0% found this document useful (0 votes)
1K views40 pages

Acsfrb24 (Thermodynamic Solution)

The document analyzes thermodynamics questions from past exams from 2016 to 2023. It provides a trend analysis of different thermodynamics topics tested each year and the total number of questions from each topic over the years. The document also provides sample questions and solutions to demonstrate thermodynamics concepts.

Uploaded by

musfikulalam2004
Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content, claim it here.
Available Formats
Download as PDF, TXT or read online on Scribd
0% found this document useful (0 votes)
1K views40 pages

Acsfrb24 (Thermodynamic Solution)

The document analyzes thermodynamics questions from past exams from 2016 to 2023. It provides a trend analysis of different thermodynamics topics tested each year and the total number of questions from each topic over the years. The document also provides sample questions and solutions to demonstrate thermodynamics concepts.

Uploaded by

musfikulalam2004
Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content, claim it here.
Available Formats
Download as PDF, TXT or read online on Scribd
You are on page 1/ 40

ZvcMwZwe`¨v  Final Revision Batch 1

cÖ_g Aa¨vq ZvcMwZwe`¨v


Thermodynamics
Topicwise CQ Trend Analysis
UwcK 2016 2017 2018 2019 2021 2022 2023 †gvU
ZvcgvÎv cwigv‡ci bxwZ (_v‡g©vwgUvi) Ñ Ñ Ñ Ñ 1 Ñ Ñ 1
ZvcMwZwe`¨vi 1g m~Î Ñ 2 Ñ 1 3 2 3 11
iƒ×Zvcxq cÖwµqvi m~Î 1 Ñ Ñ 2 3 6 1 13
m‡gvò I iæ×Zvcxq cÖwµqvq K…ZKvR Ñ Ñ Ñ 1 2 6 6 15
Zvc, Af¨šÍixY kw³ I KvR Ñ 2 Ñ 4 Ñ 1 1 8
Kv‡b©v Pµ I Kv‡b©v BwÄb ev cÖZ¨vMvgx BwÄb 2 3 2 1 9 2 5 24
Zvcxq BwÄb: †iwd«Rv‡iU Ñ Ñ Ñ Ñ 1 Ñ Ñ 1
Bwćbi `ÿZv 3 5 1 2 9 2 1 23
GbUªwc I wek„•Ljv Ñ 2 1 4 3 4 1 15
* we.`ª.: 2020 mv‡j GBPGmwm cixÿv AbywôZ nqwb|
weMZ mv‡j †ev‡W© Avmv m„Rbkxj cÖkœ 2| 56 g bvB‡Uªv‡Rb M¨vm‡K GKwU Bwćbi mvnv‡h¨ cÖ_‡g
m‡gvò cÖwµqvq I c‡i iæ×Zvcxq cÖwµqvq AvqZb wZb¸Y
1| wb‡Pi DÏxcKwU jÿ¨ Ki: [Xv. †ev. 23; w`. †ev. 23]
P(N/m2) Kiv n‡jv| BwÄbwU 127C Ges 27C ZvcgvÎvq Kvh©Ki
40 R Av‡Q| (bvB‡Uªv‡R‡bi AvYweK fi 28 g)
[Xv. †ev. 23; w`. †ev. 23]
20 Q (K) ZvcMwZwe`¨vi k~b¨Zg m~ÎwU wee„Z Ki|
P
(L) ms‡e`bkxj •e`y¨wZK h‡š¿ mv‡›Ui e¨envi Riæwi †Kb?Ñ
S T
V(m3) e¨vL¨v Ki|
4 8
wP‡Î M¨v‡mi Pvc I ZvcgvÎvi cwieZ©b †`Lv‡bv n‡q‡Q| (M) BwÄbwUi Kg©`ÿZv wbY©q Ki|
GLv‡b Q †_‡K R G †h‡Z ZvcMZxq e¨e¯’vq 80 J
mgvavb: Kg©`ÿZv,  = 1 – T2  100%
T
Zvckw³ mieivn Kiv n‡q‡Q| 1
(K) Af¨šÍixY kw³ Kv‡K e‡j?
= 1 –
27 + 273 
 100%
(L) iæ×Zvcxq cÖmvi‡Y wm‡÷g kxZj nqÑ e¨vL¨v Ki|  127 + 273
(M) DÏxcK Abymv‡i R Ae¯’v‡b Avm‡Z ZvcMZxq   = 25%
e¨e¯’vwU‡Z AšÍt¯’ kw³i cwieZ©b KZ?
A_©vr BwÄbwUi Kg©`ÿZv 25%| (Ans.)
DËi: K…ZKvR, dW = PdV
(N) DÏxc‡Ki †Kvb cÖwµqvq K…ZKvR †ewk n‡e?Ñ MvwYwZK
 dW = 0 [∵ dV = 0]
mieivnK…Z Zvckw³, dQ = dU + dW we‡køl‡Yi gva¨‡g gZvgZ `vI|
 dU = dQ – 0 = 80 J mgvavb: m‡gvò cÖwµqvq,
A_©vr R Ae¯’v‡b Avm‡Z AšÍt¯’ kw³i cwieZ©b 80 J|
W1 = nRT1ln 
V2 56
n=
(Ans.) V1 28
(N) DÏxcK Abymv‡i, PQRP P‡µi cÖwZwU av‡c Kv‡Ri
= 2  8.314  400  ln
3V = 2 mol
Zzjbv Ki| V
mgvavb: dWPQ = PPQdVPQ
 W1 = 7307.09 J (Ans.)
= 20  (8 – 4)
 dWPQ = 80 J
iæ×Zvcxq cÖwµqvq,
nR
dWQR = 0 [∵dV = 0] W2 = (T – T2)
dWRP = PQRS Gi †ÿÎdj –1 1
1 2  8.314
=  PQ  (PS + RT) = (400 – 300)
2 1.4 – 1
1
=  4  (20 + 40)  W2 = 4157 J
2
 W1 > W2
 dWRP = 120 J
 dWRP > dWPQ > dWQR (Ans.) A_©vr m‡gvò cÖwµqvq K…ZKvR †ewk n‡e| (Ans.)
nd
2  HSC Physics 2 Paper Chapter-1
3| GKwU ZvcMZxq e¨e¯’vq 14 g bvB‡Uªv‡Rb M¨vm 30C (N) DÏxc‡Ki Kv‡b©v Bwćbi ZvcMÖvn‡Ki ZvcgvÎv wظY
ZvcgvÎvq I 1 evqygÐjxq Pv‡c iwÿZ Av‡Q| w¯’iPv‡c G‡Z Ki‡j `ÿZv A‡a©K n‡e wKbvÑ MvwYwZK we‡kølY K‡iv|
mgvavb: Kg©`ÿZv,  = 1 – T2  100%
mieivn Kiv n‡j ZvcgvÎv 35C nq| cieZ©x‡Z Dc‡iv³ T
cÖwµqvwU m‡gvò cÖwµqvq GKwU Avw` Ae¯’v‡b n‡Z GKB 1

= 1 –   100%
AvqZ‡bi cwieZ©b K‡i K…Z Kv‡Ri cwigvY Kiv n‡jv (R = 387
8.3 Jmol–1K–1, CV = 20.8 Jmol–1K–1) [iv. †ev. 23]  827
(K) Zv‡ci hvwš¿K mgZv Kx?   = 53.204%
(L) Mvwoi Uvqvi we‡ùvi‡Yi mgq Kx ai‡bi ZvcMZxq ZvcMÖvn‡Ki ZvcgvÎv wظY Ki‡j,
cÖwµqv msNwUZ nq? e¨vL¨v K‡iv|
 = 1 –
2T2
 100%
(M) DÏxc‡K w¯’i Pv‡ci †ÿ‡Î Af¨šÍixY kw³i cwieZ©b  T1 
wbY©q K‡iv| 2  387
= 1 – 

  100%
mgvavb: PdV = nRdT   827 
14   = 6.409%
 PdV =  8.3  (35 – 30)
28  6.409
 PdV = 20.75 Nm GLb, = 53.204

ZvcMwZwe`¨vi cÖ_g m~Îvbyhvqx, 
dQ = dU + dW  = 0.12  0.5

 dU = dQ – dW
= nCPdT – PdV
A_©vr ZvcMÖvn‡Ki ZvcgvÎv wظY Ki‡j `ÿZv A‡a©K
14 n‡e bv| (Ans.)
=  (20.8 + 8.3)  (35 – 30) – 20.75
28 5| wØ-cvigvYweK M¨vm m¤^wjZ GKwU Kv‡b©v BwÄb 500 K
 dU = 52 J ZvcgvÎvi Drm n‡Z Zvc MÖnY K‡i| cÖwZ cÖmvi‡Y Gi
A_©vr w¯’i Pv‡c Af¨šÍixY kw³i cwieZ©b 25 J| (Ans.)
AvqZb wZb¸Y nq| [h. †ev. 23]
(N) w¯’i Pvc cÖwµqv Ges m‡gvò cÖwµqvq DÏxc‡K wb‡Y©q
(K) Zwor w؇giæ Kv‡K e‡j?
K…Z Kv‡Ri gvb mgvb n‡e wK? MvwYwZK we‡kølY Ki|
(L) iæ×Zvcxq ms‡KvP‡bi mgq wm‡÷‡gi Af¨šÍixY kw³
mgvavb: w¯’i Pvc cÖwµqvq, w¯’iPv‡c,
W1 = PdV V2 T2 35 + 273 e„w× cvqÑ e¨vL¨v Ki|
= 20.75 J = = (M) DÏxc‡Ki BwÄbwUi cÖv_wgK `ÿZv wbY©q Ki|
V1 T1 30 + 273
m‡gvò cÖwµqvq, V2 mgvavb: iæ×Zvcxq cÖmvi‡Yi †ÿ‡Î,
 = 1.017
W2 = nRT1 ln
V2 V1 –1 –1
T1V1 = T2V2
V1
V1  – 1
 W2 = 0.5  8.3  (30 + 273)  ln(1.017)  T2 =  
 W2 = 20.581 J
V2  T1
1 1.4–1
 W1 > W2  T2 =  
A_©vr Dfq‡ÿ‡Î K…Z Kv‡Ri gvb mgvb n‡e bv| 3  500
4| P  T2 = 322.197 K
 = 1 –   100%
Q1 = 500 J T2
A  T1
= 1 –
322.197
 100%
B  500 
T1 = 827 K   = 35.561%
D
A_©vr BwÄbwUi cÖv_wgK `ÿZv 35.561%| (Ans.)
T2 = 827 K C (N) Bwćbi `ÿZv 60% Ki‡Z n‡j Kx e¨e¯’v wb‡Z n‡e?
V [Kz. †ev. 23] MvwYwZK we‡kølY Ki|
wP‡Î GKwU K‡Y©v Bwćbi P-V †jLwPÎ †`Lv‡bv n‡jv|
mgvavb: Kg©`ÿZv 60% Kiv hv‡e `ywU Dcv‡q|
(K) Zvc BwÄb Kv‡K e‡j?
ZvcMÖvn‡Ki ZvcgvÎv cwieZ©b K‡i,
(L) M¨v‡mi †gvjvi Av‡cwÿK Zvc `yB cÖKvi †Kb?
(M) BwÄb KZ…©K K…Z Kv‡Ri cwigvY wbY©q K‡iv  T2 
 = 1 –  100%
mgvavb: Kv‡b©v Bwćbi †ÿ‡Î,  T1
Q2 T 2
=
 T2   100%
 60% = 1 –
Q1 T 1  500
Q1 – Q2 T 1 – T 2 T2
 =  = 0.4
Q1 T1 500
W 827 – 387

500
=
827
[∵ W = Q1 – Q2]  T2 = 200 K
 W = 266.022 J  ZvcgvÎv Kgv‡Z n‡e = (322.197 – 200) K
A_©vr, BwÄb KZ…©K K…ZKv‡Ri cwigvY 266.022 J (Ans.) = 122.197 K
ZvcMwZwe`¨v  Final Revision Batch 3
ZvcDr‡mi ZvcgvÎv cwieZ©b K‡i, Avevi,
V4 –1 T2
 = 1 –
T2
 100% DA As‡k,   =
 T1 V1 T1
(1.4–1)
 60% = 1 –  
322.197 V 4 400
 100% =
 T1  2.5  10 
–3
600
322.197  V4 = 2.94  10–3 m3
 = 0.4
T1 (i) n‡Z cvB,
 T1 = 805.493 K 2.94  10–3 
Q2 = – 1  8.314  400 ln
 ZvcgvÎv evov‡Z n‡e = (805.493 – 500) K 5.292  10–3
= 305.493 K = 1954.743 J
Q2
 BwÄbwUi `ÿZv 60% Ki‡Z n‡j Zvc Dr‡mi  = 0.667
Q1
ZvcgvÎv 305.493 K e„w× A_ev Zvc MÖvn‡Ki ZvcgvÎv
Avevi,
122.197 K n«vm Ki‡Z n‡e| (Ans.)
T2
6| K¬wmqvm wc÷b wmwjÛv‡i GK †gvj nvB‡Wªv‡Rb M¨vm T1
= 0.667
wb‡q P-V Gi †jLwPÎ wb‡¤œ cÖ`wk©Z PµwUi Abyiƒc GKwU Q2 T 2
Pµ †c‡jb| K¬wmqv‡mi g‡Z GwU GKwU cÖZ¨veZ©x Pµ|  =
Q1 T 1
[P. †ev. 23] A_©vr K¬vwmqv‡mi `vwewU †hŠw³K|
Y T1 = 600 K 7| [e. †ev. 23]
T2 = 400 K
A(P1, V1, T1)
4
P  105 Nm–2

Q1 A T1 = 500C
B(P2, V2, T1) B
D
2.5 Q2
(P4, V4, T2)
C(P3, V3, T2)

(0, 0) 2.5 4.5


X Pvc (P) D C
V  10–3 m3 T2 = 200C
(K) ZvcMwZwe`¨vi 2q m~Î wee„Z Ki| Q2 = 600 J
(L) iƒ×Zvcxq cÖwµqvq M¨vm‡K msKzwPZ Ki‡j ZvcgvÎv AvqZb (V)
e„w× cvqÑ e¨vL¨v K‡iv| Dc‡ii P-V wPÎwU GKwU cÖZ¨veZ©x Zvc Bwćbi|
(M) DÏxcK Abymv‡i nvB‡Wªv‡Rb M¨vm‡K B n‡Z C †Z (K) e× wm‡÷g Kx?
Avb‡Z K…ZKv‡Ri cwigvY wbY©q K‡iv| (L) m‡gvò cÖwµqvq Af¨šÍixY kw³i cwieZ©b k~b¨ †Kb?
nR e¨vL¨v Ki|
mgvavb: WBC = (T – T2)
–1 1
(M) DÏxc‡Ki Zvc Bwćb m‡gvò cÖmvi‡Y G›Uªwci cwieZ©b
1  8.314
= (600 – 400) wbY©q Ki|
(1.4 – 1)
 WBC = 4157 J mgvavb: G›Uªwci cwieZ©b, cÖZ¨veZ©x BwÄb nIqvq,
A_©vr nvB‡Wªv‡Rb M¨vm‡K B n‡Z C-†Z Avb‡Z dS =
Q1 600
= 
Q1 Q2
=
K…ZKv‡Ri cwigvY 4157 J| (Ans.) T 1 473 T1 T2
(N) K¬wmqv‡mi `vwewU †h․w³K wK bv e¨vL¨v K‡iv|  ds = 1.268 J/K 600
=
(200 + 273)
mgvavb: Q1 = WAB [∵ m‡gvò cÖwµqvq, dQ = dW]
Q 600

1

= nRT1ln
V2 T1
=
473
V1
A_©vr m‡gvò cÖmvi‡Y G›Uªwci cwieZ©b 1.268 J/K.
= 1  8.314  600  ln
4.5
2.5 (Ans.)
 Q1 = 2932.115 J (N) Dr‡mi ZvcgvÎv w¯’i †i‡L BwÄbwU `ÿZv 1.5 ¸Y Kiv
Q2 = – WCD [∵ m‡gvò ms‡KvPb] m¤¢e wKbv? MvwYwZKfv‡e we‡kølY Ki|
mgvavb: BwÄbwUi `ÿZv,  = 1 – T2  100%
T
 Q = – nRT ln  ...... (i)
V4
2
V3 2 1

= 1 – 
V3 –1 T2  200 + 273
BC Ask n‡Z,   =  500 + 273  100%
V2 T1
(1.4–1)   = 38.81%
 
V 3 400
=
4.5  10–3 600 `ÿZv 1.5 ¸Y Ki‡j,  = 1.5  38.81%
 V3 = 5.292  10–3 m3 = 58.215%
nd
4  HSC Physics 2 Paper Chapter-1
 T2   100%
  = 1 –
9| DÏxcK wP‡Îi Dfq K‡b©vP‡µ Kvh©wbe©vnK e¯‘ wn‡m‡e
 T1  1 †gvj wØcvigvYweK M¨vm e¨eüZ n‡q‡Q| Pµ `ywUi cÖwZ P‡µ
 T2  ms‡KvPb I cÖmvi‡Yi AbycvZ h_vµ‡g 1 : 3 Ges 1 : 4|
 58.215% = 1 –   100%
(R = 8.31 Jmol–1K–1)
 500 + 273  [g. †ev. 23]
T2 Y 1g Kv‡b©vPµ Y 2q Kv‡b©vPµ
 = 0.418
773
(P) (P)
 T2 = 323 K = 50C A(P1, V1) A(P1 , V1 )
T1 = 60C T1 = 70C  
A_©vr Dr‡mi ZvcgvÎv w¯’i †i‡L BwÄbwUi `ÿZv 1.5 B(P2, V2) B(P2, V2)
¸Y Kiv m¤¢e| (Ans.) T2 = 211K T2 = 211K
8| Y C(P3, V3) C(P3 , V3 )
D(P4, V4) D(P4 , V4 )
6
Pvc P(105 Nm–2)

T2 = 300 K T1 = 400 K X
5  V  V X
A C (K) †iwd«Rv‡iU‡ii Kg©m¤úv`b mnM Kv‡K e‡j?
4
3
(L) mgAvqZb cÖwµqvq wm‡÷‡g cÖ`Ë Zvc m¤ú~Y©UvB
B D Af¨šÍixY kw³ e„w×i Kv‡R e¨eüZ nq| e¨vL¨v K‡iv|
2 (M) DÏxc‡Ki 1g Kv‡b©vP‡µi Kvh©wbe©vnK e¯‘‡K B †_‡K C
1 †Z wb‡Z †gvU K…ZKvR wbY©q K‡iv|
O X mgvavb: iæ×Zvcxq cÖwµqvq,
1 2 3 4 5 nR
(0,0)
AvqZb W= (T – T2)
–1 1
wP‡Î 1 mole cwigvY †Kv‡bv M¨v‡mi †ÿ‡Î `ywU m‡gvò †jL
1  8.31
†`Lv‡bv n‡q‡Q| M¨vmwUi w¯’i AvqZb †gvjvi Av‡cwÿK Zvc =  (60 + 273) – 211}
 1.4 – 1  {
25.18 J mol–1K–1| [wm. †ev. 23]  W = 2534.55 J
(K) GbUªwc Kv‡K e‡j? A_©vr 1g Kv‡b©vP‡µ B †_‡K C-†Z wb‡Z †gvU K…ZKvR
(L) Zvc Drm I ZvcMÖvn‡Ki ZvcgvÎvi g‡a¨ cv_©K¨ K‡g 2534.55 J| (Ans.)
†M‡j Bwćbi `ÿZvI K‡g hvqÑ e¨vL¨v Ki| (N) DÏxc‡Ki Abymv‡i, †Kvb Kv‡b©v PµwU †ewk Kvh©Ki,
(M) CD As‡k K…ZKv‡Ri cwigvY wbY©q K‡iv| MvwYwZK we‡kølY K‡i gZvgZ `vI|
mgvavb: m‡gvò cÖmvi‡Y,
mgvavb: Kg©`ÿZv,  = 1 – T2  100%
T
K…ZKvR W = nRT1 lnVD
V 1

