‡e? (g = 10 ms–2, cvwbi
dS = 24235.325 JK–1
124. ZvcMwZwe`¨vi wØZxq m~‡Îi MvwYwZK iƒcÑ [h. †ev. 21] Av‡cwÿK Zvc = 4200 Jkg–1K–1) [Kz. †ev. 16]
dS 0.50C 1.19C
dQ = TdS dQ =
T 5.0C 50C
W = JH dQ = dU + dW DËi: 1.19C
DËi: dQ = TdS e¨vL¨v: ms = mgh
125. gnvwe‡k¦ GbUªwci cwigvYÑ [w`. †ev. 19]
gh 10 500
k~b¨ aªæeK = =
s 4200
evo‡Q Kg‡Q = 1.19C
DËi: evo‡Q
126. ¯^Ztù~Z© cwieZ©‡bÑ [wm. †ev. 17] eûc`x mgvßm~PK cÖ‡kœvËi
GbUªwc I wek„•Ljv n«vm cvq
GbUªwc I k„•Ljv e„w× cvq 133. GbUªwc m¤ú‡K© ejv hvqÑ [e. †ev. 23]
GbUªwc I k„•Ljv n«vm cvq (i) cig gvb wbY© q Kiv hvq bv
GbUªwc I wek„•Ljv e„w× cvq (ii) cwieZ©b abvZ¥K n‡Z cv‡i
DËi: GbUªwc I wek„•Ljv e„w× cvq (iii) cwieZ©b FYvZ¥K n‡Z cv‡i
127. mycviKÛvKUi mvaviY KÛvKU‡ii †P‡q †ewk myk„•Lj| wb‡Pi †KvbwU mwVK?
hw` mycviKÛvKUi Ges mvaviY KÛvKUi Ae¯’vq i I ii i I iii
GbUªwc h_vµ‡g Ss Ges Sn nq Z‡e wb‡¤œi †KvbwU ii I iii i, ii I iii
mwVK? DËi: i, ii I iii
Ss = Sn Ss > Sn 134. w¯’i Pv‡c GKwU M¨v‡m Zvc cÖ‡qvM Kivq GiÑ [w`. †ev. 23]
Ss < Sn Ss Sn (i) ZvcgvÎv †e‡o hv‡e
DËi: Ss < Sn
(ii) ewnt¯’ KvR m¤úbœ n‡e
128. GbUªwc n‡jvÑ [h. †ev. 16]
(iii) AvqZb †e‡o hv‡e
k„•Ljvi cwigvY
wb‡Pi †KvbwU mwVK?
kw³i iƒcvšÍi ÿgZvi cwigvc
i I ii i I iii
iƒcvšÍ‡ii Rb¨ kw³ cvIqvi cwigvc
Zvcxq g„Zz¨i m¤¢vebvi cwigvc ii I iii i, ii I iii
DËi: Zvcxq g„Zz¨i m¤¢vebvi cwigvc DËi: i I iii
nd
34 HSC Physics 2 Paper Chapter-1
135. G›Uªwci †ejvq cÖ‡hvR¨Ñ [Xv. †ev. 23] 141. ZvcMZxq cÖwµqvi †ÿ‡Î cÖ‡hvR¨Ñ [e. †ev. 22]
(i) Gi †Kv‡bv cig gvb †bB (i) m‡gvò cÖwµqvq, dU = 0
(ii) cÖZ¨veZ©x cÖwµqvq G›Uªwci †Kv‡bv cwieZ©b nq bv (ii) iæ×Zvcxq cÖwµqvq, dW = – dU
(iii) AcÖZ¨veZ©x cÖwµqvq G›Uªwc w¯’i _v‡K (iii) mgAvqZb cÖwµqvq, dQ = dU
wb‡Pi †KvbwU mwVK? wb‡Pi †KvbwU mwVK?
i I ii i I iii i I ii i I iii
ii I iii i, ii I iii
ii I iii i, ii I iii
DËi: i, ii I iii
DËi: i I ii
142. ZvcMwZwe`¨vi cÖ_g I wØZxq m~‡Îi mgwš^Z iƒc n‡jvÑ
136. m‡gvò cÖmvi‡Yi †ÿ‡ÎÑ [iv. †ev. 23] [e. †ev. 22]
(i) Af¨šÍixY kw³ w¯’i _v‡K (i) dW = TdS – dU
(ii) Bnv `ªæZ cÖwµqv (ii) dU = TdS – PdV
(iii) cv‡Îi Dcv`vb mycwievnx (iii) dW = TdS – CVdT
wb‡Pi †KvbwU mwVK?
wb‡Pi †KvbwU mwVK?