 1 = 1 –  
 211 
60 + 273  100%
C

= 1  8.314  400 ln 
4
2  1 = 36.637%
2 = 1 – 
 W = 2305.13 J  211 
 CD As‡k K…ZKv‡Ri cwigvY 2305.13 J| (Ans.)  70 + 273  100%
(N) A n‡Z C †Z wb‡Z Zvckw³i cwieZ©b, B n‡Z D †Z  2 = 38.484%
wb‡Z Zvckw³i cwieZ©‡bi mgvb n‡e wK bv? ∵ 2 > 1
mgvavb: CP = CV + R A_©vr wØZxq Kv‡b©v PµwU †ewk Kvh©Ki| (Ans.)
= 25.18 + 8.314 10| 0C ZvcZgvÎvi 0.07 kg eid‡K GKwU wbw`©ó D”PZv
 CP = 33.494 J mole–1 K–1 †_‡K †d‡j †`qv n‡jv| G‡Z wefe kw³i 55% Zv‡c
A n‡Z C †Z, iƒcvšÍwiZ n‡jv Ges GB Zvc mg¯Í eid‡K Mwj‡q w`‡jv|
Zvckw³i cwieZ©b, wKQz mgq ci eidMjv cvwbi ZvcgvÎv 5C G DbœxZ n‡jv|
dQAC = dU + dWAC †`qv Av‡Q, eid Mj‡bi Av‡cwÿK myßZvc 3.36  105 J
= nCP(T1 – T2) + PAC  (VC – VA) kg–1 Ges cvwbi Av‡cwÿK Zvc 4200 Jkg–1k–1. [Xv. †ev. 22]
= 1  33.494  (400 – 300) + 4  105  1 (K) ZvcMwZwe`¨vi wØZxq m~ÎwU wee„Z Ki|
 dQAC = 403349.4 J (L) mgAvqZb cÖwµqvq KvR k~b¨ †Kb? e¨vL¨v `vI|
B n‡Z D †Z, (M) eid LÐwU KZ D”PZv †_‡K †djv n‡qwQj?
Zvckw³i cwieZ©b, mgvavb: cÖkœg‡Z,
dQBD = dU + dWBD 55%  wefekw³ = cÖ‡qvRbxq Zvckw³
= nCP(T1 – T2) + PBD  (VD – VB)  0.55  mgh = mlf
= 1  33.494  (400 – 300) + 2  105  2 lf 3.36  105
h= =
dQBD = 403349.4 J 0.55  g 0.55  9.8
 dQAC = dQBD  h = 62337.662 m
A_©vr A n‡Z C †Z wb‡Z Zvckw³i cwieZ©b, B n‡Z A_©vr eid LÐwU †djv n‡qwQj 62337.662 m
D †Z wb‡Z Zvckw³i cwieZ©‡bi mgvb n‡e| (Ans.) D”PZv †_‡K| (Ans.)
ZvcMwZwe`¨v  Final Revision Batch 5
(N) eid Mjb Ges eidMjv cvwbi ZvcgvÎv e„w× †Kvb cwiewZ©Z ÿgZvq MÖvn‡Ki Zvckw³i cwieZ©b:
†ÿ‡Î cwi‡e‡ki Dci AwaK cÖfve co‡e? GbUªwci  Q2 
 = 1 –  100%
Av‡jv‡K e¨vL¨v Ki|  Q1
dQ Q2
mgvavb: G›Uªwci cwieZ©b, dS = T  0.64 = 1 –
1250
Q  Q2 = 450 J
 1g †ÿ‡Î, dS1 = T 1
1  ZvcgvÎv n«vm = Q2 – Q2
mlf = (700 – 450)
=
T = 250 J
0.07  3.36  105 A_©vr Dr‡mi ZvcgvÎv 694.444 J e„w× K‡i ev MÖvn‡Ki
=
273 ZvcgvÎv 250 J n«vm K‡i `ÿZv e„w× Kiv m¤¢e| (Ans.)
 dS1 = 86.154 J/K 12| [g. †ev. 22]
T P(atm)
2q †ÿ‡Î, dS2 = ms lnT2 1 atm = 105 Nm–2
1
5.27 A  = 1.4
= 0.07  4200  ln
278
273 D we›`y‡Z ZvcgvÎv = 330 K
 dS2 = 5.336 J/K 4  B
∵ dS1 > dS2 2 D
A_©vr eid Mj‡b cwi‡e‡ki Dci AwaK cÖfve co‡e|
V(m3)
(Ans.) 500 1000
11| GKwU Kv‡b©v BwÄb 500 k ZvcgvÎvq Drm †_‡K 1250 J (K) Zwor Pz ¤ ^ K xq Zi½ Kx?
Zvc MÖnY K‡i Ges Zvc MÖvn‡K 700 J Zvc eR©b K‡i| (L) †iW‡bi Aa©vqy 2.83 w`b ej‡Z Kx eyS?
(M) DB ms‡KvP‡b K…ZKv‡Ri gvb wbY©q Ki|
Bwćbi Zvc Drm I ZvcMÖvnK Df‡qiB Zvckw³i cwieZ©b
mgvavb: PV = nRT
mv‡c‡ÿ Bwćbi `ÿZv 20% e„w× Kiv m¤¢e| [g. †ev. 22] PV
(K) Af¨šÍixY kw³ Kv‡K e‡j? n=
RT
(L) ÔDòZvwgwZ c`v_© wnmv‡e cvi` e¨envi myweavRbKÕÑ 2  105  1000
=
e¨vL¨v Ki| 8.314  330
(M) Zvc MÖvn‡Ki ZvcgvÎv wbY©q Ki|  n = 72896.392 mol
mgvavb: Kv‡b©v Bwćbi †ÿ‡Î,  K…ZKvR,
W = – nRT ln
VB 
Q1 Q2
=
T1 T2 VD
= – 72896.392  8.314  330 ln
500 
1250 700
 = 1000
500 T2
 W = 1.386  108 J
 T2 = 280 K A_©vr DB ms‡KvP‡b K…ZKvR 1.386  108 J (Ans.)
A_©vr Zvc MÖvn‡Ki ZvcgvÎv 280 K| (Ans.) (N) DB Ges DA c‡_ GKB cwigvY ms‡KvP‡b `ywU †j‡Li
(N) DÏxc‡Ki BwÄbwUi `ÿZv e„w× Kiv msµvšÍ Z_¨wU Rb¨ ZvcgvÎv GK bq †Kb? MvwYwZKfv‡e we‡kølY Ki|
MvwYwZKfv‡e we‡kølY Ki| mgvavb: DB c‡_ m‡gvò ms‡KvPb nq| G c‡_ ZvcgvÎvi
mgvavb: Kg©`ÿZv,  = 1 – T2  100%
T †Kv‡bv cwieZ©b nq bv| A_©vr TB =TD|
1 DA c‡_ A_©vr iæ×Zvcxq ms‡KvP‡b Zv‡ci Av`vb
 280 cÖ`vb N‡U bv ZvB AvqZb Kgvi mv‡_ AšÍt¯’ kw³ e„w×
 500  100%
= 1–
cvq Z_v ZvcgvÎv e„w× cvq|
  = 44% iæ×Zvcxq cwieZ©‡b,
–1 –1
  = (44 + 20)% = 64% TDV = TAVA
cwiewZ©Z ÿgZvq Dr‡mi Zvckw³i cwieZ©b: VD –1
 TA =    TD
VA
 = 1 –
Q2
 100%
 Q1 =
1000(1.4–1)
 330
700  500 
 0.64 = 1 –  TA = 435.438 K
Q1
Avevi,
 Q1 = 1944.444 J TB = 330 K
 ZvcgvÎv e„w× = Q1 – Q1 ∵ TA  TB
= (1944.444 – 1250) A_©vr Dfq‡ÿ‡Î GKB cwigvY ms‡KvP‡bi Rb¨ ZvcgvÎv
= 694.444 J GK bq| (Ans.)
nd
6  HSC Physics 2 Paper Chapter-1
13| Zvc mycwievnx I Acwievnx c`v‡_©i •Zwi `ywU Nl©Ynxb (N) DÏxc‡Ki dzUe‡ji wfZi †_‡K wbM©Z evZvm cvwicvwk¦©‡Ki
wc÷bhy³ wmwjÛv‡i 3  105 Pa Pv‡c I 750 K ZvcgvÎvq 1 Zzjbvq Mig nIqvi KviY Kx? MvwYwZKfv‡e we‡kølYc~e©K
mol bvB‡Uªv‡Rb M¨vm Av‡Q| AZtci Dfq wmwjÛv‡i Pv‡ci e¨vL¨v Ki|
mgvavb: iæ×Zvcxq cÖwµqvq,
cwigvY A‡a©K Kiv n‡jv| bvB‡Uªv‡R‡bi †ÿ‡Î  = 1.4 Ges
–1 –1
1–

1–

G‡ÿ‡Î,
R = 8.31 Jmol K . [P. †ev. 22] T1P1 = T2P2 P1 = 1 atm
(K) cvwbi •Îa we›`y Kv‡K e‡j? 1–

P1( )  P2 = 2 atm
(L) CV < CP †Kb? e¨vL¨v Ki|  T2 =  T1
P2
(M) Acwievnx wmwjÛv‡ii P~ovšÍ ZvcgvÎv wbY©q Ki| 1–1.4

= 
mgvavb: iæ×Zvcxq cÖwµqvq, 1 1.4
 1–  1– 2  (27 + 273)
T1P 1 = T2P 2  T2 = 365.704 K
T2  P1 1–
  =  = 92.704C
T1 P2  T2 > T1
(1 –1.41.4) A_©vr, iæ×Zvcxq cÖwµqvq dzUej †_‡K wbM©Z evZv‡mi
 T2 = (2)  750
ZvcgvÎv †ewk nIqvq Zv cwicvwk¦©K Gi Zzjbvq Mig
 T2 = 615.252 K
nq| (Ans.)
A_©vr Acwievnx wmwjÛv‡ii P‚ovšÍ ZvcgvÎv 615.252 K|
15| `yÕwU Zvc BwÄb 400 K Ges 800 K ZvcgvÎvi e¨eav‡b
(Ans.)
Kvh©Ki| BwÄb `yÕwU‡Z e¨eüZ R¡vjvbxi Av‡cwÿK Zvc
(N) wmwjÛvi؇qi g‡a¨ K…Z Kv‡Ri Zzjbv Ki|
h_vµ‡g 2000 JKg–1K–1 Ges 1500 JKg–1K–1| BwÄb
mgvavb: Zvc mycwievnx wmwjÛv‡i, `yÕwU‡Z 10 gm f‡ii wfbœ Kvh©Ki c`v_© e¨envi Kiv n‡q‡Q|
V2 [wm. †ev. 22]
K…ZKvR, W1 = nRlnV
1 (K) •Îa we›`y Kv‡K e‡j?
P1 (L) ÒGbUªwci cwieZ©b me©`v abvZ¥KÓÑ e¨vL¨v Ki|
= 1  8.31  750  ln
P2 (M) cÖ_g Bwćbi `ÿZv 10% evov‡Z n‡j Dr‡mi
[∵ m‡gvò cÖwµqvq P1V1 = P2V2] ZvcgvÎv KZ evov‡Z n‡e?
 W1 = 8.31  750  ln(2) mgvavb: Kg©`ÿZv,  = 1 – T 2   100%
T
= 4320.04 J 1

= 1 –
Acwievnx wmwjÛv‡i, 400 
nR  800   100%
K…ZKvR, W2 =
–1 1
(T – T2)   = 50%
`ÿZv 10% evov‡Z,
1  8.31
=
 1.4 – 1   (750 – 615.252) (50 + 10)% = 1 –
T2
 100%
 T1 
W2 = 2799.39 J
400
∵ W1 > W2  0.6 = 1 –
T1
A_©vr, mycwievnx wmwjÛv‡ii K…ZKv‡Ri cwigvY †ewk| 
 T1 = 1000 K
(Ans.)
 ZvcgvÎv evov‡Z n‡e = (1000 – 800) K
14| GKRb dzUejvi Abykxjb Kivi mgq nVvr jÿ¨ Kij = 200 K
†h, dzUejwU †d‡U evZvm †ei n‡”Q| †m AviI jÿ¨ Kij A_©vr Dr‡mi ZvcgvÎv 200 K evov‡Z n‡e| (Ans.)
†h, dzUej †_‡K †h evZvm †ei n‡”Q Zv cvwicvwk¦©‡Ki (N) DÏxc‡Ki Av‡jv‡K †Kvb BwÄbwU †ewk cwi‡ekevÜe
Zzjbvq Dò| dzUe‡ji Af¨šÍi¯’ evqyi ZvcgvÎv 27C, evqyi n‡e? †Zvgvi gZvgZ MvwYwZKfv‡e we‡kølY Ki|
Pvc 2 atm, evqyi AvqZb 1 m Ges  = 1.4 wQj|
3 T
mgvavb: GbUªwci cwieZ©b, dS = mslnT2
[wm. †ev. 22] 1

(K) GbUªwc Kx?  1g Bwćbi †ÿ‡Î,


(L) iƒ×Zvc cÖwµqvq M¨vm‡K msbwgZ Ki‡j M¨v‡mi T2
dS1 = m1S1ln
ZvcgvÎv e„w× cvq †Kb? e¨vL¨v Ki| T1
= 0.01  2000  ln
800
(M) dzUej †_‡K wbM©Z evqyi P~ovšÍ AvqZb wbY©q Ki|
400
mgvavb: iæ×Zvcxq cÖwµqvq,  dS1 = 13.863 J/K
 
P1V1 = P2V2 2q Bwćbi †ÿ‡Î,
1 T2
 V2 =   P1  dS = m2S2ln
P2  V1 T1
= 0.01  1500 ln
1 800
2 (1.4) 400
=  1
1  dS2 = 10.397 J/K
 V2 = 1.641 m3 ∵ dS < dS1
A_©vr wbM©Z evqyi P‚ovšÍ AvqZb 1.641 m3 (Ans.) A_©vr 2q BwÄbwU †ewk cwi‡ek evÜe n‡e| (Ans.)
ZvcMwZwe`¨v  Final Revision Batch 7
16| 327C ZvcgvÎvi 1 †gvj M¨vm Øviv GKwU Kv‡b©v BwÄb (N) cÖ
w ZwU av‡c GbUª wc wnmve K‡i BwÄbwUi cÖ Z¨vMvwgZv wK
KvR m¤úv`b Ki‡Q| Kv‡b©v P‡µi cÖwZwU av‡c ms‡KvPb ev hvPvB Kiv m¤¢e? MvwYwZK we‡kølYc~e©K gZvgZ `vI|
cÖmvi‡Yi AbycvZ 1 : 6| (mve©Rbxb M¨vm aªæeK R = 8.31 J mgvavb: GbUªwci cwieZ©b, dS = Q
mol–1 K–1 Ges  = 1.4) [e. †ev. 22] T
BC Ges DA c‡_ h_vµ‡g iæ×Zvcxq cÖmviY I
(K) wm‡÷g Kx?
(L) AcÖZ¨vMvgx cÖwµqv GKwU GKgyLx cÖwµqvÑ e¨vL¨v Ki| ms‡KvPb N‡U|
 dSBC = 0, dSDA = 0
(M) Bwćbi me©wb¤œ ZvcgvÎv wbY©q Ki|
Q Q
mgvavb: iæ×Zvcxq cÖmvi‡Yi †ÿ‡Î, BwÄbwUi, T 1 = T 2
–1 –1 1 2
T1V 1 = T2V 2 500
 Q2 =  550
 T2 =    T1
V1 –1 1100
V2  Q2 = 250 J
1 (1.4 – 1)
= 
Q1 500
 (327 + 273)  dSAB = =
 
6 T1 1100
 T2 = 293.016 K  dSAB = 0.455 J/K
A_©vr me©wb¤œ ZvcgvÎv 293.016 K (Ans.) Q 250
Avevi, dSCD = – T 2 = – 550
(N) Kv‡b©vi P‡µi m‡gvò cÖmviY I ms‡KvP‡b m¤úvw`Z 2

Kv‡Ri cwigvY GKB n‡e wKbv? MvwYwZKfv‡e hvPvB  dSCD = – 0.455 J/K
Ki|  †gvU G›Uªwci cwieZ©b
mgvavb: m‡gvò cÖmvi‡Y, = dSAB + dSBC + dSCD + dSDA
= 0.455 + 0 – 0.455 + 0
W1 = nRT1 ln 
V2
V1 =0J
= 1  8.31  (327 + 273)  ln(6)
A_©vr BwÄbwU cÖZ¨vMvgx| (Ans.)
 W1 = 8933.713 J 18| wP‡Î 1 gm cvwb Zij n‡Z ev®úxf~Z nevi `ywU ¯Íi †`qv
m‡gvò ms‡KvP‡b, Av‡Q| D we›`y‡Z ev‡®úi AvqZb 1700 CC| (cvwbi
Av‡cwÿK Zvc 4200 Jkg–1K–1) [Kz. †ev. 22]
W2 = –nRT2ln
V1
V2 ZvcgvÎv (C)
= – 1  8.31  293.016  ln 
1 D
6 100C
 W2 = 4362.63 J
A B
∵ W1  W2 50C
A_©vr m‡gvò cÖmviY I ms‡KvP‡b m¤úvw`Z Kv‡Ri
cwigvY GKB n‡e bv| (Ans.) Zvc (J)
17| wb‡Pi wP‡Î Kv‡b©v Bwćbi Kvh©Kix c`v‡_©i PviwU avc (K) ZvcMwZwe`¨vi k~ b ¨Zg m~ Î wU wjL|
†`Lv‡bv n‡jvÑ [Kz. †ev. 22] (L) Kv‡b©vi Bwćb wØZxq av‡c ZvcgvÎv n«vm N‡U †Kb?
P(Nm )–2 (M) AB c‡_ G›Uªwci cwieZ©b wbY©q Ki|
A Q1 = 500J Q ml
T1 = 1100K mgvavb: G›Uªwci cwieZ©b, dS = T = TV
0.001  2.268  106
4.6×105 B =
(50 + 273)
 dS = 7.022 J/K
D AB c‡_ G›Uªwci cwieZ©b 7.022 J/K| (Ans.)
C (N) BD c‡_ AšÍt¯’ kw³ wbY©q Kiv m¤¢eÑ MvwYwZKfv‡e
T2 = 550K hvPvB Ki|
O V(m3) mgvavb: dW = PdV
(K) Af¨šÍixY kw³ Kv‡K e‡j?
= nRdT [∵ PV = nRT]
(L) RM‡Zi GbUªwc e„w× cv‡”QÑ e¨vL¨v Ki| 1
(M) C we›`y‡Z Pvc wbY©q Ki| =  8.314  (100 – 50)
18
mgvavb: iæ×Zvcxq cÖmvi‡Y,  dW = 23.094 J
1– 1–

TP
( ) = T P( )
  dQ = msdT
1 1 2 2 = 0.001  2100  (100 – 50)

T1( )  dQ = 105 J
 P2 = 
1–
 P1 ZvcMwZwe`¨vi cÖ_g m~Îvbyhvqx,
T2
1.4 dQ = dU + dW
 dU = dQ – dW
=
1100 1–1.4
 4.6  10 5
 550  = 105 – 23.094
 P2 = 40658.64 atm  dU = 81.906 J
A_©vr C we›`y‡Z Pvc 4068.64 atm. (Ans.) A_©vr BD c‡_ AšÍt¯’ kw³ 81.906 J| (Ans.)
nd
8  HSC Physics 2 Paper Chapter-1
19| [w`. †ev. 22] 20| wb‡¤œi P–V wb‡`©kK wP‡Î GKwU Kv‡b©v P‡µ Kvh©Ki
P(atm) c`v_© Øviv m¤úvw`Z KvR †`Lv‡bv n‡jv: [h. †ev. 22]
C Y A (V1 = 3×10–3m3, P1)
5.28  T1 = 500K
B (V2 = 6×10–3m3, P2)
 = 1.4

Pvc (P)
4  n = 2 mole
B
2 A
D(V4, P4) C(V3, P3)
T2 = 300K
X
V(Litre) AvqZb (V)
10 20
wP‡Î P–V †jLwPÎ Øviv GKwU Pµxq cÖwµqv †`Lv‡bv n‡q‡Q| (K) AcÖZ¨veZ©x cÖwµqv Kv‡K e‡j?
GLv‡b, A we›`y‡Z ZvcgvÎv = 300 K (L) wek¦RMr µ‡g µ‡g Zvcxq g„Zy¨i w`‡K GwM‡q Pj‡QÑ
w¯’i AvqZ‡b †gvjvi AvšÍtZvc = 20.78 Jmol K –1 –1 e¨vL¨v Ki|
†gvj msL¨v = 1.6 (M) C we›`y‡Z AvqZb wbY©q Ki|
 = 1.4 Ges 1 atm = 105Nm–2 mgvavb: VC = 21.5 × 10–3 m3
(K) AšÍt¯’ kw³i msÁv `vI| (N) AB Ges BC ch©v‡q K…ZKvR mgvb n‡e wKbvÑ
(L) Kv‡b©vi Bwćbi Kvh©wbe©vnK e¯‘ cwieZ©b Ki‡j H Bwćbi MvwYwZKfv‡e hvPvB Ki|
`ÿZvi †Kv‡bviƒc cwieZ©b n‡e bv †Kb? e¨vL¨v Ki| mgvavb: WAB  WBC
(M) AB c‡_ K…Z Kv‡Ri gvb wbY©q Ki| 21| wmqvg 1 kg eid‡K –10C ZvcgvÎv n‡Z 30C
mgvavb: m‡gvò cÖwµqvq, ZvcgvÎvi cvwb‡Z cwiYZ K‡i| mvwgi 30C ZvcgvÎvi 1
kg cvwb‡K 100C ZvcgvÎvi ev‡®ú cwiYZ K‡i| wmqvg
W = nRT ln 
VB
VA `vwe Kij Zvi cÖwµqvwU †ewk k„•Lj|
= 1.6  8.314  300 ln  (Sw = 4200 Jkg–1K–1, Lf = 3.36 × 105 Jkg–1, Sice =
10
20 2100 Jkg–1K–1 Ges Lv = 2.26 × 106Jkg–1) [h. †ev. 22]
 W = –2766.156 J (K) ZvcMwZwe`¨vi cÖ_g m~Î wee„Z Ki|
A_©vr AB c‡_ K…ZKvR –2766.156 J| (Ans.)
(L) iæ×Zvcxq cÖmviY Ges ms‡KvP‡b AšÍt¯’ kw³i cwieZ©b
(N) DÏxc‡Ki Pµxq cÖwµqvq G›Uªwci cwieZ©b k~b¨ n‡e
e¨vL¨v Ki|
wKbvÑ MvwYwZK we‡køl‡Yi mvnv‡h¨ gZvgZ `vI|
(M) mvwg‡ii cÖwµqvq †gvU cÖ‡qvRbxq Zvc wbY©q Ki|
mgvavb: AB c‡_, dU = 0
mgvavb: Q1 = msw
 dQ = dW = – 2766.156 J
= 1  4200  (100 – 30)
dQ
 S1 = Q1 = 294000 J
T
–2766.156 Q2 = mlv
=
300 = 1  2.26  106
 S1 = –9.221 J/K  Q2 = 2.26  106 J
PB PC  cÖ‡qvRbxq Zvc, Q = Q1 + Q2
BC c‡_, =
TB TC = 294000 + 2.26  106
5.28  Q = 2554000 J
 TC =  300
4 A_©vr †gvU cÖ‡qvRbxq Zvc 2554000 J| (Ans.)
= 396 K (N) wmqv‡gi `vwe mwVK wK bvÑ MvwYwZK we‡køl‡Yi gva¨‡g
TC hvPvB Ki|
 S2 = nCVln
TB
mgvavb: wmqv‡gi cÖwµqvq,
= 1.6  20.78  ln
396
300 S1 = msiln
T2
T1
 S2 = 9.231 J/K
= 1  2100  ln
273
CA c‡_, S3 = 0 [∵ iæ×Zvcxq cÖwµqv] 263
 †gvU Gw›Uªwci cwieZ©b,  S1 = 78.367 J/K
S = S1 + S2 + S3 mlf
S2 =
= (–9.221 + 9.231 + 0) T
= 0.01 1  3.36  105
=
 S  0 273
A_©vr G›Uªwci cwieZ©b k~b¨ n‡e| (Ans.) S2 = 1230.769 J/K
ZvcMwZwe`¨v  Final Revision Batch 9
T3 24| wb‡P GKwU Bwćbi P – V †jLwPÎ †`Lv‡bv n‡jvÑ
S3 = mswln
T2 P A
= 1  4200  ln
303 T1 = 110C
273 Q1
 S3 = 437.896 J/K B
 SA = S1 + S2 + S3
= 78.367 + 1230.769 + 437.896 
D 
 SA = 1747.032 J/K C
mvwg‡ii cÖwKqvq, Q2 T2 = 0C
T4 V
S4 = msWln [Xv. †ev. 21]
T3
(K) cÖevn NbZ¡ Kx? [3q Aa¨vq]
= 1  4200  ln
373
(L) DÏxcKwU †h Bwćbi †jLwPÎ cÖKvk K‡i Zv e¨vL¨v Ki|
303
(M) DÏxc‡Ki Bwćbi m¤úvw`Z Kv‡Ri cwigvY wbY©q Ki|
 S4 = 872.952 J/K
mgvavb: D³ Bwćbi †ÿ‡Î,
mlv
S5 = T2
T4 K=
T1 – T2
1  2.26  106
= (273 + 0)
373 =
(273 + 110) – (273 + 0)
 S5 = 6058.981 J/K  K = 2.482
 SB = S4 + S5 Avevi,
= 872.952 + 6058.981 Q2
 SB = 6931.933 J/K K=
W
∵ SA < SB Q2
W=
A_©vr wmqv‡gi `vwe mwVK| (Ans.) 2.482
22| Av`k© ZvcgvÎv I Pv‡c GKwU wmwjÛv‡i GK †gvj  W = 0.403 Q2
A_©vr m¤úvw`Z Kv‡Ri cwigvY 0.403Q2|
wnwjqvg M¨vm ivLv Av‡Q| cieZ©x‡Z D³ wnwjqv‡gi AvqZb
(N) DÏxc‡Ki Bwćbi mv‡_ mvaviY Kv‡b©v Bwćbi wfbœZv
cÖ_‡g m‡gvò cÖwµqvq Ges c‡i iæ×Zvcxq cÖwµqvq 1.5 ¸Y
Av‡Q wK? we‡kølYmn gZvgZ `vI|
Kiv n‡jv| [iv. †ev. 22]
mgvavb: wfbœZv¸‡jv n‡jv:
(K) ZvcMwZwe`¨vi cÖ_g m~Î wee„Z Ki| i. g~jbxwZ:
(L) cÖvšÍxq wefe eZ©bxi Zwor PvjK ej A‡cÿv †QvU nq Zvc Drm Zvc Drm
†Kb? e¨vL¨v Ki| T1 T1
(M) iæ×Zvcxq cÖwµqvq M¨vmwUi P~ovšÍ Pvc wbY©q Ki| Q1 Q1
DËi: P2 = 51480.67 Pa
(N) DÏxcK Abyhvqx †Kvb cÖwµqvq †ewk KvR m¤úbœ n‡q‡Q? Zvc Zvc
W = Q 1 – Q2 W = Q 1 – Q2
MvwYwZK we‡køl‡Yi gva¨‡g eywS‡q `vI| BwÄb BwÄb
DËi: m‡gvò cÖwµqvq †ewk KvR T1 > T2
Q2 Q2
23| GKwU BwÄb 321C ZvcgvÎvi Zvc Drm †_‡K 521 J T2 T2
Zvc MÖnY K‡i 21C ZvcgvÎvi Zvc MÖvn‡K wKQz Zvc eR©b Zvc MÖvnK Zvcv avi
K‡i| [Xv. †ev. 21]
wPÎ: †iwd«Rv‡iUi
wPÎ: Zvc BwÄb
(K) f‡ii Av‡cwÿKZv Kx? [8g Aa¨vq] ii. Kvh©cÖYvjx:
(L) CP, CV Gi †P‡q eo wK? e¨vL¨v Ki|
T1 Q1 T1 Q1
(M) DÏxc‡K DwjøwLZ BwÄb Øviv K…ZKvR wbY©q Ki|
DËi: 263.11 J P P
(N) DÏxc‡K DwjøwLZ BwÄbwUi `ÿZv 4 ¸Y Kiv m¤¢e wKbv?  
T2 Q T2 Q
MvwYwZKfv‡e we‡kølY Ki| 2 2