i I ii i I iii
i I ii ii I iii
ii I iii i, ii I iii
i I iii i, ii I iii
DËi: i, ii I iii
DËi: i I iii 143. iæ× Zvcxq cÖwµqvqÑ [e. †ev. 22]
137. cwi‡e‡ki mv‡_ kw³ wewbgq Ki‡Z cv‡iÑ [h. †ev. 23] (i) Entropy AcwiewZ©Z _v‡K
(i) wew”Qbœ wm‡÷g (ii) Zv‡ci Av`vb cÖ`vb N‡U bv
(ii) Db¥y³ wm‡÷g (iii) ZvcgvÎvi cwieZ©b N‡U bv
(iii) e× wm‡÷g wb‡Pi †KvbwU mwVK?
wb‡Pi †KvbwU mwVK? i I ii i I iii
i I ii i I iii ii I iii i, ii I iii
ii I iii i, ii I iii DËi: i I ii
DËi: ii I iii 144. Kv‡b©vP‡µi wØZxq av‡cÑ [w`. †ev. 22]
138. AcÖZ¨veZ©x cÖwµqvÑ [Xv. †ev. 22] (i) Zvc n«vm cvq
(i) GKwU `ªæZ cÖwµqv (ii) ZvcgvÎv n«vm cvq
(iii) AvqZb e„w× cvq
(ii) GKwU ¯^Ztù~Z© cÖwµqv
wb‡Pi †KvbwU mwVK?
(iii) wm‡÷g ZvcMZxq mvg¨ve¯’v eRvq iv‡L bv
i I ii i I iii
wb‡Pi †KvbwU mwVK?
ii I iii i, ii I iii
i I ii i I iii
DËi: ii I iii
ii I iii i, ii I iii 145. AvqZb AcwiewZ©Z †i‡L †Kv‡bv M¨v‡m hw` wKQz Zvc
DËi: i, ii I iii cÖ‡qvM Kiv nq, Zvn‡j H M¨v‡mi †ÿ‡Î Ñ [iv. †ev. 22]
139. m‡gvò cÖwµqvi †ÿ‡Î cÖ‡hvR¨ njÑ [P. †ev. 22] (i) Pvc e„w× cvq
(i) G cÖwµqvi ZvcgvÎv w¯’i _v‡K (ii) MwZkw³ e„w× cvq
(ii) G cÖwµqvi dQ = –dW (iii) ZvcgvÎv e„w× cvq
(iii) G cÖwµqvi wm‡÷g I cwi‡e‡ki g‡a¨ Zv‡ci wb‡Pi †KvbwU mwVK?
Av`vb-cÖ`vb nq| i I ii i I iii
wb‡Pi †KvbwU mwVK? ii I iii i, ii I iii
i I ii i I iii DËi: i, ii I iii
ii I iii i, ii I iii 146. ax‡i ax‡i Pvc e„w× Kivq †Kv‡bv wm‡÷‡gi Pvc 2 Pa
DËi: i I iii n‡Z 4 Pa n‡jv| G‡ÿ‡Î mgAvqZb cÖwµqvq
140. iæ×Zvcxq cwieZ©bÑ [wm. †ev. 22]
wm‡÷‡gi Af¨šÍixY kw³ 200 J e„w× †c‡jv|
wm‡÷‡giÑ [Kz. †ev. 21]
(i) `ªæZ msNwUZ nq
(i) mieivnK…Z Zvc 200 J
(ii) Acwievnx cv‡Î msNwUZ nq
(ii) K…ZKvR k~b¨
(iii) PV–1 = aªæeK (iii) ZvcgvÎv e„w× cv‡e
wb‡Pi †KvbwU mwVK? wb‡Pi †KvbwU mwVK?
i I ii ii I iii i I ii i I iii
i I iii i, ii I iii ii I iii i, ii I iii
DËi: i I ii DËi: i, ii I iii
ZvcMwZwe`¨v Final Revision Batch 35
147. iæ×Zvcxq ms‡KvP‡bi †ÿ‡ÎÑ [h. †ev. 21] 152. iæ× Zvcxq cwieZ©‡bi †ÿ‡ÎÑ [w`. †ev. 21]
(i) Zvc †kvwlZ (i) nVvr msNwUZ nq
(ii) wm‡÷‡gi Dci Kvh© m¤úvw`Z nq (ii) ZvcgvÎv w¯’i _v‡K
(iii) wm‡÷‡gi ZvcgvÎv e„w× cvq (iii) GbUªwci cwieZ©b k~b¨
wb‡Pi †KvbwU mwVK? wb‡Pi †KvbwU mwVK?
i I ii i I iii i I ii i I iii
ii I iii i, ii I iii
ii I iii i, ii I iii
DËi: ii I iii
DËi: i I iii
148. wb‡Pi wee„wZ¸‡jv jÿ¨ Ki [P. †ev. 21; g. †ev. 21]
153. cwi‡ek I wm‡÷‡gi g‡a¨ kw³i Av`vb cÖ`vb nqÑ
(i) †h ZvcgvÎvq †Kv‡bv c`v_© KwVb, Zij I
[Kz. †ev. 19; wm. †ev. 19]
evqexqiƒ‡c mvg¨ve¯’vq _v‡K Zv‡K H c`v‡_©i (i) Db¥y³ wm‡÷‡g
•Îa we›`y e‡j
(ii) eÜ wm‡÷‡g
(ii) †h cwieZ©‡bi Kvi‡Y ZvcMZxq ¯’vbvs‡Ki gv‡bi
(iii) wew”Qbœ wm‡÷‡g
cwieZ©b nq †mB cwieZ©b‡K ZvcMZxq cÖwµqv e‡j
(iii) †Kv‡bv wm‡÷‡gi kw³i iƒcvšÍ‡ii AÿgZv ev
wb‡Pi †KvbwU mwVK?
Am¤¢ve¨Zv‡K ev iƒcvšÍ‡ii Rb¨ kw³ i I ii i I iii
AcÖvc¨Zv‡K GbUªwc e‡j ii I iii i, ii I iii
wb‡Pi †KvbwU mwVK? DËi: i I ii
i I ii i I iii 154. ZvcMZxq PjK n‡”QÑ [P. †ev. 17]
ii I iii i, ii I iii (i) Pvc
DËi: i, ii I iii (ii) Zvc
149. iæ×Zvcxq cwieZ©‡bi †ÿ‡ÎÑ [e. †ev. 21] (iii) AvqZb
(i) PV = aªæeK wb‡Pi †KvbwU mwVK?
(ii) TV1 – = aªæeK i I ii i I iii
(iii) TP1 – = aªæeK ii I iii i, ii I iii
wb‡Pi †KvbwU mwVK? DËi: i I iii
i I ii i I iii 155. ZvcMZxq PjK njÑ [w`. †ev. 17]
ii I iii i, ii I iii
(i) ZvcgvÎv
DËi: i I iii
(ii) AvqZb
150. Kv‡bv© P‡µi wØZxq av‡c Kvh©wbe©vnK e¯‘iÑ [wm. †ev. 21]
(iii) Af¨šÍixY kw³
(i) Zv‡ci †kvlY N‡U
(ii) Pvc n«vm cvq wb‡Pi †KvbwU mwVK?
(iii) ZvcgvÎv n«vm cvq i I ii i I iii
wb‡Pi †KvbwU mwVK? ii I iii i, ii I iii
i I ii i I iii DËi: i I ii
ii I iii i, ii I iii 156. iæ×Zvcxq cwieZ©‡bÑ [wm. †ev. 16]
DËi: ii I iii (i) ZvcgvÎvi cwieZ©b N‡U bv
151. m‡gvò cÖwµqvi †ÿ‡ÎÑ [w`. †ev. 21] (ii) cvÎ Zvc Kzcwievnx nIqv cÖ‡qvRb
(iii) Av`k© M¨v‡mi mgxKiY n‡jv, P1V1 = P2V2
(i) P wb‡Pi †KvbwU mwVK?
i I ii i I iii
V
ii I iii i, ii I iii
1 DËi: i I ii
(ii) P
157. hw` evqyc~Y© GKwU †ejyb dz‡U hvq, cÖwµqvwU‡ZÑ
V [wm. †ev. 16]
(i) KvR m¤úbœ n‡q‡Q
PV
(iii) (ii) Af¨šÍixY kw³ I ZvcgvÎv K‡g †M‡Q
(iii) GbUªwci cwieZ©b n‡q‡Q
V
wb‡Pi †KvbwU mwVK? wb‡Pi †KvbwU mwVK?