DËi: `ÿZv 4 ¸Y Kivi Rb¨ g‡b Kwi MÖvn‡Ki ZvcgvÎv T2 V V


Ki‡Z n‡e| wPÎ: Zvc Bwćbi Rb¨ wPÎ: †iwd«Rv‡iU‡ii Rb¨
P – V †jLwPÎ Rb¨ P – V †jLwPÎ
T2 = –605.88 K
wKš‘ cÖK…wZ‡Z –605.88 K ZvcgvÎv AR©b Kiv m¤¢e bq| iii. Kg©`ÿZv:
T1 – T2
Avevi, g‡b Kwi, MÖvn‡Ki ZvcgvÎv w¯’i †i‡L Dr‡mi Zvc Bwćbi,  = T1
<1
ZvcgvÎvi cwieZ©b Ki‡Z n‡e hvi gvb T1| Zvn‡j, T1 = T
–288.24 K GB ZvcgvÎvI AR©b Kiv m¤¢e bq| †iwd«vRv‡iU‡i, K = T –2T , hv 1 Gi †ewkI n‡Z cv‡i|
1 2
myZivs, DÏxc‡K DwjøwLZ BwÄbwUi `ÿZv 4 ¸Y Kiv m¤¢e bq| A_©vr †iwd«Rv‡iU‡ii mv‡_ Kv‡b©v Bwćbi wfbœbZv Av‡Q|
nd
10  HSC Physics 2 Paper Chapter-1
25| 0C ZvcgvÎvi 1g cvwb‡K ei‡d cwiYZ Ki‡Z 27| GKwU Kv‡b©v Bwćbi Zvc Drm I Zvc Mvn‡Ki ZvcgvÎv
†iwd«Rv‡iUiwU b~¨bZg KvR m¤úv`b K‡i Q2 Zvc AcmviY h_vµ‡g 1025C I 475C Gi PviwU av‡c K…ZKv‡Ri
K‡i Ges Q1 Zvc cwi‡e‡k eR©b K‡i| cieZ©x‡Z cwigvY h_vµ‡g 1015J, 1070J, 480J I 230J| [Kz. †ev. 21]
†iwd«Rv‡iU‡ii cwie‡Z© Ggb GKwU Zvc BwÄb cÖwZ¯’vcb (K) GbUªwc Kv‡K e‡j?
Kiv n‡jv †h‡bv GwU †iwd«Rv‡iU‡ii wVK wecixZ AvPiY (L) cÖK…wZ‡Z ¯^vfvweK wbq‡g msNwUZ mKj ZvcMZxq
K‡i| (cvwbi Av‡cwÿK Zvc 4200 Jkg–1K–1 Ges eid cÖwµqvB AcÖZ¨veZ©x cÖwµqvÑ e¨vL¨v Ki|
Mj‡bi Av‡cwÿK myßZvc 336000 Jkg–1)| [iv. †ev. 21] (M) DÏxc‡Ki BwÄbwU ZvcMÖvn‡K Kx cwigvY Zvc eR©b
T1 = 30C Ki‡e wbY©q Ki|
mgvavb: †gvU K…ZKvR,
Q1 W = W 1 + W2 – W3 – W4
= 1015 + 1070 – 480 – 230
 W = 1375 J
 = 1 –   100%
W T2
 T1
= 1 – 
 475 + 273 
1025 + 273  100%
Q2

T2 = 0C

W
= 0.424 ∵  = W 
(K) AšÍt¯’ kw³ Kx? Q1  Q1
(L) m‡gvò cwieZ©‡bi †ÿ‡Î M¨v‡mi Av‡cwÿK Zvc e¨vL¨v 1375
 Q1 = = 3245 J
Ki| 0.424
(M) †iwd«Rv‡iUiwUi Kvh©m¤úv`‡bi mnM wbY©q Ki|  W = Q 1 – Q2
T2  Q2 = 3245 – 1375
mgvavb: Kvh©m¤úv`‡bi mnM, K = T – T  Q2 = 1870 J
1 2
(273 + 0) A_©vr Zvc MÖvn‡K Zvc eR©b Ki‡e 1870 J| (Ans.)
= (N) DÏxc‡K Kv‡b©v BwÄbwUi Dr‡mi ZvcgvÎv 48C e„w×
(273 + 30) – (273 + 0)
 K = 9.1 Ki‡j `ÿZvi cwieZ©b Ges ZvcMÖvn‡Ki ZvcgvÎv
A_©vr Kvh©m¤úv`‡bi mnM 9.1| (Ans.) 48C n«vm Ki‡j `ÿZvi cwieZ©b GKB n‡e wK bvÑ
(N) Zvc BwÄbwU cÖZ¨vMvgx n‡e wKbv? G›Uªwci mvnv‡h¨ MvwYwZK we‡køl‡Yi gva¨‡g gZvgZ `vI|
MvwYwZK we‡kølYc~e©K gšÍe¨ Ki| mgvavb: T1 = 1298 K
mgvavb: cÖ‡qvRbxq Zvc, T2 = 748 K
Q2 = mlf T1 = (1298 + 48) K
= 0.001  3360007 = 1346 K
 Q2 = 336 J 
T2 = (748 – 48) K
 Q1 = Q 2 + W Q2 = 700 K
∵K=
= (336 + 36.923) W W
 Q1 = 372.923 J 336 =
Q1
W=
T1 (273 + 30) 9.1 = 42.37%
=
T2 273 = 36.923 J
= 1.11 Dr‡mi ZvcgvÎv 48C evov‡j,
1 =  1 –
Q1 372.923 T2
 100%
Q2
=
336
= 1.11  T1
= 1 –
Q1 T 1 748 
 =
Q2 T 2  1346  100%
A_©vr Zvc BwÄbwU cÖZ¨vMvgx n‡e| (Ans.)  1 = 44.428%
26| myRvbv cÖgvY Pv‡c 50C ZvcgvÎvq GKwU wmwjÛv‡i 64  1 = 1 – 
= (44.428 – 42.37)%
gm Aw·‡Rb M¨vm wb‡q cixÿv KiwQj| †m M¨vmwU‡K
1 = 2.058%
iƒ×Zvcxq c×wZ‡Z msKzwPZ K‡i ZvcgvÎv 150C G DbœxZ ZvcMÖvn‡Ki ZvcgvÎv 48C Kgv‡j,
Kij| [iv. †ev. 21]
T2
(K) ZvcMwZwe`¨vi k~b¨Zg m~ÎwU wee„Z Ki| 2 = 1 –   100%
 T1
(L) ÒmgAvqZb cÖwµqvi wm‡÷‡gi K…ZKvR k~b¨|ÓÑ e¨vL¨v
= 1 –
700 
Ki|  1298  100%
(M) myRvbvi e¨eüZ M¨vmwUi P~ovšÍ Pvc KZ?  2 = 46.071%
DËi: 2.59 × 105 Nm–2  2 = 2 – 
(N) M¨v‡mi AvqZ‡bi Kxiƒc cwieZ©b N‡U? MvwYwZKfv‡e = (46.071 – 42.37)%
we‡kølY Ki|  2 = 3.701%
DËi: AvqZ‡bi cwieZ©b, V = – 0.023 m3 ∵ n1  2
AZGe, M¨vmwU 0.023 m3 ms‡KvwPZ nq| A_©vr `ÿZvi cwieZ©b GKB n‡e bv| (Ans.)
ZvcMwZwe`¨v  Final Revision Batch 11
28| [Kz. †ev. 21; w`. †ev. 21 (ms‡kvwaZ)] 31| wP‡Î GKwU Kv‡b©v Bwćbi P ~ V †jLwPÎ †`Lv‡bv n‡jv:
[P. †ev. 21]
Pvc, P(×105Nm–2)
6
B C
P A Q1 = 500J
5 T1 = 827C B
4
3
2 D
A
1 C
O(0,0) 1 2 3 4 5 6 D
AvqZb (V) Liter Q2 = 300J
wP‡Î †Kvb ZvcMZxq e¨e¯’v‡K ABC, AC I ADC c‡_ A T2 = 387C V
†_‡K C we›`y‡Z †bqv n‡jv| A I C we›`y‡Z e¨e¯’vwUi
AšÍt¯’kw³ h_vµ‡g 100J I 600J| (K) Av‡cwÿK †iva Kv‡K e‡j? [3q Aa¨vq]
(K) AšÍt¯’kw³ Kv‡K e‡j? (L) ZvcMwZwe`¨vq P – V †jLwP‡Îi †ÿÎdj Kx cÖKvk
(L) ZvcMwZwe`¨vi k~b¨Zg m~Î n‡Z Kxfv‡e ZvcgvÎvi K‡i? e¨vL¨v Ki|
aviYv cvIqv hvqÑ e¨vL¨v Ki| (M) DÏxc‡Ki Bwćbi `ÿZv wbY©q Ki|
(M) AC c‡_ m¤úvw`Z Kv‡Ri cwigvY wbY©q Ki| DËi: BwÄbwUi `ÿZv 40%
DËi: 1600 J (N) DÏxc‡Ki BwÄbwU cÖZ¨vMvgx bv AcÖZ¨vMvgxÑ MvwYwZK
(N) †Kvb c‡_ wm‡÷g KZ…©K M„nxZ Zv‡ci cwigvY †ewkÑ we‡køl‡Yi gva¨‡g gZvgZ `vI|
MvwYwZK we‡kølYc~e©K gZvgZ `vI| Q Q
DËi: QABC = 2900 J ; QADC = 1300 J ; AAC = 2100 J DËi: T 1 = 0.45 JK–1 Ges T 2 = 0.45 JK–1
1 2
QABC > QAC > QADC Q Q
ABC c‡_ wm‡÷g K…Z©K M„nxZ Zv‡ci cwigvY †ewk| cÖZ¨vMvgx Bwćbi †ÿ‡Î, T 1 = T 2
1 2
29| GKwU Zvc Bwćb M„nxZ Zv‡ci GK-Z…Zxqvsk eR©b AZGe, DÏxc‡K DwjøwLZ BwÄbwU cÖZ¨vMvgx|
K‡i| Dr‡mi ZvcgvÎv 200K e„w× Ki‡j `ÿZv 80% nq|
32| GKwU cÖZ¨veZ©x Zvc Bwćbi Zvc Drm Ges Zvc
BwÄbwU Zvc Drm †_‡K 1500 J Zvc MÖnY K‡i| [h. †ev. 21]
MÖvn‡Ki ZvcgvÎv h_vµ‡g 550C Ges 138C| m‡gvò
(K) Zvcxq mgZv ej‡Z Kx eyS?
(L) `ywU eidLÐ GKwUi Dci AciwU †P‡c ai‡j Zv GKwU cÖmvi‡Y M„nxZ Zv‡ci cwikvY 850J| [P. †ev. 21]
L‡Ð cwiYZ nq †Kb? Y
A

(M) DÏxc‡Ki WvUv e¨envi K‡i cÖ_g ch©v‡q Bwćbi `ÿZv T1 = 550C
wbY©q Ki| P
B
DËi: cÖ_g ch©v‡q Bwćbi `ÿZv 66.67%
(N) Dr‡mi ZvcgvÎv w¯’i †i‡L DÏxc‡K DwjøwLZ hš¿wU‡K

Kxfv‡e cÖZ¨veZ©x Bwćb iƒcvšÍi Kiv hvqÑ MvwYwZK D C
we‡køl‡Yi gva¨‡g e¨vL¨v Ki| T2 = 138C
DËi: Dr‡mi ZvcgvÎv w¯’i †i‡L MÖvn‡Ki ZvcgvÎv 66.67 K X
O V
e„w× Ki‡j hš¿wU‡K cÖZ¨vMvgx Bwćb iƒcvšÍi Kiv hvq|
(K) †iv‡ai DòZv mnM Kv‡K e‡j? [3q Aa¨vq]
30| [h. †ev. 21]
(L) Cp Ges Cv Gi g‡a¨ †KvbwU eoÑ e¨vL¨v Ki|
Zvc
Kvh©Ki R¡vjvbxi
(M) DÏxc‡Ki AB As‡ki GbUªwc wbY©q Ki|
BwÄb Zvc Dr‡mi MÖvn‡Ki
e¯‘i fi Av‡cwÿK ZvcDËi: 1.03 JK–1
ZvcgvÎv
A 327C –13C 0.8 kg 1980 Jkg K
–1 –1 (N) DÏxc‡Ki Zvc BwÄbwUi `ÿZv wظY e„w× Ki‡Z Kx
–1 –1
B 627C 127C 1.2 kg 1230 Jkg K e¨e¯’v MÖnY Kiv †h‡Z cv‡i? MvwYwZKfv‡e we‡kølb Ki|
(K) Zvcxq mgZv Kx? DËi: `ÿZv wظY ev (2 × 50.06%) = 100.12% = 1.0012
(L) m‡gvò cÖwµqvq M¨vm Øviv m¤úvw`Z KvR mieivnK…Z Kivi Rb¨ g‡b Kwi MÖvn‡Ki ZvcgvÎv T2 Ki‡Z n‡e|
Zvckw³i mgvb nq, e¨vL¨v Ki| T2 = – 0.9876 K
(M) B Bwćbi `ÿZv wbY©q Ki| wKš‘ cÖK…wZ‡Z – 0.9876 K ZvcgvÎv AR©b Kiv m¤¢e bq|
DËi: 55.55%
g‡b Kwi, MÖvn‡Ki ZvcgvÎv w¯’i †i‡L Dr‡mi ZvcgvÎvi
(N) DÏxc‡Ki Av‡jv‡K †Kvb BwÄbwU †ewk cwi‡ekevÜe
cwieZ©b Ki‡Z n‡e hvi gvb T1|
n‡e MvwYwZKfv‡e we‡kølY K‡i gZvgZ `vI|
DËi: dSA = –1324.62 JK–1 ; dSB = –1196.93 JK–1 T1 = – 342.5 × 103 K
dSB > dSA GB ZvcgvÎvI AR©b Kiv m¤¢e bq|
A BwÄbwU †ewk cwi‡ek evÜe| myZivs, DÏxc‡Ki Zvc BwÄbwUi `ÿZv wظY e„w× Kiv m¤¢e bq|
nd
12  HSC Physics 2 Paper Chapter-1
33| STP †Z 64 gm wnwjqvg M¨vm‡K m‡gvò cÖwµqvq Ges 36| GKwU gUi Mvwo •Zwii †Kv¤úvwb Zv‡`i Mvwoi Rb¨
iæ×Zvcxq cÖwµqvq Avjv`v Avjv`vfv‡e cÖwZav‡c AvqZb 40% `ÿZvm¤úbœ GKwU BwÄb •Zwi Kij| BwÄbwU 600K
wZb¸Y cÖmvwiZ Kiv n‡jv| d‡j Pvc I AvqZ‡bi cwieZ©b ZvcgvÎvi Drm †_‡K Zvc MÖnY K‡i| [wm. †ev. 21]
(K) ZvcMwZwe`¨vi cÖ_g m~ÎwU wee„Z Ki|
nq Ges KvR m¤úbœ nq| [R = 8.31 JK–1 mol–1,  = 1.40]
[e. †ev. 21]
(L) cvi` GKwU DËg DòZvwgwZK c`v_©Ñ e¨vL¨v Ki|
(cÖkœwU ÎæwUc~Y©| wnwjqvg M¨vm GK cvigvYweK M¨vm weavq  = (M) DÏxc‡Ki BwÄbwUi Zvc MÖvn‡Ki ZvcgvÎv KZ?
1.67 nIqv DwPZ wQ‡jv| wKš‘ cÖ‡kœ  = 1.40 †`Iqv n‡q‡Q|)
DËi: 360 K
(K) wm‡÷g Kx? (N) †Kv¤úvwbwU Zv‡`i Bwćbi `ÿZv 10% evov‡bvi †ÿ‡Î
Dr‡mi ZvcgvÎv e„w× A_ev MÖvn‡Ki ZvcgvÎv n«vm
(L) ZvcMwZwe`¨vi cÖ_g m~ÎwU kw³i wbZ¨Zvi GKwU we‡kl
†KvbwU myweavRbK? MvwYwZKfv‡e we‡kølb Ki|
iƒc gvÎÑ e¨vL¨v Ki| DËi: MÖvn‡Ki ZvcgvÎv n«vm 60 K
(M) iæ×Zvcxq cÖwµqvq AvqZb cwieZ©‡b P~ovšÍ Pvc wbY©q Ki| Dr‡mi ZvcgvÎv e„w× 120 K
DËi: P~ovšÍ Pvc n‡e 2.18 × 104 Nm–2 A_©vr, BwÄbwUi `ÿZv 10% evov‡bvi †ÿ‡Î Dr‡mi ZvcgvÎv
(N) Dfq‡ÿ‡Î K…ZKvR Awfbœ n‡e wK? MvwYwZK we‡kølY `vI| 120K e„w× A_ev MÖvn‡Ki ZvcvgvÎv 60 K n«vm Ki‡Z n‡e|
DËi: m‡gvò cÖwµqvq KvR 39877.52 J; iæ×Zvcxq cÖwµqvq G‡ÿ‡Î MÖvn‡Ki ZvcgvÎv n«vm Kiv myweavRbK|
KvR 32269.4 J 37| GKwU Kv‡b©vi BwÄb 200C ZvcgvÎvq Zvc Drm †_‡K
W1  W2 600J Zvc MÖnY K‡i Ges MÖvn‡K 400J Zvc eR©b K‡i|
myZivs, Dfq‡ÿ‡Î K…ZKvR Awfbœ n‡e bv| BwÄbwUi Dr‡mi ZvcgvÎv cwieZ©b bv K‡iI h‡š¿i `ÿZv
70% Kiv m¤¢e| [w`. †ev. 21]
34| GKwU Kv‡b©v BwÄb hLb 310K ZvcgvÎvq Zvc MÖvn‡K
(K) †gvjvi Zvc aviY ÿgZv Kv‡K e‡j?
_v‡K ZLb Gi Kg©`ÿZv 40%| Bwćbi Zvc Dr‡mi (L) ÒRM‡Zi Zvcxq g„Zz¨i KviY Zvcxq mvg¨ve¯’v|ÓÑ
ZvcgvÎv cwieZ©b K‡i Kg©`ÿZv e„w× Kiv hvq| [e. †ev. 21] e¨vL¨v Ki|
(K) GbUªwc Kx? (M) Zvc MÖvn‡Ki ZvcgvÎv wbY©q Ki|
(L) iæ×Zvcxq cÖwµqvq GbUªwc w¯’i _v‡KÑ e¨vL¨v Ki| DËi: 315.33 K
(M) DÏxc‡Ki Bwćbi Dr‡mi ZvcgvÎv wbY©q Ki| (N) DÏxc‡Ki `ÿZv m¤ú‡K© Dw³wU h_v_© wK-bv?
DËi: 516.67 K MvwYwZKfv‡e hvPvB Ki|
T –x
(N) Kg©`ÿZv 80% Ki‡Z n‡j Dr‡mi ZvcgvÎv wظY DËi:  = 1 – 2T
1
Ki‡Z n‡e wK-bv? MvwYwZK hyw³ `vI| x = 173.43 K
DËi: T1 = 3 × T1 BwÄbwUi Dr‡mi ZvcgvÎv cwieZ©b bv K‡iI MÖvn‡Ki
Kg©`ÿZv 80% Ki‡Z n‡j Dr‡mi ZvcgvÎv wZb¸Y Ki‡Z ZvcgvÎv 173.43 K n«vm K‡i h‡š¿i `ÿZv 70% Kiv m¤¢e|
n‡e| DÏxc‡Ki `ÿZv m¤ú‡K© Dw³wU h_v_©|
35| cixÿvMv‡i 750 mm cvi` Pv‡c Ges 30C ZvcgvÎvq 38| A I B `ywU BwÄb| A BwÄbwU – 60C ZvcgvÎvi wb¤œ
Zvcavi †_‡K 2400J Zvc MÖnY K‡i Ges D”P Zvcvav‡i
wc÷bhy³ `ywU M¨vm wmwjÛv‡ii cÖwZwU‡Z 2 mol wÎcigvYyK
3600J Zvc eR©b K‡i| Aciw`‡K B BwÄb 1g av‡c 0C
M¨vm ivLv Av‡Q| Dfq wmwjÛv‡i Pvc AcmviY K‡i cÖ_g
ZvcgvÎvi 5 kg eid‡K 0C ZvcgvÎvi cvwb‡Z cwiYZ K‡i
wmwjÛv‡ii M¨v‡mi AvqZb `ªæZ wظY Kiv nq| Aciw`‡K
Ges 2q av‡c 0C ZvcgvÎvi 5 kg cvwb‡K 100C
wØZxq wmwjÛv‡i M¨v‡mi AvqZb ax‡i ax‡i wظY nq| ZvcgvÎvi cvwb‡Z cwiYZ K‡i| eid Mj‡bi Av‡cwÿK
[wm. †ev. 21]
myßZvc 336000 Jkg–1 Ges cvwbi Av‡cwÿK Zvc
(K) GbUªwc Kv‡K e‡j? 4200Jkg–1K–1. [g. †ev. 21]
(L) RM‡Zi Zvcxq g„Zz¨i Rb¨ `vqx GbUªwcÑ e¨vL¨v Ki| (K) Zvc BwÄb Kx?
(M) cÖ_g wmwjÛv‡i M¨v‡mi P~ovšÍ ZvcgvÎv wbY©q Ki| (L) iæ×Zvcxq cÖwµqvq cv‡Îi †`Iqvj Acwievnx ivLv
DËi: 242.4 K nq †Kb?
(N) Dfq wmwjÛv‡i Pvc Acmvi‡Y K…ZKvR mgvb n‡e wK? (M) A-Bwćbi D”P Zvcvav‡ii ZvcgvÎv wbY©q Ki|
MvwYwZK we‡kølY Ki| DËi: 319.5 K
(N) DÏxc‡Ki B-Bwćbi 1g I 2q av‡c GbUªwci cwieZ©b
DËi: cÖ_g wmwjÛv‡i iæ×Zvcxq cÖwµqvq K…ZKvR, W1 =
mgvb n‡e wK? MvwYwZK gZvgZ Dc¯’vcb Ki|
3053.5 J| wØZxq wmwjÛv‡i m‡gvò cÖwµqvq K…ZKvR, W2 =
DËi: 1g av‡c GbUªwci cwieZ©b 6153.85 JK–1
3492.27 J| 2q av‡c GbUªwci cwieZ©b 6554.24 JK–1
W1  W2 DÏxc‡Ki B Bwćbi 1g I 2q av‡c GbUªwci cwieZ©b mgvb
Dfq wmwjÛv‡i Pvc Acmvi‡Y K…ZKvR mgvb n‡e bv| n‡e bv|
ZvcMwZwe`¨v  Final Revision Batch 13
39| Rv‡n` I kv‡n` mncvVx| Rv‡n` c`v_©weÁvb j¨v‡e 42| GKRb wkÿv_©x 84 kJ Zvc mieivn K‡i 30C ZvcgvÎvi
GKwU †iva _v‡g©vwgUvi wbj| hvi eid we›`y I ev®ú we›`y‡Z
5 kg cvwb‡K DËß Ki‡jv| Aci wkÿv_©x wbqb Zvc mieivn
†iva 12 Ges 24| Aciw`‡K, kv‡n` 5 atm Pvcwewkó K‡i 100C ZvcgvÎvi cvwb‡K m¤ú~Y©iƒ‡c ev‡®ú cwiYZ
GKwU cv‡Î Ave× M¨v‡m 2400 J Zvckw³ mieivn K‡i|
Ki‡jv| cvwbi Av‡cwÿK Zvc 4200 Jkg–1 K–1 Ges
G‡Z M¨v‡mi AvqZb 1600 cm3 †_‡K 3200 cm3 nq Ges
AšÍt¯’ kw³i cwieZ©b nq 1589.4 J| ev®úxfe‡bi Av‡cwÿK myßZvc 2.26 × 106 Jkg–1 Ges
[g. †ev. 21]
(K) cÖZ¨vMvgx cÖwµqv Kx? ev®úxfe‡bi Av‡cwÿK myßZvc 2.26 × 106 Jkg–1. [Kz. †ev. 19]
(L) Kxfv‡e Bwćbi `ÿZv e„w× Kiv hvq? e¨vL¨v Ki| (K) m‡gvò cÖwµqv Kv‡K e‡j?
(M) 250C ZvcgvÎvq Rv‡n‡`i _v‡g©vwgUv‡ii †iva wbY©q Ki|
(L) c„w_exi Zwor wefe k~b¨ aiv nq †Kb? e¨vL¨v Ki| [2q
R –R Aa¨vq]
DËi: †iva _v‡g©vwgUv‡i,  = R  – R0  100
100 0
(M) wjLb cvwbi ZvcgvÎv KZUzKz e„w× K‡iwQj? wbY©q Ki|
(R100 – R0)
 R = R0 + DËi: 4C e„w× K‡iwQj
100
250(24 – 12) (N) DÏxc‡Ki †Kvb cÖwµqvwU AwaK cwi‡ekevÜe? †Zvgvi
 12 +
100 Dˇii mc‡ÿ hyw³ `vI|
 R0 = 42 DËi: wjLb KZ…©K GbUªwci cwieZ©b 275.4 JK–1
A_©vr 250C ZvcgvÎvi _v‡g©vwgUv‡ii †iva 42| (Ans.) wbq‡bi cÖwµqvi †ÿ‡Î G›Uªªwci cwieZ©b 30294.9 JK–1
(N) DÏxc‡K kv‡n‡`i cixÿYwU ZvcMwZwe`¨vi 1g m~·K
mg_©b K‡i wK? MvwYwZKfv‡e we‡kølY Ki| wjL‡bi †ÿ‡Î GbUªwci cwieZ©b †ek Kg ZvB wjL‡bi
mgvavb: ZvcMwZwe`¨vi cÖ_g m~Îg‡Z, cÖwµqvwU AwaK cwi‡ekevÜe|
dQ = dU + PdV 43| A cÖwµqvq 2 kg cvwb‡K 0C ZvcgvÎv †_‡K ev‡®ú
= 1589.4 + 5  1.013  105 (3200 – 1600)  10–6 iƒcvšÍwiZ Kiv n‡jv| Ab¨w`‡K B cÖwµqvq 10C ZvcgvÎvi 5
= 2399.8 J
 2400 J kg cvwb‡K 100C ZvcgvÎvi cvwb‡Z cwiYZ Kiv n‡jv|
A_©vr kv‡n‡`i cixÿYwU ZvcMwZwe`¨vi 1g m~·K (cvwbi Av‡cwÿK Zvc 4200 Jkg–1K–1 Ges cvwbi ev®úxfe‡bi
mg_©b K‡i| (Ans.) Av‡cwÿK myßZvc 2.26 × 106 Jkg–1) [h. †ev. 19]
40| Zvc cwievnx I Acwievnx c`v‡_©i •Zwi `ywU Nl©Ynxb (K) Av‡cwÿK Zvc Kv‡K e‡j?
wc÷bhy³ wmwjÛv‡i 2 × 105 Pa Pv‡c I 600 K ZvcgvÎvq (L) Zwor cÖev‡ni d‡j cwievnx‡Z Zvc Drcbœ nq †Kb?
1 mol wnwjqvg M¨vm Av‡Q| cieZ©x‡Z Dfq wmwjÛv‡i Pv‡ci e¨vL¨v Ki| [3q Aa¨vq]
cwigvY A‡a©K Kiv n‡jv| (wnwjqv‡gi †ÿ‡Î  = 1.67 Ges
(M) DÏxc‡K A cÖwµqvq †gvU cÖ‡qvRbxq Zvc wbY©q Ki|
R = 8.31 Jmol–K–1) [Xv. †ev. 19]
(K) Zvc MwZwe`¨vi 1g m~ÎwU wee„Z Ki| DËi: 5376000 J
(L) m‡gvò cÖwµqvq dW = dQ †Kb? e¨vL¨v Ki| (N) DÏxc‡K †Kvb cÖwµqvq wek„•Ljvi gvÎv †ewk?
(M) Acwievnx wmwjÛv‡i P~ovšÍ ZvcgvÎv wbY©q Ki| MvwYwZKfv‡e we‡kølY Ki|
DËi: 454.34 K DËi: A cÖwµqvq GbUªwci †gvU cwieZ©b 14782.6 JK–1
(N) wmwjÛvi؇qi g‡a¨ †KvbwUi †ÿ‡Î K…ZKvR †ewk? hvPvB B cÖwµqvq GbUªwci †gvU cwieZ©b 5798.8 JK–1
Ki| A_©vr A cÖwµqvq GbUªwc e„w× cv‡e A‡bK †ewk|
DËi: cwievnx wmwjÛv‡ii †ÿ‡Î K…ZKvR W1 = 3456 J
A cÖwµqvq wek„•Ljvi gvÎv †ewk|
Acwievnx wmwjÛv‡ii †ÿ‡Î K…ZKvR, W2 = 1806.62 J
W 1 > W 2 ; A_©vr cwievnx wmwjÛv‡ii †ÿ‡Î K…ZKvR 44| 30C ZvcgvÎvi 0.05 kg cvwb‡K ¯^vfvweK Pv‡c 2 ×
†ewk n‡e| 10–3 m3 AvqZ‡bi ev‡®ú cwiYZ Kiv n‡jv| GB cÖwµqvq
41| Øv`k †kÖwYi weÁvb wefv‡Mi `yÕRb wkÿv_©x, myRb I wm‡÷‡gi AšÍt¯’ kw³i cwieZ©b 1.28 × 104 J| [cvwbi
•kjx, GKwU Av`k© M¨vm‡K 27C ZvcgvÎv I 300 cm cvi` ev®úxfe‡bi Av‡cwÿK myßZvc Lv = 2.26 × 106 Jkg–1 Ges
Pv‡c h_vµ‡g m‡gvò I iæ×Zvcxq cÖwµqvq M¨v‡mi AvqZb cvwbi Av‡cwÿK Zvc s = 4200 Jkg–1 K–1] [P. †ev. 19]
A‡a©K Ki‡jv| M¨vmwU wØcigvYyK| [iv. †ev. 19]
(K) DòZv Kv‡K e‡j?
(K) cvwbi •Îawe›`y Kv‡K e‡j?
(L) iæ×Zvcxq cÖmvi‡Y wm‡÷g kxZj nqÑ e¨vL¨v `vI|
(L) P-V †jLwP‡Î iƒ×Zvcxq †iLv‡K mg-GbUªwc †iLv ejv
nq †Kb? (M) DÏxc‡Ki cvwb‡K ev‡®ú cwiYZ Kivi Rb¨ G›Uªwci
(M) •kjx KZ…©K msNwUZ ZvcMZxq cwieZ©‡b M¨vmwUi cwieZ©b KZ n‡e wbY©q Ki|
ZvcgvÎv KZ n‡e? DËi: 346.6 JK–1
DËi: 122.85C (N) DÏxc‡Ki cÖwµqvwU ZvcMwZwe`¨vi cÖ_g m~·K mg_©b
(N) DÏxc‡Ki Av‡jv‡K myRb I •kjxi g‡a¨ †K †ewk KvR K‡i wK bvÑ MvwYwZK we‡køl‡Yi gva¨‡g hvPvB Ki|
m¤úv`b Ki‡e? MvwYwZK we‡køl‡Yi gva¨‡g e¨vL¨v Ki| DËi: U + W = 1.30 × 104J ; Q = 1.28 × 105 J
DËi: myRb 1728.85n J cwigvY KvR K‡i‡Q
Q  U + W
•kjx 1992.24 n J cwigvY KvR K‡i‡Q|
•kjx myR‡bi †P‡q †ewk KvR K‡i‡Q| DÏxc‡Ki cÖwµqvwU ZvcMwZwe`¨vi cÖ_g m~·K mg_©b K‡i bv|
nd
14  HSC Physics 2 Paper Chapter-1
45| GKwU Bwćbi mvnv‡h¨ cÖgvY ZvcgvÎv I Pv‡ci 16 gm 48| GKwU Zvc Bwćbi M„nxZ Zvc I ewR©Z Zv‡ci AbycvZ
nvB‡Wªv‡Rb M¨v‡mi AvqZb m‡gvò I iƒ×Zvcxq cÖwµqvq 5 : 2| Dr‡mi ZvcgvÎv 110K evov‡j `ÿZv 70% nq|
wظY Kiv nj| BwÄbwU 227C Ges 0C ZvcgvÎvq Kvh© BwÄbwU Zvc Drm n‡Z 1200J Zvc MÖnY K‡i|
m¤úv`b Ki‡Z cv‡i| [e. †ev. 19] [Xv., h., wm. I w`. †ev. 18]
(K) GbUªwc Kv‡K e‡j? (K) civ‣e`y¨wZK aªæeK Kx? [2q Aa¨vq]
(L) Cp A‡cÿv Cv †QvU †Kb? e¨vL¨v Ki| (L) PvwR©Z †MvjvKvi cwievnxi †K‡›`ª I c„‡ô wefe mgvbÑ
(M) DÏxc‡Ki BwÄbwUi `ÿZv wbY©q Ki| e¨vL¨v Ki| [2q Aa¨vq]
DËi: 45.4% (M) BwÄbwUi `ÿZv †ei Ki|
(N) GKB cwigvY cÖmvi‡Yi Rb¨ DÏxc‡Ki Av‡jv‡K †Kvb DËi: 60%
cÖwµqvq †ewk KvR m¤úvw`Z n‡e Zvi MvwYwZK we‡kølY `vI| (N) Zvc Dr‡mi ZvcgvÎv AcwiewZ©Z †i‡L GwU‡K Kxfv‡e
DËi: m‡gvò cÖwµqvq K…ZKvR W1 n‡j, W1 = 12580 J cÖZ¨veZ©x Bwćb iƒcvšÍi m¤¢eÑ we‡kølY Ki|
iæ×Zvcxq cÖwµqvq K…ZKvR W2 n‡j, W2 = 10985 J DËi: Zvc MÖvn‡Ki ZvcgvÎv (176 – 132) K ev 44 K e„w×
A_v©r, m‡gvò cÖwµqvq m¤úvw`Z KvR †ewk| Ki‡Z n‡e|
46| Awmb wb‡Pi †jLwP‡Îi PµwU we‡kølY K‡i ejj| GwU 1
49| GKwU cÖZ¨vMvgx BwÄb M„nxZ Zv‡ci 6 Ask Kv‡R
Kv‡b©vi Pµ| [wm. †ev. 19]
P cwiYZ K‡i| Gi ZvcMÖvn‡Ki ZvcgvÎv 54K Kgv‡j `ÿZv
wظY nq| Dr‡m e¨eüZ c`v‡_©i fi m GKK I Av‡cwÿK
A (P1, 10)
Pvc (Nm–2)

Zvc s GKK| [iv. Kz. P. e. †ev. 18]