i I ii i I iii i I ii i I iii
ii I iii i, ii I iii ii I iii i, ii I iii
DËi: ii I iii DËi: i I ii
nd
36 HSC Physics 2 Paper Chapter-1
158. GKwU Zvc BwÄb m¤ú‡K© aviYv cvBÑ [Xv. †ev. 16] wb‡Pi DÏxcKwUi Av‡jv‡K 164 I 165 bs cÖ‡kœi
(i) Gi `ÿZv Drm I Zvc MÖvn‡Ki ZvcgvÎvi Dci DËi `vI:
wbf©i K‡i 1
(ii) Gi `ÿZv KL‡bv 100% n‡Z cv‡i bv GKwU Kv‡b©v BwÄb M„nxZ Zv‡ci 4 Ask Kv‡R cwiYZ
(iii) GwU kxZj Drm †_‡K Zvc Dò cwi‡e‡k K‡i| Gi Zv‡ci MÖvn‡K ZvcgvÎv 30 K Kgv‡j `ÿZv
¯’vbvšÍi K‡i wظY nq|
wb‡Pi †KvbwU mwVK? 164. Bwćbi `ÿZv KZ? [Xv. †ev. 23]
i i I ii
80% 75%
i I iii ii I iii
33% 25%
DËi: i I ii
159. GKwU c`v‡_©i ZvcwgwZK ag©Ñ [w`. †ev. 15]
DËi: 25%
(i) Pv‡ci mgvbycvwZK W
e¨vL¨v: = Q 100%
(ii) AvqZ‡bi mgvbycvwZK 1
1
(iii) ZvcgvÎvi mgvbycvwZK Q
4 1
wb‡Pi †KvbwU mwVK? = 100%
Q1
i ii
iii i I iii = 25%
DËi: iii 165. Zvc Dr‡mi ZvcgvÎv KZ? [Xv. †ev. 23]
160. Zvcxq PjK n‡jvÑ [Xv. †ev. 15] 60 K 90 K
(i) Pvc 120 K 150 K
(ii) AvqZb DËi: 120 K
(iii) AšÍt¯’ kw³ e¨vL¨v: W = Q1 – Q2
wb‡Pi †KvbwU mwVK? 1
Q1 = Q 1 – Q2
i I ii i I iii 4
ii I iii i, ii I iii 3
Q1 = Q 2
DËi: i I ii 4
161. iæ×Zvcxq cwieZ©‡bi †ÿ‡Î †KvbwU mwVK? [Kz. †ev. 15] Q2 3
=
(i) PV = aªæeK Q1 4
(ii) TV = aªæeK T2 3
=
1– T1 4
(iii) TP = aªæeK Avevi,
wb‡Pi †KvbwU mwVK? T2 – 30
2 = 1 – 100%
i I ii ii I iii T1
i I iii i, ii I iii
2 25% = 1 – + 100%
T2 30
DËi: i I iii T1 T1
Awfbœ Z_¨wfwËK cÖ‡kœvËi 3 30
1– + = 0.5
4 T1
DÏxcKwUi Av‡jv‡K 162 I 163 bs cÖ‡kœi DËi `vI: T1 = 120 K
GKwU wmwjÛv‡i wKQz M¨vm Ave× Av‡Q| M¨v‡mi Pvc
400 Pa w¯’i †i‡L wm‡÷‡g 800 J Zvckw³ cÖ`vb wb‡Pi DÏxcKwUi co Ges 166 I 167 bs cÖ‡kœi
Kivq K…ZKvR 1200 J cvIqv hvq| DËi `vI:
162. M¨v‡mi AšÍt¯’ kw³i cwieZ©b KZ n‡e? [wm. †ev. 23] GKwU cÖZ¨veZ©x Kv‡b©v BwÄb hLb 27C ZvcgvÎvq
–800 J –400 J ZvcMÖvn‡K _v‡K ZLb Gi Kg©-`ÿZv nq 50%|
–100 J 0 J [g. †ev. 22]
DËi: –400 J 166. BwÄbwUi Dr‡mi ZvcgvÎv KZ?
e¨vL¨v: dQ = dU + dW
500 K 550 K
800 = dU + 1200
600 K 650 K
dU = – 400 J
163. wm‡÷‡g Zvckw³ ax‡i ax‡i mieivn Kiv n‡j wm‡÷g DËi: 600 K
KZ…©K m¤úvw`Z KvR KZ n‡e? [wm. †ev. 23] e¨vL¨v: =1 – T2 100%
1200 J 800 J T1
50% = 1 –
400 J 0 J 273 + 27
100%
DËi: 800 J T1
e¨vL¨v: m‡gv cÖwµqvq, U = 0 300
= 0.5
T1
dQ = dW
dW = 800 J T1 = 600 K
ZvcMwZwe`¨v Final Revision Batch 37