T1 = 434K
B = (P2, 20)
(K) AšÍt¯’ kw³ Kv‡K e‡j?
(L) Bwćbi Kg©`ÿZv I †iwd«Rv‡iU‡ii Kvh©m¤úv`K
¸Yvs‡Ki g‡a¨ cv_©K¨ wbiƒcY Ki|
D(P4,15) C (P3, 30) (M) Gi Zvc Dr‡mi ZvcgvÎv wbY©q Ki|
T2 = 350K
O DËi: 324 K
V
AvqZb (cm3) (N) Bwćbi `ÿZv wظY Kiv n‡j Dr‡m e¨eüZ c`v‡_©i
†gvjvi M¨vm aªæeK 8.31 J mol–1K–1 GbUªwc evo‡e bvwK Kg‡e MvwYwZKfv‡e e¨vL¨v `vI|
(K) Avav‡bi †Kvqv›Uvqb Kx? DËi: GbUªwci cwieZ©b 0.223 ms > 0
(L) mgvšÍivj cvZ avi‡Ki aviKZ¡ cvZ؇qi ga¨eZ©x AZGe, MÖvn‡Ki ZvcgvÎv cwieZ©b K‡i `ÿZv wظY Ki‡j
gva¨‡gi Dci wbf©i K‡i wK? e¨vL¨v Ki| [2q Aa¨vq] Dr‡m e¨eüZ c`v‡_©i GbUªwci cwieZ©b n‡e bv| wKš‘
(M) 1 †gvj Av`k© M¨v‡mi Rb¨ DÏxc‡Ki AB As‡k K…Z Dr‡mi ZvcgvÎv e„w× K‡i `ÿZv wظY Ki‡j Dr‡m e¨eüZ
KvR wbY©q Ki| c`v‡_©i GbUªwc e„w× cv‡e|
DËi: 2499.863 J 50| knx` GKwU BwÄb •Zwi K‡i `vex Kij Zvi BwÄbwU
(N) Zvwm‡bi we‡kølY mwVK wQj wKbv G›Uwc cwieZ©‡bi Kv‡b©vi cÖZ¨vMvgx BwÄb| GwU Drm n‡Z M„nxZ Zv‡ci GK
mv‡c‡ÿ MvwYwZK we‡kølYmn gšÍe¨ Ki|
PZz_©vsk Kv‡R cwiYZ K‡i evKx 300J Zvc MÖvn‡K eR©b
mgvavb: PµwU‡Z †gvU GbUªwci cwieZ©b dS1 = dS2 + 0 + 0
K‡i| knx` Zvi Bwćbi Zvc Dr‡m I MÖvn‡Ki ZvcgvÎv
= 5.76 – 5.76 + 0 + 0
†c‡qwQj h_vµ‡g 350K I 310K| [Xv. †ev. 17]
=0
(K) ZvcMwZwe`¨vi 2q m~Î wjL|
47| GKwU Kv‡b©vBwÄb m‡gvò cÖmviY, iƒ×Zvcxq cÖmviY,
(L) Zv‡ci cwienb AcÖZ¨veZ©x cÖwµqv †Kb? e¨vL¨v Ki|
m‡gvò ms‡KvPb I iæ×Zvcxq ms‡KvPb G PviwU av‡c KvR
K‡i| Bwćbi Zvc Drm I Zvc MÖvn‡Ki ZvcgvÎv h_vµ‡g (M) Zvc Dr‡mi Zvc wbY©q Ki|
1000C I 500C| avc PviwU‡Z m¤úvw`Z Kv‡Ri cwigvY
DËi: 400 J
h_vµ‡g 900J, 800J, 500J I 250J. [w`. †ev. 19]
(N) ev¯Í‡e †`Lv †Mj Zvi `vex mwVK bq| BwÄbwU‡K
(K) aviK‡Z¡i msÁv `vI| [2q Aa¨vq] cÖZ¨vMvgx Ki‡Z Kx ai‡bi cwieZ©b Ki‡Z n‡e
(L) †Mvj‡Ki Af¨šÍ‡i mKj we›`y‡Z wefe mgvbÑ e¨vL¨v MvwYwZK we‡køl‡Yi gva¨‡g e¨vL¨v Ki|
Ki| [2q Aa¨vq] DËi: Dr‡mi ZvcgvÎv, T1 = 413.33 K Ki‡j ev 63.33 K
(M) BwÄb KZ…©K †gvU m¤úvw`Z Kv‡Ri cwigvY wbY©q Ki| e„w× Ki‡j BwÄbwU cÖZ¨veZ©x n‡e|
DËi: 950 J 51| wc÷bhy³ GKwU wmwjÛv‡i wKQz M¨vm Ave× Av‡Q| 300
(N) DÏxc‡Ki BwÄbwUi Zvc Dr‡mi ZvcgvÎv evov‡bvi Pa w¯’i Pv‡c ax‡i ax‡i 600 J Zvckw³ mieivn Kivq wm‡÷g
†P‡q Zvc MÖvn‡Ki ZvcgvÎv mgcwigvY Kgv‡j `ÿZv KZ…©K m¤úvw`Z Kv‡Ri cwigvY nj 900 J| [iv. †ev. 17]
Av‡iv e„w× cv‡eÑ MvwYwZK we‡køl‡Yi gva¨‡g h_v_©Zv (K) Zvc Bwćbi Kg©`ÿZv Kx?
hvPvB Ki| (L) iæ×Zvcxq ms‡KvP‡b wm‡÷‡gi Af¨šÍixY kw³ e„w× cvq †Kb?
DËi: BwÄbwUi `ÿZv,  = 43.69% (M) M¨v‡mi AvqZ‡bi cwieZ©b wbY©q Ki|
 = 47.13% ;  >  DËi: 3m3
ZvcMwZwe`¨v  Final Revision Batch 15
(N) ÒDÏxcK Abymv‡i kw³i msiÿYkxj bxwZwU jw•NZ nq 54| GKwU Kv‡b©v BwÄb 510 K ZvcgvÎvi Drm †_‡K 1400J
bv|ÓÑ MvwYwZK we‡køl‡Yi gva¨‡g Gi mZ¨Zv hvPvB Ki| Zvc †kvlY K‡i MÖvn‡K 800J Zvc eR©b Ki| [P. †ev. 17]
DËi: dQ = 600J ; dU = – 300J [ÔMÕ n‡Z cvB] Ges (K) ZvcMwZwe`¨vi k~b¨Zg m~Î Kx?
wm‡÷g KZ…©K m¤úvw`Z KvR = 900 J. (L) RM‡Zi Zvcxq g„Zz¨ ej‡Z wK eyS?
 dU + dW = –300 J + 900 J = 600 J (M) BwÄbwUi Kg©`ÿZv wbY©q Ki|
dQ = dU + dW DËi: 42.86%
DÏxcK Abymv‡i kw³i msiÿYkxj bxwZwU jw•NZ nq bv| (N) BwÄbwUi Kg©`ÿZvi 54% Ki‡Z n‡j Kx Kx e¨e¯’v
†bIqv †h‡Z cv‡i Zv MvwYwZKfv‡e e¨vL¨v Ki|
52| c`v_©weÁv‡bi GKRb M‡elK mKj †`vlÎæwUgy³
DËi: Drm †_‡K 1739.13J Zvc †kvlY Ki‡j Kg©`ÿZv
GKwU Zvc BwÄb •Zwi Ki‡jb; hv Kv‡b©v Bwćbi mv‡_
54% Kiv m¤¢e|
Zzjbxq| BwÄbwU 200C ZvcgvÎvq Zvc Drm †_‡K 600J Zvc MÖvn‡K 644J Zvc eR©b Ki‡jI h‡š¿i `ÿZv 54% Kiv m¤¢e|
Zvc MÖnY K‡i Ges MÖvn‡K 400J Zvc eR©b K‡i| wZwb 55| 0C ZvcgvÎvi 505g eid‡K 47.5C ZvcgvÎvi
ej‡jb, ÒDr‡mi ZvcgvÎv cwieZ©b bv K‡iI h‡š¿i `ÿZv 4.8kg cvwbi mv‡_ †gkv‡bv nj| [eid Mj‡b Av‡cwÿK
70% Kiv m¤¢e|Ó myßZvc lf = 3,36,000 Jkg–1, cvwbi Av‡cwÿK Zvc SW =
[Kz. †ev. 17]
(K) AcÖZ¨veZ©x cÖwµqv Kv‡K e‡j? 4200 Jkg–1K–1 I cvwbi ev®úxfe‡bi Av‡cwÿK myßZvc
(L) wK¬wbK¨vj _v‡g©vwgUv‡ii 0F †_‡K `vM KvUv _v‡K bv lv = 22,68,000 Jkg–1] [e. †ev. 17]
†Kb? e¨vL¨v Ki| (K) nj wµqv Kx? [4_© Aa¨vq]
(M) Zvc MÖvn‡Ki ZvcgvÎv wbY©q Ki| (L) avZzmg~‡ni m~Pb K¤úvsK bv _vK‡j Kx NUbv NUZ e¨vL¨v
DËi: 42.33C Ki| [8g Aa¨vq]
(M) DÏxc‡K ïaygvÎ eid Mjvi d‡j G›Uªwci KZ cwieZ©b n‡e?
(N) M‡el‡Ki Dw³wU h_v_© wKbv? MvwYwZK we‡køl‡Yi
DËi: 621.54 JK–1
gva¨‡g †`LvI|
(N) Zzwg Kxfv‡e DÏxc‡Ki wgkÖ‡Yi †gvU G›Uªwci cwieZ©b
DËi: Dr‡mi ZvcgvÎv w¯’i †i‡L MÖvn‡Ki ZvcgvÎv Kwg‡q wbY©q Ki‡e Zv MvwYwZKfv‡e e¨vL¨v Ki|
141.9 K G cwiYZ Kiv n‡jI `ÿZv 70% Kiv m¤¢e; ZvB mgvavb: S1 = 621.54 JK–1 : S2 = 258.33 JK–1
M‡el‡Ki Dw³wU h_v_©| S3 = –778.46 JK–1
53| GKwU cÖZ¨veZ©x Zvc Bwćbi Zvc Drm Ges Zvc wm‡÷‡gi †gvU G›Uªwci cwieZ©b S = S1 + S2 + S1
MÖvn‡Ki ZvcgvÎv h_vµ‡g 550C Ges 138C| m‡gvò = 621.54 + 258.33 – 778.46
cÖmvi‡Y M„nxZ Zv‡ci cwigvY 750 J. [h. †ev. 17] = 101.41 JK–1
56| GKwU Kwdc‡U bvovbxi mvnv‡h¨ Lye †Rv‡i Kwd bvov
Y A
T1 = 550C nj| d‡j Kwdi AvqZb 50 cm3 e„w× †cj| GKB mg‡q
KwdcU n‡Z 40 J Zvc cwienb Ges cwiPjb c×wZ‡Z wbM©Z
P  B nj| evqyi Pvc = 1 × 105 Nm–2| [wm. †ev. 17]
(K) Zvcxq wm‡÷g Kx?
 (L) Bwćbi `ÿZv KL‡bvB 100% n‡Z cv‡i bvÑ e¨vL¨v Ki|
D C (M) Kwdi Dci KZUzKz KvR Kiv nj|
T2 = 138C
DËi: 5 J
O X (N) GwU ZvcMwZwe`¨vi cÖ_g m~·K mg_©b K‡i wKbv hvPvB
V
(K) ZvcMwZwe`¨vi k~b¨Zg m~ÎwU Kx? K‡i e¨vL¨v Ki|
–1 –1 DËi: dU = – 45 J
(L) M¨v‡mi †gvjvi Av‡cwÿK Zvc 20.8J mole K
†h‡nZz, KwdcU bvov‡bv n‡q‡Q ZvB Af¨šÍixY kw³ n«vm
ej‡Z Kx †evSvq?
†c‡q‡Q A_©vr, Zvc wbM©Z n‡q‡Q| Avevi Zvc wbM©Z n‡j dU
(M) DÏxc‡Ki Zvc Bwćbi Z…Zxq av‡c GbUªwci cwieZ©b Gi gvb FYvZ¥K n‡e| A_©vr, NUbvwU ZvcMwZwe`¨vi cÖ_g
wbY©q Ki| m~·K mg_©b K‡i|
DËi: – 0.911 JK–1 57| GKwU Zvc Bwćbi Kvh©Ki c`v_© 600K ZvcgvÎvi
(N) DÏxc‡Ki Zvc BwÄbwUi `&ÿZv wظY e„w× Ki‡Z wK Drm †_‡K 1200 J Zvc MÖnY K‡i Ges 300K ZvcgvÎvi
e¨e¯’v MÖnY Kiv †h‡Z cv‡i? MvwYwZKfv‡e we‡kølY Ki| MÖvn‡K 600 J Zvc eR©b K‡i| [w`. †ev. 17]
DËi: `ÿZv wظY ev 100% Ki‡Z g‡b Kwi, MÖvn‡Ki (K) cÖZ¨vMvgx cÖwµqv Kx?
ZvcgvÎv T Ki‡Z n‡e| (L) ZvcMwZwe`¨vi k~b¨Zg m~ÎwU e¨vL¨v Ki|
T=0K (M) Zvc Bwćbi `ÿZv wbY©q Ki|
wKš‘ cÖK…wZ‡Z 0 K ZvcgvÎv AR©b m¤¢e bq| AZGe, Dr‡mi DËi: 50%
ZvcgvÎv e„w× Ki‡Z n‡e| g‡b Kwi, GB cwiewZ©Z ZvcgvÎv T1. (N) Zvc BwÄbwU cÖZ¨vMvgx bv AcÖZ¨vMvgxÑ MvwYwZK hy³mn
T1 = ; hv ev¯Íe m¤§Z bq| KviY G‡Z Amxg kw³ mieivn wm×všÍ `vI|
Q Q Q Q
Ki‡Z nq| A_©vr Zvc BwÄbwUi `ÿZv †Kv‡bvfv‡eB wظY mgvavb: 1 = 2 JK–1 ; 2 = 2 JK–1 ; 1 = 2
T1 T2 T1 T2
Kiv m¤¢e bq| Avgiv ej‡Z cvwi Zvc BwÄbwU cÖZ¨vMvgx|
nd
16  HSC Physics 2 Paper Chapter-1
Av‡iv wKQz ¸iæZ¡c~Y© m„Rbkxj cÖkœ (N) †P¤^viwUi P~ovšÍ ZvcgvÎvq M¨v‡mi Nb‡Z¡i †Kgb
cwieZ©b n‡eÑ MvwYwZKfv‡e we‡klY K‡iv|
1| nvmcvZv‡j Wv³v‡ii civg‡k© bvm© GK †ivMxi †`‡ni mgvavb: iæ×Zvcxq cÖwµqvq,
ZvcgvÎv 107F ch©‡eÿY Ki‡jb hv Wv³v‡ii Kv‡Q 
P1V1 = P2V2

Awek^vm¨ g‡b n‡jv| [LvMovQwo miKvwi K‡jR; wb.c. 17] 1


(K) ZvcMwZwe`¨vi cÖ_g m~ÎwU wee„Z K‡iv| ∵
V
(L) iƒ×Zvcxq ms‡KvP‡b wm‡÷‡gi Af¨šÍixY kw³ e„w× cvq P1 P2
 = 
†Kb? 1 2
1
(M) bvm© KZ…©K ch©‡ewÿZ ZvcgvÎv‡K †Kjwfb †¯‥‡j cÖKvk
 2 =    1
P 
2
K‡iv| P1
F – 32 K – 273 1
mgvavb: 9
=
5 = (3)  100
1.33

F – 32  2 = 228.422 kgm–3



 9   5 + 273 = K  NbZ¡ e„w× = (2 – 1)
107 – 32
K=
= 228.422 – 100
 9   5 + 273 = 128.422 kgm–3
 K = 314.667 K A_©vr P‚ovšÍ ZvcgvÎvq M¨v‡mi NbZ¡ 128.422 kgm–3
A_©vr ch©‡ewÿZ ZvcgvÎv 314.667 K| (Ans.) e„w× cv‡e| (Ans.)
(N) Wv³vi mv‡ne M‡elYvMv‡i ¯’vwcZ GKwU Av`k© Wv³vix 3| [bIqve dqRy‡bœQv miKvwi K‡jR, Kzwgjøv; wb. c. 19]
_v‡g©vwgUv‡ii wb¤œ I EaŸ© w¯’iwe›`yi †P‡q DÏxc‡Ki †Kv‡bv GKwU Av`k© M¨vm‡K P-V †jLwP‡Î abca c‡_ GKwU
_v‡g©vwgUv‡ii wb¤œ I EaŸ© w¯’iwe›`y h_vµ‡g 2F †ewk
Pµ m¤úbœ Kiv‡bv n‡jv| Gi d‡j abca P‡µ †gvU K…ZKvR
Ges 3.5F Kg ch©‡eÿY Ki‡jb| GB Z‡_¨i Av‡jv‡K 1.2 J| ab c‡_ AšÍt¯’ kw³i cwieZ©b 3 J Ges Kv‡Ri gvb
†ivMxi †`‡ni cÖK…Z ZvcgvÎv KZ n‡e? 5 J cvIqv †Mj| GQvov ca c‡_ M¨vmwU 2.5 J Zvckw³
X – xice TF – 32 Xice = (32 + 2) †kvlY K‡i|
mgvavb: X  – X =
212 – 32
steam ice = 34F (K) GbUªwc Kx?
107 – 34 TF – 32 Xsteam = (212 – 3.5)
 = (L) ZvcMwZwe`¨vi cÖ_ m~Î I wØZxq m~‡Îi g‡a¨ cv_©K¨ †Kgb?
208.5 – 34 180 = 208.5F (M) bc c‡_ †kvwlZ Zvckw³i cwigvY KZ?
TF – 32
 = 0.418 DËi: bc c‡_ †kvwlZ bq, eis 9.3 J cwigvY Zvc ewR©Z n‡q‡Q|
180
 TF = 107.301F (N) ab, bc I ca c‡_ ZvcMwZwe`¨vi cÖ_g m~Î cÖ‡hvR¨ nq
A_©vr †ivMxi †`‡ni cÖK…Z ZvcgvÎv 107.301F| (Ans.) wK- bv †m m¤ú‡K© †Zvgvi gZvgZ e¨vL¨v K‡iv|
2| 26C ZvcgvÎvq GKwU M¨vm †P¤^v‡i 1 evqygÛjxq Pv‡c DËi: c~Y© P‡µ M„nxZ Zvc, dQ = dW + 1.2 J
100 kgm–3 Nb‡Z¡i CO2 M¨vm Av‡Q| †P¤^viwU‡Z M¨v‡mi Pvc hv dQ1 + dQ2 + dQ3 = 8 + 2.5 – 9.3 = 1.2 J Gi mgvb|
3 evqygÛjxq Kiv n‡j †P¤^viwU nVvr †d‡U hvq| AZGe, ab, bc I ca c‡_ ZvcMwZwe`¨vi cÖ_g m~Î cÖ‡hvR¨|
[†bŠevwnbx K‡jR, PÆMÖvg; cÖ¯w‘ Zg~jK cixÿv 22] 4| wP‡Î 2 †gvj M¨v‡mi Pvc I ZvcgvÎvi cwieZ©b †`Lv‡bv
(K) wbe„wË wefe Kx? n‡q‡Q| M¨v‡mi Cv = 12.5 J mol–1K–1 Ges 1 atm =
(L) Zvc MÖvn‡Ki ZvcgvÎv n«vm †c‡j Kv‡b©v Bwćbi `ÿZv 105Pa| †jLwP‡Îi OA, AB I BC As‡ki Kv‡Ri
e„w× cvqÑ e¨vL¨v K‡iv| Zzjbvg~jK ch©‡eÿY Kiv nj| [bUi †Wg K‡jR, XvKv; wb.c. 19]
(M) †d‡U hvIqvi gyn~‡Z© †P¤^viwUi P~ovšÍ ZvcgvÎv KZ wQ‡jv? P(atm)
1– 1–
  A B
mgvavb: T1P1 = T2P2 2
1–

 T2 = T1   
P1 
P2 1
1–1.33
C

 T2 = (26 + 273)  
1 1.33

3 T(K)
(0, 0) 0
 T2 = 392.694 K 300 600
 T2 = 119.694C (K) cvwbi •Îa we›`y Kx?
A_©vr †P¤^viwUi P‚ovšÍ ZvcgvÎv 119.694C| (Ans.) (L) ZvcMwZwe`¨vi 2q m~‡Îi g~j welq¸‡jv wjL|
ZvcMwZwe`¨v  Final Revision Batch 17
(M) OA †iLvi Af¨šÍixY kw³i cwieZ©b wbY©q K‡iv| ¸iæZ¡c~Y© Ávbg~jK cÖ‡kœvËi
mgvavb: Af¨šÍixY kw³i cwieZ©b,
dU = nCVdt Type-1: ZvcgvÎv cwigv‡ci g~jbxwZ
= 2  12.5  (300 – 0)
 dU = 7500 J 1. ZvcMwZwe`¨vi k~b¨Zg m~ÎwU wjL| [Xv. †ev., w`. †ev., 23;
A_©vr Af¨šÍixY kw³i cwieZ©b 7500 J| (Ans.) Kz. †ev. 22; iv. †ev. 21; h. †ev. 19; h. †ev, P. †ev. 17]
(N) DÏxc‡Ki ch©‡ÿY MvwYwZKfv‡e we‡kølY K‡iv| DËi: `yBwU e¯‘ hw` Z…Zxq †Kv‡bv e¯‘i mv‡_ Zvcxq
mgvavb: OA As‡k, mvg¨ve¯’vq _v‡K Z‡e cÖ_‡gv³ e¯‘ `ywU ci¯ú‡ii mv‡_
P  T nIqvq V aªæeK Zvcxq mvg¨ve¯’vq _vK‡e|
 dW1 = PdV = 0 J 2. _v‡g©vwgUvi Kv‡K e‡j? [ivRkvnx K‡jR, ivRkvnx]
AB As‡k,
DËi: †h h‡š¿i mvnv‡h¨ †Kv‡bv e¯‘i ZvcgvÎv mwVKfv‡e
PdV = nRdT
cwigvc Kiv hvq Ges wewfbœ e¯‘i ZvcgvÎvi cv_©K¨ wbY©q
 dW2 = 2  8.314  (600 – 300) [∵ dW = PdV]
Kiv hvq Zv‡K _v‡g©vwgUvi e‡j|
 dW2 = 4988.4 J
BC As‡k, 3. ZvcgvÎv Kx?
V2 DËi: ZvcgvÎv n‡”Q †Kv‡bv e¯‘i Zvcxq Ae¯’v hv Ab¨
dW3 = nRT ln
V1 †Kv‡bv e¯‘i Zvcxq ms¯ú‡k© Avb‡j H Zvc MÖnY Ki‡e, ev
V2 P 2 Zvc eR©b Ki‡e Zv wba©viY K‡i|
Avevi, T aªæeK _vK‡j V = P = 2
1 1
 dW3 = 2  8.314  600  ln(2)
 dW3 = 6915.391 J
Type-2: ZvcMwZwe`¨vi cÖ_g m~Î
A_©vr OA, AB I BC As‡ki Kv‡R h_vµ‡g 0 J,
1. Af¨šÍixY kw³ Kv‡K e‡j? [Xv. †ev. 23;
4988.4 J I 6915.391 J| (Ans.) w`. †ev. 23; Kz. †ev. 22]
5| GKwU wW‡Rj Bwćbi wmwjÛv‡i Av`k© M¨v‡mi Pvc, A_ev, AšÍt¯’ kw³i msÁv `vI| [w`. †ev. 22; g. †ev. 22]
AvqZb I ZvcgvÎv cwieZ©‡bi GKwU m¤ú~Y© Pµ †jLwP‡Î A_ev, AšÍt¯’ kw³ Kx? [iv. †ev., Kz. †ev., w`. †ev. 21;
Dc¯’vcb Kiv n‡q‡Q| A I B we›`yi ZvcgvÎv h_vµ‡g mw¤§wjZ †ev. 18]
300K I 600K| X I Y bv‡gi `yB e¨w³ `ywU Kv‡b©v BwÄb DËi: e¯‘i Af¨šÍi¯’ AYy, cigvYy I †gŠwjK KYvmg~‡ni
•Zwi Ki‡jv| X Gi BwÄb B I C we›`yi ZvcgvÎvq Ges Y •iwLK MwZ, ¯ú›`b MwZ I AveZ©b MwZ Ges Zv‡`i ga¨Kvi
Gi BwÄb D I A we›`yi ZvcgvÎvq Kvh©iZ|
cvi¯úwiK e‡ji Kvi‡Y D™¢‚Z †h mnRvZ kw³ KvR m¤úv`b
[miKvwi weÁvb K‡jR, †ZRMuvI, XvKv; wb. cÖ. 18]
Ki‡Z cv‡i Ges Ab¨ kw³‡Z iƒcvšÍwiZ n‡Z cv‡i Zv‡K
Af¨šÍixY kw³ e‡j|
2. wm‡÷g Kx? [e. †ev. 22; e. †ev. 21; wm. †ev. 17]
B C DËi: ZvcMZxq cixÿv-wbixÿvi mgq RoRM‡Zi †h wbw`©ó
16×105 Ask we‡ePbv Kiv nq Zv‡K wm‡÷g e‡j|
3. •Îawe›`y Kv‡K e‡j? [wm. †ev. 22]
Pvc Pa

7.8×105 D DËi: GKwU wbw`©ó Pv‡c †h ZvcgvÎvq †Kv‡bv c`v_© KwVb,


Zij I evqexqiƒ‡c mvg¨ve¯’vq _v‡K Zv‡K H c`v‡_©i
•Îawe›`y e‡j|
1×105 A
4. ZvcMwZwe`¨vi 1g m~ÎwU wee„Z Ki| [iv. †ev., h. †ev. 22;
wm. †ev. 21; Xv. †ev. 19]
14 × 10–4 6 × 10–4 10 × 10–4
DËi: ZvcMwZwe`¨vi cÖ_g m~ÎwU n‡jvÑ hLb hvwš¿K kw³‡K
AvqZb m3
m¤ú~Y©iƒ‡c Zv‡c ev Zvckw³‡K m¤ú~Y©iƒ‡c Kv‡R iƒcvšÍwiZ
(K) GbUªwc Kv‡K e‡j?
Kiv nq ZLb hvwš¿K kw³ I Zvc ci¯ú‡ii mgvbycvwZK nq|
(L) ÔKv‡b©v Bwćbi `ÿZv 100% nIqv m¤¢e bqÕÑ †Kb?
5. cvwbi •Îa we›`y Kv‡K e‡j? [Xv. †ev. 19; P. †ev. 22]
(M) B n‡Z C †Z †h‡Z Kv‡Ri cwigvY wbY©q K‡iv|
DËi: 736 J DËi: 4.58 mm cvi` Pv‡c †h ZvcgvÎvq weï× eid, cvwb I
(N) Y Gi •Zwi Kv‡b©v Bwćbi `ÿZv †ewkÑ Dw³wUi Rjxq ev®ú GKB Zvcxq mv‡g¨ _v‡K Zv‡K cvwbi •Îa we›`y e‡j|
h_v_©Zv MvwYwZK we‡kølYmn e¨vL¨v K‡iv| 6. ZvcMZxq e¨e¯’v ev wm‡÷g Kx? [wm. †ev. 17]
DËi: X-Bwćbi `ÿgZv, X = 76.67% DËi: Zj ev †eóbx Øviv mxgve× wbw`©ó cwigvY e¯‘‡K
Y-Bwćbi `ÿgZv, Y = 87.18% ZvcMZxq e¨e¯’v ev wm‡÷g e‡j, †hLv‡b ZvcMZxq Pjivwk
A_©vr Y Gi •Zwi Kv‡b©v Bwćbi `ÿZv †ewk| cwigvc Kiv hvq|
nd
18  HSC Physics 2 Paper Chapter-1
Type-3: ZvcMZxq cwieZ©b I KvR 3. †iwd«Rv‡iU‡ii Kg©m¤úv`b mnM Kv‡K e‡j? [g. †ev. 23]
DËi: †iwd«Rv‡iUi n‡Z AcmvwiZ Zvc Ges Kg‡cÖmi KZ…©K
1. e× wm‡÷g Kv‡K e‡j? [e. †ev. 23] mieivnK…Z hvwš¿K Kv‡Ri AbycvZ‡K †iwd«Rv‡iU‡ii
DËi: †h wm‡÷g cwi‡e‡ki mv‡_ ïay kw³ wewbgq Ki‡Z Kg©m¤úv`b mnM e‡j|
cv‡i wKš‘ fi wewbgq Ki‡Z cv‡i bv Zv‡K e× wm‡÷g e‡j| 4. Zv‡ci hvwš¿K Zzj¨v¼ Kv‡K e‡j? [iv. †ev. 23]
2. †gvjvi Av‡cwÿK Zvc ev †gvjvi ZvcaviY ÿgZv Kv‡K DËi: GKK Zvc Drcbœ Ki‡Z †h cwigvY KvR Ki‡Z nq ev
e‡j?[w`. †ev. 21] GKK Zvc Øviv †h cwigvY KvR Kiv hvq Zv‡K Zv‡ci hvwš¿K
DËi: GK †gvj M¨v‡mi ZvcgvÎv GK †Kjwfb (1 K) e„w× Zzj¨v¼ (mgZv) e‡j|
Ki‡Z cÖ‡qvRbxq Zvc‡K H M¨v‡mi †gvjvi ZvcaviY ÿgZv 5. †iwd«Rv‡iUi Kv‡K e‡j?
ev †gvjvi Av‡cwÿK Zvc e‡j| DËi: †h hš¿ hvwš¿K KvR m¤úbœ K‡i wb¤œ ZvcgvÎvi Drm
3. Av‡cwÿK Zvc Kv‡K e‡j? [h. †ev. 19] n‡Z Zvc AcmviY K‡i D”P ZvcgvÎvi Avav‡i eR©b K‡i
DËi: 1 kg f‡ii †Kv‡bv e¯‘i ZvcgvÎv 1 K e„w× Ki‡Z Zv‡K †iwd«Rv‡iUi e‡j|
cÖ‡qvRbxq Zvc‡K H e¯‘i Av‡cwÿK Zvc e‡j| 6. Kvh©K…Z mnM Kv‡K e‡j?
4. m‡gvò cÖwµqv Kv‡K e‡j? [Kz. †ev. 19] DËi: †iwd«Rv‡iUi n‡Z AcmvwiZ Zvc I K‡¤úªmi KZ…©K
DËi: †h cwieZ©‡b M¨v‡mi ZvcgvÎv me©`v aªæe _v‡K Zv‡K mieivnK…Z hvwš¿K Kv‡Ri AbycvZ‡K Kvh©K…Z mnM e‡j|
m‡gvò cwieZ©b e‡j| w¯’i ZvcgvÎvq hw` †Kv‡bv M¨vm‡K 7. wngvqK Kv‡K e‡j?
cÖmvwiZ A_ev m¼zwPZ Kiv nq Z‡e †mB cwieZ©b‡K m‡gvò DËi: wb¤œ ùzUbv‡¼i †Kv‡bv Zij cwicvk¦© n‡Z jxbZvc ev
cÖmviY ev m‡gvò ms‡KvPb e‡i Ges †h cÖwµqvq G cwieZ©b myßZvc MÖnY K‡i cwicvk¦©‡K kxZj K‡i Zv‡K wngvqK e‡j|
N‡U Zv‡K m‡gvò cÖwµqv e‡j| 8. Kv‡b©v Pµ Kv‡K e‡j?
5. ZvcMwZwe`¨vi 2q m~ÎwU wee„Z Ki| [Xv. †ev. 17] DËi: †h P‡µ †Kv‡bv GKwU Av`k© M¨vm Kvh©Kix c`v_©
DËi: evB‡ii †Kv‡bv kw³ KZ…©K m¤úvw`Z KvR e¨wZ‡i‡K wn‡m‡e GKwU wbw`©ó AvqZb, Pvc I ZvcgvÎv n‡Z Avi¤¢ K‡i
kxZj e¯‘ n‡Z Dò e¯‘‡Z Zvc wb‡R cÖevwnZ n‡Z cv‡i bv| GKwU m‡gvò cÖmviY I GKwU iæ×Zvc cÖmviY wd‡i Av‡m,
6. iæ×Zvcxq cÖwµqv Kx? [h. †ev. 15] Zv‡K Kv‡b©v Pµ e‡j|
DËi: †h ZvcMZxq cÖwµqvq wm‡÷g †_‡K Zvc evB‡i hvq bv 9. wngvqb Kv‡K e‡j?
ev evB‡i †_‡K †Kv‡bv Zvc wm‡÷‡g Av‡m bv ZvB iæ×Zvcxq DËi: K…wÎg Dcv‡q †Kv‡bv Ave× ¯’vb‡K cvwicvwk¦©K Ae¯’v
cÖwµqv| n‡Z wb¤œ ZvcgvÎvq ivLvi c×wZ‡K wngvqb e‡j|
7. wb¤œ w¯’i we›`y Kv‡K e‡j? 10. DòZvwgwZ c`v_© Kx?
DËi: †h ZvcgvÎvq weï× eid cvwbi mv‡_ mvg¨ve¯’vq _vK‡Z DËi: †hme c`v‡_©i DòZvwgwZ ag© e¨envi K‡i _v‡g©vwgUvi
cv‡i A_©vr cÖgvY Pv‡c †h ZvcgvÎvq weï× eid Mj‡Z ïiæ •Zwi Kiv nq Zv‡`i DòZvwgwZ c`v_© e‡j| †hgbÑ cvi`|
K‡i Zv‡K wb¤œ w¯’iwe›`y ev eid we›`y ev Mjbv¼ e‡j| 11. DòZvwgwZ ag© Kx?
8. EaŸ© w¯’i we›`y Kv‡K e‡j? DËi: DòZvi cwieZ©‡b c`v‡_©i †h we‡kl we‡kl ag©
DËi: †h ZvcgvÎvq weï× cvwb Rjxq ev‡®úi mv‡_ mylgfv‡e cwiewZ©Z nq Ges †h a‡g©i cwieZ©b jÿ K‡i
mvg¨ve¯’vq _vK‡Z cv‡i ev cÖgvY Pv‡c †h, ZvcgvÎvq weï× mnR, mwVK I m~²fv‡e DòZv wbY©q Kiv hvq Zv‡K
cvwb Rjxq ev‡®ú cwiYZ n‡Z ïiæ K‡i Zv‡K EaŸ© w¯’i we›`y DòZvwgwZ ag© e‡j| †hgbÑ cvi`¯Í‡¤¢i D”PZv|
ev w÷g we›`y ev ùzUbv¼ e‡j|
Type-5: GbUªwc
9. aªæe AvqZb cÖwµqv Kv‡K e‡j?
DËi: †h cÖwµqvq †Kv‡bv wm‡÷‡gi AvqZb aªæe †i‡L 1. GbUªwc Kv‡K e‡j? [wm. †ev. 22; Kz. †ev. 21; P. †ev. 21;
Zvckw³i ev M¨v‡mi AšÍt¯’ kw³i cwieZ©b NUv‡bv nq Zv‡K e. †ev. 21; Xv. †ev. 15; h. †ev. 16;
P. †ev. 15; e. †ev. 19Õ w`. †ev 19]
aªæe AvqZb cÖwµqv e‡j| DËi: iæ×Zvcxq cÖwµqvq e¯‘i †h Zvcxq ag© w¯’i _v‡K ev
10. w¯’i Pv‡c †gvjvi Av‡cwÿK Zvc Kv‡K e‡j? AcwiewZ©Z _v‡K Zv‡K GbUªwc e‡j|
DËi: w¯’i Pv‡c 1 mole M¨v‡mi ZvcgvÎv 1 K e„w× Ki‡Z †h 2. cÖZ¨veZ©x ev cÖZ¨vMvgx cÖwµqv Kv‡K e‡j? [g. †ev. 21;
Zv‡ci cÖ‡qvRb nq Zv‡K w¯’i Pv‡c †gvjvi Av‡cwÿK Zvc e‡j| Kz. †ev. 16; wm. †ev. 16; e. †ev. 16; w`. †ev. 17]
11. w¯’i AvqZ‡b †gvjvi Av‡cwÿK Zvc Kv‡K e‡j? DËi: †h cÖwµqv wecixZgyLx n‡q cÖZ¨veZ©b K‡i Ges
DËi: w¯’i AvqZ‡b 1 mole M¨v‡mi ZvcgvÎv 1 K e„w× Ki‡Z m¤§yLeZ©x I wecixZgyLx cÖwµqvi cÖwZ ¯Í‡i Zvc I Kv‡Ri
†h Zv‡ci cÖ‡qvRb nq Zv‡K w¯’i AvqZ‡b †gvjvi Av‡cwÿK djvdj mgvb I wecixZ nq †mB cÖwµqv‡K cÖZ¨veZ©x cÖwµqv
Zvc e‡j| e‡j|
3. AcÖZ¨veZ©x cÖwµqv Kv‡K e‡j? [h. †ev. 22; Kz. †ev. 17]
Type-4: Zvcxq BwÄb I †iwd«Rv‡iUi
DËi: †h cÖwµqv wecixZgyLx n‡q cÖZ¨veZ©b Ki‡Z cv‡i bv
1. Bwćbi `ÿZv Kv‡K e‡j? [h. †ev. 23; iv. †ev. 17] A_©vr m¤§yLeZ©x I wecixZgyLx cÖwZ ¯Í‡i Zvc I Kv‡Ri
DËi: BwÄb GKwU P‡µ †h cwigvY Zvc‡K Kv‡R cwiYZ K‡i djvdj mgvb I wecixZ nq bv Zv‡K AcÖZ¨veZ©x cÖwµqv
Ges Zvc Drm n‡Z †h cwigvY Zvc †kvlY K‡i G‡`i e‡j|
AbycvZ‡K Bwćbi `ÿZv e‡j| 4. Zvcxq mgZv Kv‡K e‡j? [e. †ev. 15]
2. Zvcxq BwÄb Kv‡K e‡j? [Kz. †ev. 23; g. †ev. 21] DËi: wfbœ ZvcgvÎvi `ywU e¯‘ ci¯úi Zvcxq ms¯ú‡k© Avmvi
DËi: †h hš¿ Zvckw³‡K hvwš¿K kw³‡Z iƒcvšÍwiZ K‡i, ci hLb mg ZvcgvÎvq DcbxZ nq ZLb G Ae¯’v‡K Zvcxq
Zv‡K Zvcxq BwÄb e‡j| mgZv ev mvg¨ve¯’v e‡j|
ZvcMwZwe`¨v  Final Revision Batch 19
Type-2: ZvcMwZwe`¨vi cÖ_g m~Î
¸iæZ¡c~Y© Abyavebg~jK cÖ‡kœvËi
1. ZvcMwZwe`¨vi P – V †jLwP‡Îi †ÿÎdj Kx cÖKvk
Type-1: ZvcgvÎv cwigv‡ci g~jbxwZ
K‡i? e¨vL¨v K‡iv| [P. †ev. 21]
1. ZvcMwZwe`¨vi k~b¨Zg m~Î n‡Z Kxfv‡e ZvcgvÎvi DËi: P – V wb‡`©kK wP‡Î †h‡Kv‡bv Ae¯’v‡b Pvc P Ges
aviYv cvIqv hvqÑ e¨vL¨v K‡iv| [Kz. †ev., w`. †ev. 21] AvqZ‡bi cwieZ©b dV n‡j, dW = PdV
DËi: ZvcgvÎv n‡”Q e¯‘i Zvcxq Ae¯’v hv wba©viY K‡i D
 