167. BwÄbwUi `ÿZv 60% Ki‡Z n‡jÑ wb‡Pi DÏxc‡Ki Av‡jv‡K 172 I 173 bs cÖ‡kœi
(i) Dr‡mi ZvcgvÎv 750 K Ki‡Z n‡e DËi `vI:
(ii) ZvcMÖvn‡Ki ZvcgvÎv 150 K Kgv‡Z n‡e GKwU Kv‡b©v BwÄb 327C ZvcgvÎvq 800 J Zvc MÖnY
(iii) Dr‡mi ZvcgvÎv 150 K evov‡Z n‡e K‡i Ges 127C ZvcgvÎvi ZvcMÖvn‡K Zvc eR©b
wb‡Pi †KvbwU mwVK? K‡i| cieZ©x‡Z Zvc MÖvn‡Ki ZvcgvÎv 227C G
i I ii i I iii DbœxZ Kiv nq| [iv. †ev. 21]
ii I iii i, ii I iii 172. BwÄb KZ…©K m¤úvw`Z KvR n‡eÑ
DËi: i I iii 250 J 267 J
500 J 800 J
e¨vL¨v: = 1 – T2 100%
T
1
DËi: 267 J
Q T
60% = 1 –
300 e¨vL¨v: Q2 = T2
100%
T1 1 1
Q2 400
T1 = 750 K =
800 600
Avevi,
Q2 = 533.3 J
T2 W = Q1 – Q2
= 1– 100%
T1 = (800 – 533.3)
T2 100%
60% = 1 –
W = 267 J
600 173. cieZ©x Ae¯’vq `ÿZv c~‡e©iÑ [iv. †ev. 21]
T2 = 240 K A‡a©K mgvb
wظY wZb¸Y
DÏxcKwU co Ges 168 I 169 bs cÖ‡kœi DËi `vI: DËi: A‡a©K
†Kv‡bv Zvc Bwćbi ZvcMÖvn‡Ki ZvcgvÎv 360K Ges
1 – T2
`ÿZv 40%| [w`. †ev. 22] T1
e¨vL¨v: =
168. Zvc Dr‡mi ZvcgvÎv njÑ
1–
T2
400K 600K T1
720K 900K T1 – T2
=
DËi: 600K T1 – T2
169. Bwćbi `ÿZv wظY Ki‡Z n‡j Dr‡mi ZvcgvÎv e„w× 327 – 227
=
327 – 127
Ki‡Z n‡eÑ
1
450K 600K =
2
900K 1200K 1
DËi: 1200K =
2
wb‡Pi Aby‡”Q`wU co Ges 170 I 171 bs cÖ‡kœi wb‡Pi Aby‡”Q`wU co Ges 174 I 175 bs cÖ‡kœi
DËi `vI: DËi `vI:
GKwU Kv‡b©v BwÄb hLb 72C ZvcgvÎvi ZvcMÖvn‡K GKwU Kv‡b©v Bwćbi Kvh©wbe©vnK e¯‘ 400K ZvcgvÎvi
_v‡K ZLb Gi Kg©`ÿZv 40%| [Xv. †ev. 21] Zvc Drm n‡Z 840 J Zvc MÖnY K‡i ZvcMÖvn‡K 630
170. DÏxcK Abymv‡i Bwćbi Dr‡mi ZvcgvÎv KZ? J Zvc eR©b K‡i| [e. †ev. 21]
138 K 207 K 174. Zvc MÖvn‡Ki ZvcgvÎv KZ?
575 K 863 K 210 K 300 K
DËi: 575 K 400 K 440 K
171. MÖvn‡Ki ZvcgvÎv w¯’i †i‡L BwÄbwU‡K 60% `ÿ DËi: 300 K
Ki‡Z n‡jÑ Q T
e¨vL¨v: Q2 = T2
(i) Dr‡mi cwiewZ©Z ZvcgvÎv n‡e 862.5 K 1 1
630 T2
(ii) Dr‡mi ZvcgvÎv e„w× cv‡e 287.5 K =
840 400
(iii) Dr‡mi ZvcgvÎv n«vm 287.5 K
T2 = 300 K
wb‡Pi †KvbwU mwVK? 175. BwÄbwUi `ÿZv KZ?
i iii 25% 30%
i I ii i I iii 40% 60%
DËi: i I ii DËi: 25%
nd
38 HSC Physics 2 Paper Chapter-1
DÏxcKwU jÿ Ki Ges 176 I 177 bs cÖ‡kœi DËi `vI: 181. ZvcgvÎv cwieZ©b Kivi †ÿ‡ÎÑ
(i) Dr‡mi ZvcgvÎv e„w× Kivq Bwćbi `ÿZv ev‡o
dQ
–2
5
P = 3.5×10 Nm (ii) MÖvn‡Ki ZvcgvÎv n«vm Kivq Bwćbi `ÿZv ev‡o
(iii) Dfq †ÿ‡Î BwÄb Øviv K…Z KvR mgvb bq
X Y wb‡Pi †KvbwU mwVK?
wP‡Î wmwjÛv‡i iwÿZ 1 mole M¨v‡m dQ Zvc mieivn i I ii i I iii
Kivq wc÷b X Ae¯’vb n‡Z Y Ae¯’v‡b Av‡m| G‡Z ii I iii i, ii I iii
AšÍ¯’tkw³ 207J n«vm cvq| wc÷‡bi cÖ¯’‡”Q‡`i DËi: i, ii I iii
†ÿÎdj = 0.1 m2
X I Y Gi `~iZ¡ = 5 × 10–2 m. [wm. †ev. 21] DÏxc‡K P ~ V †jLwP‡Îi Av‡jv‡K 182 I 183 bs
176. m¤úbœ K…ZKvR KZ? wP‡Îi DËi `vI: [iv. †ev. ; h. †ev. 17]
1.75 × 103 J 1.75 × 105 J Q
7. × 105J 7 × 107 J I iæ×Zvcxq †jL
DËi: 1.75 × 103 J P
m‡gvò †jL
e¨vL¨v: dW = PdV
A
= 3.5 105 0.1 5 10–2 O
V
dW = 1750 J
177. wmwjÛv‡i mieivnK…Z Zvckw³ dQ Gi cwigvY njÑ 182. AQ †jLwP‡Îi †ÿ‡Î wb‡Pi †Kvb m¤úK©wU mwVK?
7.002 × 105 J 6.998 × 105 J PV = aªæeK PV = aªæeK
1.957 × 103 J 1.543 × 103 J PV–1 = aªæeK PV1–/ = aªæeK
DËi: 1.543 × 103 J
DËi: PV = aªæeK
e¨vL¨v: dQ = dU + dW
183. DÏxc‡Ki M¨vmwU nvB‡Wªv‡Rb n‡j AQ †jL Al †jL
= – 207 + 1750
A‡cÿv KZ¸Y Lvov n‡e?
dQ = 1.543 103 J
1.1 1.33
wb‡Pi Aby‡”Q`wU co Ges 178 I 179 bs cÖ‡kœi 1.4 1.66
DËi `vI: DËi: 1.4
GKwU Kv‡b©v BwÄb 327C I 27C ZvcgvÎv cwim‡i
KvR K‡i| BwÄbwU Drm n‡Z Q cwigvY Zvc MÖnY wb‡Pi DÏxc‡Ki Av‡jv‡K wb‡Pi 184 I 185 bs cÖ‡kœi
K‡i wms‡K 3000 J Zvc eR©b K‡i| [w`. †ev. 21] DËi `vI:
178. Q Gi gvb KZ? V+dV
V,Q V,Q+dQ Q+dQ
1000 J 1500 J dW = 2J
2000 J 6000 J 20C 80C 80C
A B C
DËi: 6000 J
[h. †ev. 16]
179. Bwćbi `ÿZv KZ?
184. dQ = 5J n‡j A †_‡K B-†Z AšÍt¯’ kw³i cwieZ©b
100% 75%
KZ?
50% 25%
–3 J 0J
DËi: 50%
3J 7 J
wb‡Pi DÏxcKwU co Ges 180 I 181 bs cÖ‡kœi DËi: 3J
DËi `vI: e¨vL¨v: dQ = dU + dW
GKwU Zvcxq BwÄb 27C I 227C ZvcgvÎvi g‡a¨ 5 = dU + 2
Kvh©iZ Av‡Q| cieZ©x‡Z Dr‡mi I MÖvn‡Ki ZvcgvÎv dU = 3 J
20C h_vµ‡g e„w× I n«vm Kiv n‡jv| [w`. †ev. 19] 185. hw` wZb Ae¯’vq wm‡÷gwUi AšÍt¯’kw³ h_vµ‡g UA,
180. ZvcgvÎv cwieZ©‡bi c~‡e© Bwćbi `ÿZv KZ? UB, UC nq Z‡e †KvbwU mwVK?
33.33% 40% UA = U B = U C UC = U B > U A
46% 66.67% UB < U C = U A U A = U B < UC
DËi: 40% DËi: UC = U B > U A
ZvcMwZwe`¨v Final Revision Batch 39
wb‡Pi Pvc ebvg AvqZb †jLwP‡Îi Av‡jv‡K 186 I
†miv K‡jRmg~n †_‡K evQvBK…Z MCQ
187 bs cÖ‡kœi DËi `vI:
Y 1. †gvjvi Zvc aviY ÿgZvi mgxKiY:
A
dQ dQ
C= C=
mdT dT
dQ dQ
C=M C=M
B mdT dT
Pvc, P
dQ
C
X DËi: C=
mdT
O AvqZb, V 2. GKwU Av`k© M¨v‡mi †ÿ‡Î Cp/Cv = n‡j, wb‡Pi †Kvb
[wm. †ev. 15]
m¤úK©wU GK †gv‡ji Rb¨ mwVK?