V2
e¯‘wU‡K Ab¨ e¯‘i Zvcxq ms¯ú‡k© ivL‡j Zvc †`‡e bv  dW = V PdV C
1
†b‡e|

V
ZvcMwZwe`¨vi k~b¨Zg m~ÎwU n‡jv, Ò`yBwU e¯‘ hw` Z…Zxq  W = 2 PdV

Pvc, P
V1
†Kv‡bv e¯‘i mv‡_ Zvcxq mvg¨e¯’vq _v‡K Z‡e cÖ_‡gv³ e¯‘
hv wb‡`©kK wP‡Î Ave×
`yBwU ci¯ú‡ii mv‡_ Zvcxq mvg¨ve¯’vq _vK‡e|Ó m~ÎwU †_‡K A B
¯úó †h, cÖwZwU e¯‘i Ggb GKwU ag© Av‡Q hv cwigvYMZfv‡e ABCD †ÿ‡Îi †ÿÎdj| V1dVV2
Ab¨ GKwU e¯‘i mv‡_ mgvb n‡j e¯‘Øq Zvcxq mv‡g¨ _vK‡e|  ZvcMwZwe`¨vi P – V AvqZb, V
GB ag©wU n‡jv ZvcgvÎv| †jLwP‡Îi †ÿÎdj †gvU
2. ZvcMwZwe`¨vi k~b¨Zg m~ÎwU e¨vL¨v Ki| [w`. †ev. 17] K…ZKvR cÖKvk K‡i|
DËi: ZvcMwZwe`¨vi k~b¨Zg m~ÎwU n‡jvÑ `ywU e¯‘ hw` Z…Zxq 2. ZvcMwZwe`¨vi cÖ_g m~ÎwU kw³i wbZ¨Zvi GKwU we‡kl
†Kv‡bv e¯‘ (Zvcgvb hš¿) Gi mv‡_ c„_Kfv‡e Zvcxq mv‡g¨ iƒc gvÎÑ e¨vL¨v K‡iv| [e. †ev. 21]
_v‡K Z‡e cÖ_‡gv³ e¯‘ `ywU ci¯ú‡ii mv‡_ Zvcxq mv‡g¨ DËi: ZvcMwZwe`¨vi cÖ_g m~Î: hLb †Kv‡bv wm‡÷‡g Zvckw³
_vK‡e| mieivn Kiv nq ZLb †m Zvckw³i wKQz Ask wm‡÷‡gi
e¨vL¨v: A I B wfbœ ZvcgvÎvi `ywU e¯‘ GKwU Kzcwievnx Af¨šÍixY kw³ e„wׇZ mnvqZv K‡i Ges evwK Ask Øviv
†`Iqvj w`‡q c„_K Kiv Ae¯’vq Z…Zxq GKwU e¯‘ Gi wm‡÷g Zvi cwi‡e‡ki Ici evwn¨K KvR m¤úv`b K‡i|
ms¯ú‡k© ivLv n‡j wKQzÿY ci A I B Dfq e¯‘B Z…Zxq e¯‘ kw³i wbZ¨Zvi m~Î Abyhvqx kw³i †Kv‡bv m„wó ev aŸsm †bB|
C Gi mv‡_ Zvcxq mv‡g¨ †cŠQvq| kw³ †Kej GK iƒc †_‡K Ab¨ iƒ‡c iƒcvšÍwiZ n‡Z cv‡i|
3. wK¬wbK¨vj _v‡g©vwgUv‡ii 0 F †_‡K `vM KvUv _v‡K bv ZvcMwZwe`¨vi cÖ_g m~Î cÖK…Zc‡ÿ kw³i wbZ¨Zv m~‡ÎiB
†Kb? e¨vL¨v Ki| [Kz. †ev. 17] GKwU wee„wZ| weÁvbx K¬wmqvm G m~·K mvaviY iƒ‡c eY©bv
DËi: wK¬wbK¨vj _v‡g©vwgUvi gvbe‡`‡ni ZvcgvÎv cwigv‡ci K‡ib| Zuvi g‡Z, †Kv‡bv wm‡÷‡g Zvckw³ Ab¨ †Kv‡bv
Rb¨ e¨eüZ nq| gvbe‡`‡ni ZvcgvÎv 95 F n‡Z 110 F kw³‡Z iƒcvšÍwiZ n‡j A_ev Ab¨ †Kv‡bv kw³ Zv‡c
Gi g‡a¨ _v‡K e‡j G‡Z 95 F n‡Z 110 F ch©šÍ `vM KvUv iƒcvšÍwiZ n‡j wm‡÷‡gi †gvU kw³i cwigvY GKB _v‡K|
_v‡K| Avevi, my¯’ e¨w³i kix‡ii ZvcgvÎv mvaviYZ 98.4 Q cwigvY Zvckw³ mieivn Kivi d‡j hw` †Kv‡bv
F nq| G me Kvi‡Y wK¬wbK¨vj _v‡g©vwgUv‡i 0 F †_‡K `vM wm‡÷‡gi Af¨šÍixY cwieZ©b U Ges wm‡÷gKZ…©K
KvUv _v‡K bv|
cwi‡e‡ki Ici evwn¨K K…ZKv‡Ri cwigvY W nq, Zvn‡j
4. GKB cwigvY Zvc `ywU wfbœ e¯‘‡Z mieivn Kiv n‡jI
Q = U + W|
ZvcgvÎvi cwigvY wfbœ nq †Kb? e¨vL¨v Ki| [h. †ev. 16]
3. wm‡÷g ev e¨e¯’v Kx?
M„nxZ Zvc
DËi: Avgiv Rvwb, ZvcgvÎv e„w× = DËi: cixÿv-wbixÿvi mgq Ro RM‡Zi †h wbw`©ó Ask
fi  Av‡cwÿK Zvc
we‡ePbv Kiv nq Zv‡K wm‡÷g e‡j|
A_©vr †Kv‡bv e¯‘i ZvcgvÎv e„w×i cwigvY wbf©i K‡i H e¯‘i
wm‡÷g wZb cÖKvi, h_vÑ
Av‡cwÿK Zv‡ci Dci| mgcwigvY Zvc `ywU wfbœ e¯‘‡Z
(K) e× wm‡÷g (L) Db¥y³ wm‡÷g (M) wew”Qbœ wm‡÷g|
mieivn Kiv n‡j †h e¯‘i Av‡cwÿK Zvc †ewk Zvi ZvcgvÎv
Kg e„w× cv‡e Avevi hvi Av‡cwÿK Zvc Kg Zvi ZvcgvÎv D`vniY: wc÷bhy³ wmwjÛv‡i Ave× wKQz M¨vm|
†ewk e„w× cv‡e| GRb¨ GKB cwigvY Zvc `ywU wfbœ e¯‘‡Z 4. M¨vm cÖmvi‡Y m‡gvò cÖwµqvq K…Z KvR mgPvc cÖwµqvq
mieivn Kiv n‡j ZvcgvÎvi cwigvY wfbœ nq| K…Z KvR A‡cÿv e„nËiÑe¨vL¨v Ki|
5. GKB cwigvY Zvc `ywU wfbœ e¯‘‡Z mieivn Kiv n‡jI DËi: m‡gvò cÖwµqvq ZvcgvÎv w¯’i _v‡K e‡j wm‡÷‡gi
ZvcgvÎvi cwigvY wfbœ nq †Kb? e¨vL¨v Ki| Af¨šÍixY kw³i †Kv‡bv cwieZ©b nq bv, A_©vr U = 0|
DËi: Zvc n‡jv GK cÖKvi kw³, hv VvÐv I Mi‡gi Abyf~wZ myZivs Zvc MwZwe`¨vi cÖ_g m~Îvbymv‡iÑ Q = W
RvqMvq Ab¨w`‡K ZvcgvÎv n‡jv e¯‘i Zvcxq Ae¯’v| `ywU A_©vr m‡gvò cÖwµqvq wm‡÷‡gi mieivnK…Z Zv‡ci
e¯‘i Zvc mgvb n‡jI G‡`i ZvcgvÎv wfbœ n‡Z cv‡i| KviY m¤ú~Y©UvB Kv‡R iƒcvšÍwiZ nq| Aciw`‡K mgPvc cÖwµqvq
e¯‘i ZvcgvÎv Zv‡`i Zv‡ci cwigv‡Yi Dci wbf©i K‡i bv| wm‡÷‡g mieivnK…Z Zv‡ci m¤ú~Y©UvB Kv‡R iƒcvšÍwiZ nq
wbf©i K‡i e¯‘i Zvcxq Ae¯’vi Dci ZvQvov e¯‘ `ywU GKB bv, Gi wKQz Ask wm‡÷‡gi AšÍt¯’ kw³ e„wׇZ e¨q nq| G
Dcv`v‡bi bv n‡j ZvcgvÎv wfbœ n‡Z cv‡i| Avevi Dcv`vb Kvi‡Y M¨vm cÖmvi‡Y m‡gvò cÖwµqvq K…ZKvR mgPvc
GKB n‡jI f‡ii Kvi‡Y ZvcgvÎv wfbœ n‡Z cv‡i| cÖwµqvq K…Z KvR A‡cÿv e„nËi nq|
nd
20  HSC Physics 2 Paper Chapter-1
Type-3: ZvcMZxq cwieZ©b I KvR ZvcgvÎvi Ici wbf©i K‡i, Gi Pvc ev AvqZ‡bi Ici wbf©i
K‡i bv| G‡K †gqv‡ii cÖKí ejv nq| ¯úóZ Pvc ev AvqZb
1. iæ×Zvcxq cÖmvi‡Y wm‡÷g kxZj nqÑ e¨vL¨v K‡iv|
[Xv. †ev. 23; P †ev. 19; Xv. †ev. 16] cwiewZ©Z n‡jI ZvcgvÎv hw` w¯’i _v‡K Z‡e M¨v‡mi
DËi: iƒ×Zvcxq cÖmvi‡Y wm‡÷‡gi Af¨šÍixY kw³ Z_v Af¨šÍixY kw³I w¯’i _vK‡e| ZvB m‡gvò cÖwµqvq Af¨šÍixY
ZvcgvÎv n«vm cvIqvq wm‡÷g kxZj nq| kw³i cwieZ©b k~b¨|
†h‡nZz iƒ×Zvcxq cÖwµqvq wm‡÷‡g †Kv‡bv Zvc cÖ‡ek Ki‡Z 6. mgAvqZb cÖwµqvq wm‡÷‡g cÖ`Ë Zvc m¤ú~Y©UvB
cv‡i bv ev wm‡÷g †_‡K †Kv‡bv Zvc †ei n‡q †h‡Z cv‡i bv f¨šÍixY kw³‡K e„wׇZ e¨eüZ nq| e¨vL¨v K‡iv| [g. †ev. 23]
myZvivs dQ = 01| AZGe, ZvcMwZwe`¨vi cÖ_g m~Î †_‡K DËi: †h cÖwµqvq wm‡÷‡gi AvqZ‡bi †Kv‡bv cwieZ©b nq bv
Avgiv cvB, 0 = dU + dW Zv‡K mgAvqZb cÖwµqv e‡j|
G‡ÿ‡Î dV = 0 nIqvq, dW = P.dV
 dW = – dU
= P.0
iæ×Zvcxq cÖmvi‡Y wm‡÷g KZ…©K m¤úvw`Z KvR wm‡÷‡gi =0
Af¨šÍixY kw³ Øviv m¤úvw`Z nq e‡j wm‡÷‡gi Af¨šÍixY myZivs ZvcMwZwe`¨vi cÖ_g m~Î n‡Z †jLv hvq, dQ = dU
kw³ Z_v ZvcgvÎv n«vm cvq| ZvB iæ×Zvcxq cÖmvi‡Y wm‡÷g A_©vr wm‡÷‡g cÖ`Ë Zv‡ci m¤ú~Y©UvB Af¨šÍixY kw³ e„w×i
kxZj nq| Kv‡R e¨eüZ nq|
2. Mvwoi Uvqvi we‡ùvi‡Yi mgq Kx ai‡bi ZvcMZxq 7. mgAvqZb cÖwµqvq KvR k~b¨ †Kb? e¨vL¨v K‡iv|
cÖwµqv msNwUZ nq? e¨vL¨v K‡iv| [iv. †ev. 23] [Xv. †ev. 22; iv. †ev. 21]
DËi: Mvwoi Uvqvi we‡ùvi‡Yi mgq iƒ×Zvcxq cÖwµqv DËi: †h ZvcMZxq cÖwµqvq wm‡÷‡gi AvqZ‡bi †Kv‡bv
msNwUZ nq| cwieZ©b nq bv Zv‡K mgAvqZb cÖwµqv e‡j|
†h cÖwµqvq wm‡÷g Zvc MÖnY wKsev eR©b K‡i bv Zv‡K G‡ÿ‡Î, dV = 0 nIqvq, dW = P.dV
= P.0
iæ×Zvcxq cÖwµqv e‡j| Uvqvi we‡ùviY cÖwµqvwU LyeB `ªæZ,
=0
AvKw¯§Kfv‡e msNwUZ nIqvq Uvqv‡ii †fZ‡ii evB‡ii
 AvqZb aªæeK _vKvq K…ZKvR k~b¨|
cwi‡e‡ki mv‡_ Zv‡ci Av`vb cÖ`vb Kivi ch©vß mgq cvq 8. iƒ×Zvcxq cÖmviY I ms‡KvP‡b AšÍt¯’ kw³i cwieZ©b
bv| A_©vr dQ = 0| myZivs cÖwµqvwU iƒ×Zvcxq| e¨vL¨v K‡iv| [h. †ev. 22]
3. M¨v‡mi †gvjvi Av‡cwÿK Zvc `yB cÖKvi †Kb? e¨vL¨v K‡iv| DËi: iƒ×Zvcxq cÖmvi‡Y wm‡÷g KZ…©K m¤úvw`Z KvR
[Kz. †ev. 23; h. †ev. 15]
wm‡÷‡gi Af¨šÍixY kw³ Øviv m¤úvw`Z nq e‡j wm‡÷‡gi
DËi: ZvcgvÎvi cwieZ©‡bi Rb¨ c`v‡_©i Pvc Ges AvqZ‡bi
Af¨šÍixY kw³ Z_v ZvcgvÎv n«vm cvq| ZvB iƒ×Zvcxq
cwieZ©b N‡U| KwVb I Zij c`v‡_©i Rb¨ GB cwieZ©b bMb¨ cÖmvi‡Y wm‡÷g kxZj nq|
nIqvq Zv D‡cÿv Kiv hvq| M¨v‡mi †ÿ‡Î ZvcgvÎv iƒ×Zvcxq ms‡KvP‡bi mgq evB‡i †_‡K kw³ mieivn K‡i
cwieZ©‡bi Rb¨ Pvc I AvqZ‡bi cwieZ©b A‡bK †ewk| ZvB wm‡÷‡gi Dci KvR m¤úvw`Z nq e‡j wm‡÷‡gi Af¨šÍixY
M¨v‡mi Av‡cwÿK Zv‡ci msÁv †`Iqvi mgq Pvc I kw³ e„w× cvq| d‡j wm‡÷‡gi ZvcgvÎvI e„„w× cvq A_©vr
AvqZ‡bi kZ© wbw`©ó K‡i †`Iqv cÖ‡qvRb| AvqZb w¯’i †i‡L wm‡÷g Dò nq|
wbw`©ó cwigvY M¨v‡mi ZvcgvÎv wbw`©ó cwigvY e„w× Ki‡Z †h 9. m‡gvò cwieZ©‡bi †ÿ‡Î M¨v‡mi Av‡cwÿK Zvc
cwigvY Zvc jv‡M, Pvc w¯’i †i‡L H wbw`©ó cwigvY M¨v‡mi e¨vL¨v K‡iv| [iv. †ev. 21]
ZvcgvÎv GKB cwigvY e„w× Ki‡Z wfbœ nq| ZvB M¨v‡mi Rb¨ DËi: †Kv‡bv M¨v‡mi GK G‡gv‡ji DòZv GK †Kjwfb e„w×
w¯’i Pv‡c Ges w¯’i AvqZ‡b `yB cÖKvi †gvjvi Av‡cwÿK Zvc Ki‡Z cÖ‡qvRbxq Zvc‡K H M¨v‡mi †gvjvi Av‡cwÿK Zvc
cvIqv hvq| e‡j|
4. iæ×Zvcxq ms‡KvP‡bi mgq wm‡÷‡gi Af¨šÍixY kw³ m †gvj M¨v‡mi ZvcgvÎv T †Kjwfb e„w× Ki‡Z Q Ryj
e„w× cvqÑ e¨vL¨v K‡iv| [h. †ev. 23; P. †ev. 23; Zvckw³ cÖ‡qvRb n‡j †gvjvi Av‡cwÿK Zvc, C = Q
wm. †ev. 22; w`. †ev. 23; iv. †ev. 17] mT
DËi: †h‡nZz iƒ×Zvcxq cÖwµqvq wm‡÷‡g †Kv‡bv Zvc cÖ‡ek wKš‘ m‡gvò cÖwµqvq ZvcgvÎv w¯’i _v‡K| ZvB T = 0
Ki‡Z cv‡i bv ev wm‡÷g †_‡K †Kv‡bv Zvc †ei n‡q †h‡Z C=
cv‡i bv myZivs dQ = 0| AZGe, ZvcMwZwe`¨vi cÖ_g m~Î  m‡gvò cÖwµqvq M¨v‡mi Av‡cwÿK Zvc Amxg|
†_‡K Avgiv cvB, 0 = dU + dW 10. m‡gvò cÖwµqvq M¨vm Øviv m¤úvw`Z KvR mieivnK…Z
 dW = – dU Zvckw³i mgvb nqÑ e¨vL¨v K‡iv|
iƒ×Zvcxq ms‡KvP‡bi mgq evB‡i †_‡K kw³ mieivn K‡i [h. †ev.21; P. †ev. 21; Xv. †ev. 19]
DËi: †h ZvcMZxq cÖwµqvq wm‡÷‡gi ZvcgvÎv w¯’i _v‡K
wm‡÷‡gi Dci KvR m¤úvw`Z nq e‡j wm‡÷‡gi Af¨šÍixY
Zv‡K m‡gvò cÖwµqv e‡j|
kw³ e„w× cvq| d‡j wm‡÷‡g ZvcgvÎvI e„w× cvq A_©vr
m‡gvò cÖwµqvq ZvcgvÎv w¯’i _v‡K e‡j wm‡÷‡gi Af¨šÍixY
wm‡÷g Dò nq| kw³i †Kv‡bv cwieZ©b nq bv| A_©vr, dU = 0
5. m‡gvò cÖwµqvq Af¨šÍixY kw³i cwieZ©b k~b¨ †Kb? myZivs ZvcMwZwe`¨vi cÖ_g m~Î †_‡K Avgiv cvB,
e¨vL¨v K‡iv| [e. †ev. 23] dQ = 0 + dW
DËi: m‡gvò cÖwµqvq wm‡÷‡gi ZvcgvÎv w¯’i _v‡K|  dW = dQ
A‡bK cixÿv-wbixÿvi ci weÁvbx Ryj wm×v‡šÍ DcbxZ nb A_©vr m‡gvò cÖwµqvq †Kv‡bv wm‡÷g KZ…©K K…ZKvR wm‡÷‡g
†h, †Kv‡bv wbw`©ó cwigvY M¨v‡mi Af¨šÍixY kw³ ïay Gi mieivnK…Z Zvckw³i mgvb|
ZvcMwZwe`¨v  Final Revision Batch 21
11. iƒ×Zvcxq cÖwµqvq cv‡Îi †`Iqvj Acwievnx ivLv nq Type-4: Zvcxq BwÄb I †iwd«Rv‡iUi
†Kb? e¨vL¨v K‡iv| [g. †ev. 21]
1. Zvc Drm I Zvc MÖvn‡Ki ZvcgvÎvi cv_©K¨ K‡g †M‡j
DËi: cwi‡e‡ki mv‡_ Zv‡ci Av`vb-cÖ`vb †iva Kivi Rb¨ Bwćbi `ÿZvI K‡g hvqÑ e¨vL¨v K‡iv| [wm. †ev. 23]
iæ×Zvcxq cÖwµqvq cv‡Îi †`Iqvj Acwievnx ivLv nq|
DËi: Zvc Bwćbi `ÿZv,  = 1 – T2  100%
T
†h cÖwµqvq wm‡÷g †_‡K Zvc evB‡i hvq bv ev evB‡i †_‡K 1
†Kv‡bv Zvc wm‡÷‡g Av‡m bv Zv‡K iæ×Zvcxq cÖwµqv e‡j| T1 – T2
wm‡÷gwU‡K cwi‡ek †_‡K Zvcxqfv‡e AšÍwiZ K‡i A_ev =  100%
T1
M¨vm‡K `ªæZ cÖmvwiZ A_ev m¼zwPZ Ki‡j iæ×Zvcxq cÖwµqv †hLv‡b, T1 Zvc Dr‡mi ZvcgvÎv Ges T2 Zvc MÖvn‡Ki ZvcgvÎv|
cvIqv hvq| G cÖwµqvq wm‡÷‡gi †h cwieZ©b nq Zv‡K    T1 – T2
iæ×Zvcxq cwieZ©b e‡j| wm‡÷g‡K Zvcxqfv‡e AšÍwiZ  Zvc Bwćbi Kg©`ÿZv, Drm I MÖvn‡Ki mgvbycvwZK,
Kivi Rb¨ cv‡Îi †`Iqvj Acwievnx ivLv nq| ZvB, Zvc Drm I Zvc MÖvn‡Ki ZvcgvÎvi cv_©K¨ K‡g †M‡j
12. P-V †jLwP‡Î iæ×Zvcxq †iLv‡K mgGbUªwc †iLv ejv Bwćbi `ÿZvI K‡g hvq|
nq †Kb? [iv. †ev. 19] 2. Kv‡b©v Bwćbi wØZxq av‡c ZvcgvÎv n«vm cvq †Kbv?
DËi: Avgiv Rvwb, iæ×Zvcxq cÖwµqvq GbUªwc w¯’i _v‡K| [Kz. †ev. 22]
ZvB P-V †jLwP‡Î iæ×Zvcxq †iLvi me©Î GbUªwc mgvb DËi: Kv‡b©v Bwćbi wØZxq av‡c iƒ×Zvcxq cÖmviY NUvq
_v‡K| GKvi‡Y P-V †jLwP‡Î iæ×Zvcxq †iLv‡K mgGbUªwc ZvcgvÎv n«vm cvq| †h‡nZz iƒ×Zvcxq cÖwµqvq wm‡÷‡g
†iLv ejv nq| †Kv‡bv Zvc cÖ‡ek Ki‡Z cv‡i bv ev wm‡÷g †_‡K †Kv‡bv
13. ewW †¯úª e¨env‡ii mgq VvÐv Abyf~Z nq †Kb? e¨vL¨v Ki| Zvc †ei n‡q †h‡Z cv‡i bv myZivs dQ = 0| AZGe,
[w`. †ev. 19] ZvcMwZwe`¨vi cÖ_g m~Î †_‡K Avgiv cvB, 0 = dU + dW
DËi: ewW †¯úª e¨env‡ii mgq VvÐv Abyf~Z nq KviY hLb  dW = – dU
†¯úª Kiv nq ZLb ewW †¯úª-Gi ivmvqwbK c`v_©¸‡jv Zij  iƒ×Zvcxq cÖmvi‡Y wm‡÷g KZ…©K m¤úvw`Z KvR wm‡÷‡gi
_v‡K wKš‘ kix‡ii ms¯ú‡k© G‡m kixi †_‡K Zvc MÖnY K‡i
Af¨šÍixY kw³ Øviv m¤úvw`Z nq e‡j wm‡÷‡gi Af¨šÍixY
Zij ivmvqwbK c`v_©¸‡jv M¨v‡m cwiYZ nq ZvB ewW †¯úª
kw³ Z_v ZvcgvÎv n«vm cvq| ZvB iæ×Zvcxq cÖmvi‡Y wm‡÷g
e¨env‡ii mgq VvÐv Abyf~Z nq|
kxZj nq|
14. m‡gvò cÖwµqvq dW = dQ †Kb? e¨vL¨v Ki| [Xv. †ev. 19]
3. CV < CP †Kb? e¨vL¨v K‡iv| [P. †ev. 22; e. †ev. 19]
DËi: ZvcMwZwe`¨vi 1g m~Î Abymv‡i, dQ = dU + dW
DËi: hLb †Kv‡bv M¨v‡mi AvqZb w¯’i †i‡L DËß Kiv nq
m‡gvò cÖwµqvq wm‡÷‡gi ZvcgvÎv w¯’i _v‡K e‡j dU =
ZLb Gi Pvc ev‡o| G‡ÿ‡Î ZvcgvÎv evo‡bvi Rb¨ wKQz
nCvdT m¤úK© Abymv‡i dU = 0 A_©vr wm‡÷‡gi AšÍt¯’ kw³i
cwigvY Zv‡ci `iKvi nq| wKš‘ M¨vm‡K hw` DËß Kiv nq
†Kvb cwieZ©b nq bv| d‡j m¤úK©wU `uvovq dQ = dW|
Ges Pvc w¯’i †i‡L cÖmvwiZ n‡Z †`Iqv nq ZLb †h ïay
15. iæ×Zvcxq ms‡KvP‡b ZvcgvÎv e„w× cvq †Kb?
[wm. †ev. 15] ZvcgvÎv evov‡bvi Rb¨B Zvc cÖ‡qvRb nq Zv bq, cÖmviYkxj
DËi: iæ×Zvcxq ms‡KvP‡b M¨vm msKzwPZ nq| G ms‡KvP‡bi M¨vm †h evwn¨K Pv‡ci weiƒ‡× KvR K‡i Zvi Rb¨ wKQz
mgq evB‡i †_‡K kw³ mieivn K‡i wm‡÷‡gi Dci KvR AwZwi³ Zv‡ci cÖ‡qvRb nq|
m¤úvw`Z nq e‡j wm‡÷‡gi AšÍt¯’ kw³ e„w× cvq, d‡j myZivs Pvc w¯’i †i‡L 1 †gvj M¨v‡mi ZvcgvÎv 1 K evov‡Z
wm‡÷‡gi ZvcgvÎv e„w× cvq| G ms‡KvP‡b AšÍt¯’ kw³, †h Zvc jv‡M, Zv AvqZb w¯’i †i‡L 1 †gvj M¨v‡mi ZvcgvÎv
dW = – dU, KviY dQ = 0. 1 K evov‡Z cÖ‡qvRbxq Zv‡ci †P‡q †ewk nq| ZvB CP me©`v
16. Uvqvi dvU‡j VvÐv evZvm †ei nq †Kb? CV Gi †P‡q eo nq|
[†bvqvLvjx miKvwi gwnjv K‡jR, †bvqvLvjx] 4. Kv‡b©v Bwćbi Kvh©wbe©vnx e¯‘ cwieZ©b Ki‡j H Bwćbi
DËi: Uvqvi dvU‡j nVvr Pvc n«vm cvq ZvB Gi Af¨šÍixY `ÿZvi †Kv‡bviƒc cwieZ©b n‡e bv †Kb? e¨vL¨v K‡iv|
M¨v‡mi Lye `ªæZ m¤úªmviY N‡U| G Kvi‡Y D³ M¨vm [w`. †ev. 22]
DËi: Kv‡b©v Bwćbi `ÿZv,  = 1 – T2  100%
cwi‡e‡ki mv‡_ Zv‡ci Av`vb-cÖ`vb Kivi Rb¨ h‡_ó mgq T
cvq bv| ZvB G cÖwµqvwU n‡jv iæ×Zvcxq| nVvr AvqZb 1