186. AB †jLwP‡Îi †ÿ‡Î †Kvb m¤úK©wU mwVK?
Cv = ( – 1)R Cv = R/( – 1)
PV – 1 = aªæeK PV = aªæeK
Cv = R/(1 – ) Cv = R/(1 + R)
PV – 1 = aªæeK PV = aªæeK
DËi: Cv = R/( – 1)
DËi: PV = aªæeK
3. GKwU Kv‡b©v Bwćbi Rb¨ hw` Zvc Dr‡mi ZvcgvÎv
187. AC †jLwP‡Îi †ÿ‡Î †Kvb m¤úK©wU mwVK?
AcwiewZ©Z †i‡L Zvc MÖvn‡Ki ZvcgvÎv ax‡i ax‡i
PV = aªæeK PV – 1 = aªæeK
+1
Kgv‡bv nq, Zvn‡j Bwćbi Kg©`ÿZv †Kgbfv‡e
PV = aªæeK PV = aªæeK cwiewZ©Z n‡e?
DËi: PV = aªæeK e„w× cvq AcwiewZ©Z _v‡K
wb‡Pi DÏxc‡Ki Av‡jv‡K 188 I 189 bs cÖ‡kœi Kg‡Z _vK‡e ejv m¤¢e bq
DËi `vI: DËi: e„ w× cvq
GKwU Zvc BwÄb 327C ZvcgvÎvq 500J Zvc MÖnY 4. 0C ZvcgvÎvq cvwb‡K ev®úxf~Z Kiv †h‡Z cv‡i, hw`
K‡i Ges 27C ZvcgvÎvq Zvc eR©b K‡i| wKQz mgq cvwicvwk¦©K Pvc nqÑ
ci ZvcMÖvn‡Ki ZvcgvÎv 177C-G DbœxZ nq| 760 mm of Hg 76 mm of Hg
[Xv. †ev. 15] 40 mm of Hg 4 mm of Hg
188. BwÄb KZ…©K m¤úvw`Z Kv‡Ri cwigvY KZ? DËi: 76 mm of Hg
1500 J 1000 J 5. †Kvb Zvc-hyM‡ji Rb¨ wb‡Pi gšÍe¨¸‡jvi g‡a¨ †KvbwU
500 J 250 J mwVK bq?
DËi: 250 J †Kvb GKwU wbw`©ó Zvc-hyMj †m‡Ui Rb¨ wbi‡cÿ
Q T ZvcgvÎv w¯’i _v‡K
e¨vL¨v: Q2 = T2
1 1 wbi‡cÿ ZvcgvÎv kxZj ms‡hv‡Mi ZvcgvÎvi Dci
Q2 300 wbf©i K‡i bv
=
500 600 Drµg ZvcgvÎv kxZj ms‡hv‡Mi ZvcgvÎvi Dci
Q2 = 250 J wbf©i K‡i bv
W = Q 1 – Q2 wbi‡cÿ ZvcgvÎvq m‡e©v”P Zvcxq Zwor”PvjK kw³
= (500 – 250)
(thermo-e.m.f.) cvIqv hvq
W = 250 J
DËi: Drµg ZvcgvÎv kxZj ms‡hv‡Mi ZvcgvÎvi Dci
189. `yB Ae¯’vq Bwćbi Kg©`ÿZvi AbycvZ KZ?
wbf©i K‡i bv
3:4 1:1
6. mvaviY Pvc e„w×i d‡j ùzUbvsKÑ
2:3 2 : 1
DËi: 2:1 n«vm cvq AcwiewZ©ZZ _v‡K
e„w× cvq Gi †KvbwUB bq
wb‡Pi DÏxc‡Ki Av‡jv‡K 190 I 191 bs cÖ‡kœi DËi: n«vm cvq
DËi `vI: 7. 1000C ZvcgvÎvi AwaK ZvcgvÎv cwigvcK h‡š¿i
GKwU Kv‡b©v BwÄb 600 K ZvcgvÎvi Zvc Drm †_‡K bvg wK?
1200 J Zvc MÖnY K‡i Ges Zvc MÖvn‡K 300 J Zvc
K¨vjwiwgUvi cvi` _v‡g©vwgUvi
eR©b K‡i| [h. †ev. 15]
cvB‡ivwgUvi A¨vj‡Kvnj _v‡g©vwgUvi
190. ZvcMÖvn‡Ki ZvcgvÎv KZ?
DËi: A¨vj‡Kvnj _v‡g©vwgUvi
150 K 300 K
600 K 2400 K 8. GKwU c`v_© †_‡K Ab¨ c`v‡_©i Zv‡ci cÖevn wbf©i K‡iÑ
DËi: 150 K c`v‡_©i AvK…wZi Dci
191. Bwćbi `ÿZv KZ? ZvcgvÎvi cv_©‡K¨i Dci
44% 50% evqy gÛ‡ji ZvcgvÎvi Dci
60% 75% Dc‡ii †KvbwUB bq
DËi: 75% DËi: ZvcgvÎvi cv_©‡K¨i Dci
nd
40 HSC Physics 2 Paper Chapter-1
9. mxmvi Mjbv¼ 327C Ges mxmv Mj‡bi jxb Zvc 5.86 16. †jLwP‡Î, X Øviv GKwU M¨v‡mi cÖv_wgK Ae¯’v †`Lv‡bv
cal/gm nB‡j 4 gm.mol mxmv Mj‡Z GbUªwci n‡”Q| †jLwP‡Î †Kvb †iLvwU GKwU cÖwµqvq M¨vmwU Øviv
cwieZ©b KZ n‡e? mxmvi cvigvYweK IRb 207| ev M¨v‡mi Dci †Kvb KvR Kiv n‡”Q bv wb‡`©k K‡i|
8.1 cal/K 1.38 cal/K
14.8 cal/K None P B
DËi: 8.1 cal/K C
A
ml
e¨vL¨v: dS = T f X
D
4 207 2.86 V
=
(273 + 327) XA XB
dS = 8.1 cal/K XC XD
10. hLb Zzwg †Zvgvi Av½yj w`‡q GK LÛ VvÛv eid‡K PV = constant T = constant
¯úk© Ki ZLb kw³ cÖevwnZ nqÑ DËi: XB
†Zvgvi Av½yj †_‡K ei‡di w`‡K 17. dv‡ibnvBU †¯‥‡j †Kvb e¯‘i ZvcgvÎv 50F n‡j
eid †_‡K †Zvgvi Av½y‡ji w`‡K †Kjwfb †¯‥‡j H ZvcgvÎv n‡eÑ
cÖK…Z c‡ÿ Dfq w`‡K 273 K 283 K
None of these
290 K 300 K
DËi: †Zvgvi Av½yj †_‡K ei‡di w`‡K DËi: 283 K
11. GKwU Mvwo Pj‡Z _vK‡j Gi Uvqv‡ii wfZi GKwU
18. GKwU Kv‡b©v BwÄb 800K I 400K ZvcgvÎvq †h
ZvcMZxq cÖwµqv P‡j| GB cÖwµqvwU n‡jvÑ
`ÿZvi KvR K‡i, wVK mg`ÿZvi KvR K‡i T I
mgAvqZb cÖwµqv m‡gvò cÖwµqv
900K ZvcgvÎvq| ZvcgvÎv T Gi gvb KZ?
iƒ×Zvcxq cÖwµqv mgPvc cÖwµqv
900 K 450 K
DËi: mgAvqZb cÖwµqv
1800K 500K
12. wb‡¤œi †Kvb mgxKiYwU ZvcMwZwe`¨vi Rb¨ mwVK?
DËi: 1800K
dQ = W Cp – Cv = aªæeK
–1 e¨vL¨v: 1 = 2
TV = aªæeK PV = R
T2 T4
DËi: TV–1 = aªæeK 1– =1–
T1 T3
13. †h cÖwµqvq †Kvb wm‡÷‡gi ZvcgvÎv w¯’i †i‡L M¨vmxq
400 900
c`v‡_©i Pvc I AvqZ‡b cwieZ©b NUv‡bv nq, Zv wb‡¤œ =
800 T
D‡jøwLZ †Kvb cÖwµqv? T = 1800 K
ZvcMZxq mgPvc 19. †Kvb e¨w³ ce©‡Zi P~ovq cvwb dzUv‡Z PvB‡j cvwbi
m‡gvò iæ×Zvcxq cv·K †h ZvcgvÎvq DËß Ki‡Z n‡e ZvÑ
DËi: m‡gvò
higher than 100C
14. evB‡ii kw³i mvnvh¨ Qvov †Kvb ¯^qswµq h‡š¿i c‡ÿ
lower than 100C
wb¤œ DòZvi e¯‘ n‡Z D”PZi DòZvi e¯‘‡Z Zv‡ci
to 100C
¯’vbv¯Íi m¤¢e bq| GwU †Kvb wee„wZ?
cannot be determined
†Kjwf‡bi wee„wZ Kv‡b©vi wee„wZ
DËi: lower than 100C
K¬wmqv‡mi wee„wZ cø¨v‡¼i wee„wZ
20. cvwb eid I Rjxq ev®ú †h ZvcgvÎvq GKm‡½ _vK‡Z
DËi: K¬wmqv‡mi wee„wZ
cv‡i Zv n‡jvÑ
15. wb‡¤œi †KvbwU AcÖZ¨vMvgx cÖwµqv bq?
e¨vcb cwiPjb 2C 273.16 K
wewKiY cÖwZmiY 100C 4C
DËi: cÖwZmiY DËi: 273.16 K
---