A‡bK †e‡o †M‡j AvqZb m¤úªmviYRwbZ KvR m¤úbœ nq| Bwćbi `ÿZvi mgxKiY n‡Z ¯úó †h, Kv‡b©v Bwćbi `ÿZv
GRb¨ †h kw³i cÖ‡qvRb nq Zv M¨v‡mi Af¨šÍixY kw³ n‡Z †Kej Drm Ges MÖvn‡Ki ZvcgvÎvi Ici wbf©i K‡i| ZvB
†kvwlZ nq| G Kvi‡Y Uvqvi dvU‡j VvÐv evZvm †ei nq| Drm I MÖvn‡Ki ZvcgvÎv w¯’i †i‡L Kvh©wbe©vnx e¯‘ cwieZ©b
17. DòZvwgwZK ag© I DòZvwgwZK c`v_© ej‡Z Kx †evS? Ki‡j Bwćbi `ÿZvi †Kv‡bv cwieZ©b n‡e bv|
DËi: DòZvwgwZK ag©: ZvcgvÎv cwigv‡c Dc‡hvMx c`v‡_©i 5. DòZvwgwZ c`v_© wn‡m‡e cvi` e¨envi myweavRbKÑ
†hme ag© Kv‡R jvMv‡bv nq, c`v‡_©i H ag©¸‡jv‡K e¨vL¨v K‡iv| [g. †ev. 22; w`. †ev. 21]
DòZvwgwZK ag© e‡j| †hgb: GKwU miæ KvP b‡ji g‡a¨ DËi: DòZvwgwZ c`v_© wn‡m‡e cvi` e¨env‡ii myweavÑ
Zij ¯Í‡¤¢i •`N©¨, w¯’i AvqZ‡bi M¨v‡mi Pvc e„w× ev w¯’i i. cvi` weï× Ae¯’vq cvIqv hvq|
Pv‡c M¨v‡mi AvqZb, cwievnx ev Aa©cwievnxi Zwor †iva ii. D¾¡j A¯^”Q c`v_© nIqvq mn‡RB KuvP b‡ji †fZi
BZ¨vw` DòZvwgwZK a‡g©i D`vniY| G‡K †`Lv hvq|
DòZvwgwZK c`v_©: †hme c`v‡_©i DòZvwgwZK ag© e¨envi K‡i iii. mvaviY ZvcgvÎvq cvi‡`i ev®úPvc Lye Kg| KuvPb‡ji g‡a¨
_v‡g©vwgUvi •Zwi Kiv nq Zv‡`i‡K DòZvwgwZK c`v_© e‡j| cvi‡`i Ic‡ii ¯’vb Aí cwigvY cvi`ev®ú aviY K‡i|
nd
22  HSC Physics 2 Paper Chapter-1
6. Kxfv‡e Bwćbi `ÿZv e„w× Kiv hvq? e¨vL¨v K‡iv| Type-5: GbUªwc
[g. †ev. 21]
1. RM‡Zi GbUªwc e„w× cv‡”Q| e¨vL¨v K‡iv| [Kz. †ev. 22]
DËi: Zvc Bwćbi `ÿZv,  = 1 – T2  100%
T
DËi: cÖK…wZ‡Z mewKQzB mvg¨ve¯’v †c‡Z †Póv K‡i| GKwU
1
wm‡÷g hZB mvg¨ve¯’vi w`‡K GwM‡q hvq ZZB Zvi KvQ
T1 – T2
=  100% †_‡K KvR cvIqvi m¤¢vebv K‡g hvq, mvg¨ve¯’vq †cuŠQv‡j
T1
wm‡÷g †_‡K Avi †Kv‡bv KvRB cvIqv hv‡e bv| wm‡÷‡gi
†hLv‡b, T1 Zvc Dr‡mi Zvc Dr‡mi ZvcgvÎv Ges T2 Zvc
GB kw³i iƒcvšÍ‡ii AÿgZv ev Am¤¢ve¨ZvB n‡”Q GbUªwc|
MÖvn‡Ki ZvcgvÎv| GK ev GKvwaK wm‡÷g hZ mvg¨ve¯’vi w`‡K GwM‡q hvq
T2 Zv‡`i GbUªwcI ZZ evo‡Z _v‡K| mvg¨ve¯’v¨q GbUªwc
T1
AbycvZwU hZ †Qv‡Uv n‡e Bwćbi `ÿZv ZZ evo‡e|
me‡P‡q †ewk nq| A_©vr hLb †Kv‡bv wm‡÷g †_‡K Avi KvR
 Zvc Dr‡mi ZvcgvÎv evov‡j Ges Zvc MÖvn‡Ki ZvcgvÎv cvIqv hvq bv ZLb Zvi GbUªwc nq me©vwaK| Avgiv Av‡MB
n«vm Ki‡j Bwćbi `ÿZv e„w× Kiv hvq| †`‡LwQ †h, mKj ¯^Ztù‚Z© cwieZ©b me©`v mvg¨v¯’vi w`‡K
7. Bwćbi Kg©`ÿZv I †iwd«Rv‡iU‡ii Kvh©m¤úv`K ¸Yv‡¼i cwiPvwjZ nq| myZivs mKj ¯^Ztù‚Z© cwieZ©‡b GbUªwc e„w×
g‡a¨ cv_©K¨ wbiƒcY Ki| [mKj †evW© 18] cvq| †h‡nZz cÖK…wZ‡Z mewKQzB mvg¨ve¯’v †c‡Z Pvq, ZvB
DËi: Bwćbi Kg©`ÿZv, ejv hvq †h, RM‡Zi GbUªwc µgvMZ evo‡Q|
2. wek¦RMr µ‡g µ‡g Zvcxq g„Zz¨i w`‡K GwM‡q P‡j‡QÑ
BwÄb Øviv Kv‡R iƒcvšÍwiZ Zvckw³
= e¨vL¨v K‡iv| [h. †ev. 22]
BwÄb Øviv †kvwlZ Zvckw³
DËi: cÖK…wZ‡Z mewKQzB mvg¨ve¯’v †c‡Z †Póv K‡i| GKwU
T1 – T2 T2
= =1– wm‡÷g hZB mvg¨ve¯’vi w`‡K GwM‡q hvq ZZB Zvi KvQ
T1 T1
†_‡K KvR cvIqvq m¤¢ebv K‡g hvq, mvg¨e¯’vq †cuŠQv‡j
Q T
†iwd«Rv‡iU‡ii Kvh©m¤úv`K ¸Yv¼, K = Q –2Q = T –2T wm‡÷g †_‡K Avi †Kv‡bv KvRB cvIqv hv‡e bv| wm‡÷‡gi
1 2 1 2
GB kw³i iƒcvšÍ‡ii AÿgZv ev Am¤¢ve¨ZvB n‡”Q GbUªwc|
Dc‡iv³ `ywU mgxKiY †_‡K GwU ¯úó †h Bwćbi Kg©`ÿZv
GK ev GKvwaK wm‡÷g hZ mvg¨ve¯’vi w`‡K GwM‡q hvq
1 Gi †P‡q †QvU †hLv‡b †iwd«Rv‡iU‡ii Kvh©m¤úv`K ¸Yv¼ 1 Zv‡`i GbUªwcI ZZ evo‡Z _v‡K| mvg¨ve¯’vq GbUªwc
Gi †P‡q eo| me‡P‡q †ewk nq| A_©vr hLb †Kv‡bv wm‡÷g †_‡K Avi KvR
8. Bwćbi `ÿZv KL‡bvB 100% n‡Z cv‡i bvÑ e¨vL¨v Ki| cvIqv hvq bv ZLb Zvi GbUªwc nq me©vwaK| Avgiv Av‡MB
[wm. †ev. 17] †`‡LwQ †h mKj ¯^Ztù‚Z© cwieZ©b me©`v mvg¨ve¯’vi w`‡K
DËi: Bwćb GKwU Zvc Drm I Zvc MÖvnK _v‡K| Zvc cwiPvwjZ nq| myZivs mKj ¯^Ztù‚Z© cwieZ©‡bB GbUªwc
Dr‡mi ZvcgvÎv T1 Zvc MÖvn‡Ki ZvcgvÎv T2 A‡cÿv †ewk e„w× cvq| †h‡nZz cÖK…wZ‡Z mewKQzB mvgve¯’v †c‡Z Pvq, ZvB
n‡jB †Kej Zv‡ci ¯’vbvšÍi m¤¢e nq| `ÿZvi m~Î n‡jv, (T1 ejv hvq †h, RM‡Zi GbUªwc µgvMZ evo‡Q| RM‡Zi GbUªwc
– T2)  T1  100%| †h‡nZz mgxKi‡Y T1 > T1 – T2, hLb m‡e©v‡”P †cuŠQv‡e ZLb mewKQzi ZvcgvÎv GK n‡q
hv‡e| d‡j Zvckw³‡K Avi hvwš¿K kw³‡Z iƒcvšÍwiZ Kiv
†m‡nZz Bwćbi `ÿZv KL‡bv 100% n‡Z cv‡i bv|
hv‡e bv| GB Ae¯’v‡K RM‡Zi Z_vKw_Z Zvcxq g„Zz¨ (Heat
9. Zvc BwÄb I †iwd«Rv‡iUi-Gi Kvh©c×wZi g~j cv_©K¨ death of the universe) bv‡g AwfwnZ Kiv n‡q‡Q|
e¨vL¨v Ki| [Kz. †ev. 16] 3. AcÖZ¨vMvgx cÖwµqv GKwU GKgyLx cÖwµqv| e¨vL¨v K‡iv|
DËi: Zvc BwÄb I †iwd«Rv‡iUi-Gi Kvh©c×wZi g~j cv_©K¨ [e. †ev. 22]
n‡jv Zvc Bwćb D”P ZvcgvÎvi Drm n‡Z wb¤œ ZvcgvÎvi DËi: †h cÖwµqv wecixZgyLx n‡q cÖZ¨veZ©b Ki‡Z cv‡i bv
wms‡Ki w`‡K Zvc cÖevwnZ nq Ab¨w`‡K †iwd«Rv‡iU‡i wb¤œ A_©vr m¤§yLeZ©x I cðvrgyLx cÖwZ ¯Í‡i Zvc I Kv‡Ri djvdj
mgvb I wecixZ nq bv Zv‡K AcÖZ¨veZ©x cÖwµqv e‡j|
ZvcgvÎvi wmsK †_‡K Zvc D”P ZvcgvÎvi Dr‡mi w`‡K
cÖK…wZ‡Z ¯^Zù‚Z© cwieZ©b¸‡jvi me©`vB GKwU wbw`©ó w`‡K
cÖevwnZ nq| G‡Z Zvc Bwćb wm‡÷g Øviv KvR m¤úvw`Z nq
cwiPvwjZ nq| †hgbÑ Zvc D”PZvcgvÎv †_‡K wb¤œ
Aciw`‡K †iwd«Rv‡iU‡i wm‡÷‡gi Dci KvR m¤úvw`Z nq| ZvcgvÎvi w`‡K mÂvwjZ nq, GKwU Roe¯‘ my‡hvM †c‡jB
10. †c‡Uªvj BwÄb MÖx®§Kv‡ji Zzjbvq kxZKv‡j wKQzUv †ewk DuPz †_‡K wbPz‡Z co‡Z _v‡K, A_©vr wefekw³ n«vm cvq|
Kvh©KiÑ Kv‡Y©v Bwćbi bxwZi Av‡jv‡K e¨vL¨v Ki| cÖK…wZ Gme NUbv KL‡bB ¯^vfvweKfv‡e wecixZ w`‡K
[Ave`yj Kvw`i †gvjøv wmwU K‡jR, biwms`x] cÖZ¨veZ©b K‡i Avw` Ae¯’vq hvq bv| cÖK…wZi mKj ¯^Ztù‚Z©

DËi: Avgiv Rvwb, Kv‡b©v Bwćbi `ÿZv,  = 1 – T2  100%


T cwieZ©bB GKgyLx Ges AcÖZ¨veZ©x| A_©vr AcÖZ¨vMvgx
1 cÖwµqv¸‡jv GKgyLx|
Dc‡iv³ m¤úK© Abymv‡i, T2 hZ Kg n‡e Bwćbi `ÿZv ZZ 4. ÒGbUªwci cwieZ©b me©`v abvZ¥KÓÑ e¨vL¨v K‡iv|
e„w× cv‡e| kxZKv‡j cwi‡ek Z_v ZvcMÖvn‡Ki ZvcgvÎv [wm. †ev. 22]
MÖx®§Kvj A‡cÿv n«vm cvq ZvB Dc‡iv³ m¤úK© Abymv‡i DËi: aiv hvK, `y wU e¯‘ cwi‡ek †_‡K m¤ú~ Y© wew”Qbœ Ae¯’vq
ci¯ú‡ii ms¯ú‡k© Av‡Q| e¯‘ `ywUi ZvcgvÎv h_vµ‡g T1 I
Bwćbi `ÿZv e„w× cvq| AZGe, Kv‡b©v Bwćbi bxwZ
T2| hw` T1 > T2 nq Zvn‡j DËß e¯‘ †_‡K kxZj e¯‘‡Z
Abymv‡i GwU ¯úó, †c‡Uªvj BwÄb MÖx®§Kv‡ji Zzjbvq Zvc mÂvwjZ n‡e| aiv hvK Lye Aí mg‡qi g‡a¨ dQ
kxZKv‡j wKQzUv †ewk Kvh©Ki| cwigvY Zvc DËß e¯‘ n‡Z kxZj e¯‘‡Z mÂvwjZ n‡jv|
ZvcMwZwe`¨v  Final Revision Batch 23
dQ mKj ¯^Ztù‚Z© cwieZ©b me©`v mvg¨ve¯’vi w`‡K cwiPvwjZ
myZivs – T = DËß e¯‘i GbUªwc n«vm
1 nq| myZivs mKj ¯^Ztù‚Z© cwieZ©‡bB GbUªwc e„w× cvq|
dQ †h‡nZz cÖK…wZ‡Z mewKQzB mvg¨ve¯’v †c‡Z Pvq, ZvB RM‡Zi
Ges T = kxZj e¯‘i GbUªwc e„w×
2
GbUªwc µgvMZ evo‡Q| RM‡Zi GbUªwc hLb m‡e©v‡”P
dQ dQ
S = – + †cuŠQv‡e ZLb mewKQzi ZvcgvÎv GK n‡q hv‡e| d‡j
T1 T2
Zvckw³‡K Avi hvwš¿Kkw³‡Z iƒcvšÍwiZ Kiv hv‡e bv| G
T1 > T2 nIqvq S > 0
Ae¯’v‡K RM‡Zi Z_vKw_Z Zvcxq g„Zz¨ (Heat death of the
A_©vr GbUªwci cwieZ©b me©`v abvZ¥K|
universe) bv‡g AwfwnZ Kiv n‡q‡Q|
5. cÖK…wZ‡Z ¯^vfvweK wbq‡g msNwUZ mKj ZvcMZxq
8. iæ×Zvcxq cÖwµqv GKwU mgGbUªwc cÖwµqvÑ e¨vL¨v Ki|
AcÖZ¨veZ©x cÖwµqvÑ e¨vL¨v K‡iv| [Kz. †ev. 21] [h. †ev. 19; e. †ev. 21]
DËi: †h cÖwµqv wecixZgyLx n‡q cÖZ¨veZ©b Ki‡Z cv‡i bv dQ
DËi: Avgiv Rvwb, GbUªwci cwieZ©b, dS = T
A_©vr m¤§yLeZ©x I wecixZgyLx cÖwZ ¯Í‡i Zvc I Kv‡Ri djvdj
mgvb I wecixZ nq bv Zv‡K AcÖZ¨veZ©x cÖwµqv e‡j| iæ×Zvcxq cÖwµqvq, dQ = 0
cÖK…wZ‡Z †h mg¯Í cwieZ©b ev iƒcvšÍi AvcbvAvcwb N‡U 0
 dS = = 0 A_©vr iæ×Zvcxq cÖwµqvq GbUªwci cwieZ©b k~b¨|
T
†m¸‡jv‡K ejv ¯^Ztù‚Z© cwieZ©b| ¯^Ztù‚Z© cwieZ©b¸‡jv‡Z
GbUªwc n‡”Q wek„•Ljvi cwigvc| Zvc MÖn‡Y GB wek„•Ljv
†`Lv hvq †h, G¸‡jv me©`vB GKUv wbw`©ó w`‡K cwiPvwjZ
e„w× cvq, Zvc eR©‡b wek„•Ljv n«vm cvq| iæ×Zvcxq cÖwµqvq
nq| †hgbÑ Zvc D”PZi ZvcgvÎv †_‡K wb¤œZi ZvcgvÎvi
†h‡nZz wm‡÷‡g Zv‡ci Av`vb-cÖ`vb nq bv ZvB wm‡÷‡gi
w`‡K mÂvwjZ nq| GKwU Roe¯‘ my‡hvM †c‡jB DuPz †_‡K wek„•LjviI †Kv‡bv cwieZ©b nq bv Z_v GbUªwci cwieZ©b nq
wbPz‡Z co‡Z _v‡K, A_©vr wefe kw³ n«vm cvq| cÖK…wZ‡Z bv| A_©vr iæ×Zvcxq cÖwµqv GKwU mgGbUªwc cÖwµqv|
Gme NUbv KL‡bv ¯^vfvweKfv‡e wecixZ w`‡K cÖZ¨veZ©b K‡i 9. Kv‡b©v BwÄb‡K cÖZ¨vMvgx BwÄb ejv nq †Kb? [Kz. †ev. 19]
Avw` Ae¯’vq hvq bv| wb¤œ ZvcgvÎv †_‡K Zvc †¯^”Qvq D”P DËi: †Kv‡bv Pµ cÖZ¨vvMvgx n‡Z †M‡j †hme •ewkó¨ _vKv
ZvcgvÎvq hvq bv| A_©vr cÖK…wZ‡Z mKj ¯^Ztù‚Z© cwieZ©bB cÖ‡qvRb Kv‡b©vi Av`k© Bwćb †m¸‡jv i‡q‡Q| †hgbÑ
GKgyLx Ges AcÖZ¨veZ©x| 1. wc÷b I †PvO ev wmwjÛv‡ii g‡a¨ †Kv‡bv Nl©Y †bB|
6. RM‡Zi Zvcxq g„Zz¨i Rb¨ `vqx GbUªwcÑ e¨vL¨v K‡iv| 2. Kvh©Kix c`v_© (M¨vm)-Gi Dci cÖhy³ cÖwµqv¸‡jv Lye
[wm. †ev. 21] ax‡i ax‡i msNwUZ nq|
DËi: cÖK…wZ‡Z mewKQzB mvg¨ve¯’v †c‡Z †Póv K‡i| GKwU 3. wc÷b I wmwjÛvi wbg©v‡Y Av`k© Zvc wb‡ivaK ev AšÍiK
wm‡÷g hZB mvg¨v¯’vi w`‡K GwM‡q hvq ZZB Zvi KvQ I Av`k© Zvc cwievnx e¨envi Kiv nq Ges Zvc Drm I
†_‡K cvIqvi m¤¢vebv K‡g hvq, mvg¨ve¯’vq †cuŠQ‡j wm‡÷g Zvc MÖvn‡Ki Dcv`vb Ggb AwZ D”P Zvc MÖnxZv hy³ Kiv
†_‡K Avi †Kv‡bv KvRB cvIqv hv‡e bv| wm‡÷‡gi G nq †h m‡gvò cÖwµqv¸‡jv w¯’i ZvcgvÎvq msNwUZ nq|
kw³i iƒcvšÍ‡i AÿgZv ev Am¤¢ve¨ZvB n‡”Q GbUªwc| 10. †Kv‡bv wm‡÷‡gi wek„•Ljvi m~PK cwigvc‡Ki ivwk
mvg¨ve¯’vq GbUªwc me‡P‡q †ewk nq| mKj ¯^Ztù‚Z© GbUªwcÑ e¨vL¨v Ki| [iv. †ev. 16]
cwieZ©b me©`v mvg¨ve¯’vi w`‡K cwiPvwjZ nq| myZivs DËi: iæ×Zvcxq cÖwµqvq e¯‘i †h Zvcxq ag© w¯’i _v‡K Zv‡K
mKj ¯^Ztù‚Z© cwieZ©‡bB GbUªwc e„w× cvq| †h‡nZz GbUªwc e‡j| Avevi †Kv‡bv wm‡÷‡gi wek„•Ljvi m~PK
cÖK…wZ‡Z mewKQzB mvg¨ve¯’v †c‡Z Pvq, ZvB RM‡Zi GbUªwc cwigvcK‡KI GbUªwc e‡j| †hgb, cÖK…wZ‡Z †eu‡P _vKvi
µgvMZ evo‡Q| RM‡Zi GbUªwc hLb m‡e©v‡”P †cuŠQv‡e Rb¨ hZUzKz Aw·‡Rb `iKvi Zvi Zzjbvq Kg ev †ewk _vK‡j
ZLb mewKQzi ZvcgvÎv GK n‡q hv‡e| d‡j Zvckw³‡K Avgv‡`i k¦vm-cÖk¦vm wb‡Z Kó n‡e| G‡ÿ‡Î †h wek„•Ljv e„w×
Avi hvwš¿Kkw³‡Z iƒcvšÍwiZ Kiv hv‡e bv| G Ae¯’v‡K cv‡e †mwUB GbUªwci gva¨‡g wnmve Kiv nq|
RM‡Zi Z_vKw_Z Zvcxq g„Zz¨ (Heat death of the 11. GKwU cÖZ¨vMvgx cÖwµqvi GbUªwc †Kb aªæeK/GbUªwc w¯’i
universe) bv‡g AwfwnZ Kiv n‡q‡Q| ZvB ejv hvq _v‡K bvwK e„w× cvq? [nwj µm K‡jR, XvKv]
RM‡Zi Zvcxq g„Zz¨i Rb¨ `vqx GbUªwc| DËi: g‡b Kwi, GKwU cÖZ¨veZ©x Kv‡b©v BwÄb T1 ZvcgvÎvq
7. RM‡Zi Zvcxq g„Zz¨i KviY Zvcxq mvg¨ve¯’vÑ e¨vL¨v K‡iv| Zvc Drm n‡Z Q1 cwigvY Zvc MÖnY Kij Ges T2
[w`. †ev. 21] ZvcgvÎvq Zvc MÖvn‡K Q2 cwigvY Zv eR©b Kij|
DËi: cÖK…wZ‡Z mewKQzB mvg¨ve¯’v †c‡Z †Póv K‡i| GKwU Zvn‡j GbUªwci †gvU cwieZ©b,
wm‡÷g hZB mvg¨ve¯’vi w`‡K GwM‡q hvq ZZB Zvi KvQ Q1 –Q2 Q1 Q2
S = S1 + S2 = + = –
T1 T2 T1 T2
†_‡K KvR cvIqv m¤¢vebv K‡g hvq, mvg¨ve¯’vq †cuŠQv‡j
Q Q
wm‡÷g †_‡K Zvi Avi †Kv‡bv KvRB cvIqv hv‡e bv| wKš‘ cÖZ¨veZ©x Kv‡b©v Bwćbi †ÿ‡Î, T 1 = T 2
1 2
wm‡÷‡gi G kw³i iƒcvšÍ‡ii AÿgZv ev Am¤¢ve¨ZvB n‡”Q Q1 Q2
 wm‡÷‡gi GbUªwci †bU cwieZ©b, S = – =0
GbUªwc| mvg¨ve¯’vq GbUªwc me‡P‡q †ewk nq| A_©vr hLb T1 T2
†Kv‡bv wm‡÷g †_‡K Avi KvR cvIqv hvq bv ZLb Zvi A_©vr cÖZ¨veZ©x cÖwµqvq wm‡÷g Avw` Ae¯’vq wd‡i Av‡m e‡j
GbUªwc nq me©vwaK| G‡ÿ‡Î GbUªwci cwieZ©b k~b¨ nq Ges GbUªwc w¯’i _v‡K|
nd
24  HSC Physics 2 Paper Chapter-1
12. GKB ZvcgvÎvq `ywU wm‡÷‡gi GbUªwc Kxfv‡e wfbœ n‡Z
Topicwise MCQ
cv‡i Zv e¨vL¨v Ki| [XvKv K‡jR, XvKv]
dQ ZvcgvÎv
DËi: Avgiv Rvwb, GbUªwc, dS = T | Dc‡iv³ m¤úK©
1. dv‡ibnvBU †¯‥‡ji †Kvb ZvcgvÎv †mjwmqvm †¯‥‡ji
†_‡K †`Lv hvq, ZvcgvÎv GK n‡jI hw` M„wnZ ev ewR©Z Zvc
cv‡Vi wظY nq? [e. †ev. 23]
wfbœ nq Z‡e GbUªwci cwieZ©b wfbœ n‡e| AZGe GKB
12.31 22.15
ZvcgvÎvi `ywU wm‡÷‡g Zv‡ci cwieZ©b wfbœ nIqvi Kvi‡Y 160.00 288.00
Zv‡`i GbUªwc wfbœ n‡Z cv‡i| DËi: Blank
13. RM‡Zi Zvcxq g„Zz¨ ej‡Z wK eyS? T – 32 T
DËi: RM‡Z GbUªwc hLb m‡e©v‡”P †cuŠQv‡e ZLb me wKQzi e¨vL¨v: F 9 = 5C
ZvcgvÎv GK n‡q hv‡e| d‡j Zvckw³‡K Avi hvwš¿K TF
kw³‡Z iƒcvšÍwiZ Kiv hv‡e bv| GB Ae¯’v‡K weÁvbx jW© TF – 32 2a
 =
9 5
†Kjwfb RM‡Zi Zvcxq g„Zz¨ bv‡g AwfwnZ K‡i‡Qb|
9
14. c„w_exi GbUªwc w`b w`b e„w× cv‡”QÑ e¨vLv Ki|  TF – 32 = TF
10
DËi: Avgiv Rvwb, AcÖZ¨vMvgx cÖwµqvq GbUªwc e„w× cvq|  TF = 320
wek¦RM‡Zi AwaKvsk cÖwµqvB AcÖZ¨vMvgx cÖwµqv| myZivs 2. _v‡g©vwgwZi g~j mgxKiY wb‡Pi †KvbwU? [P. †ev. 22]
wek¦RM‡Zi GbUªwc µgvMZ e„w× cv‡”Q| Gfv‡e GbUªwc e„w× N X – Xice
=
†c‡Z †c‡Z hLb m‡e©v”P gv‡b †cuŠQv‡e ZLb we‡k¦i mKj  – ice Xsteam – Xice
e¨e¯’v Zvcxq mvg¨ve¯’vq DcbxZ n‡e| Zvcxq mvg¨ve¯’vq  – ice X – Xice
=
N Xsteam – Xice
†cuŠQ‡j Zvckw³‡K djcÖmy Kv‡R cwiYZ Kiv m¤¢e n‡e bv|
N Xsteam – Xice
d‡j Kvh©Kix kw³i `y®úÖvc¨Zv m„wó n‡e| Ggbfv‡e Pj‡Z  – ice
=
X – Xice
_vK‡j c„w_ex Ggb GKwU fqven Ae¯’vq †cuŠQv‡e †h Zvc  – ice Xsteam – Xice
kw³ mieiv‡n Aÿg n‡q co‡e| = 
N X – Xice
15. Zv‡ci cwienb AcÖZ¨veZ©x cÖwµqv †Kb? e¨vL¨v Ki|  – ice X – Xice
DËi: =
Xsteam – Xice
DËi: Zvc me©`v D”P ZvcgvÎvi e¯‘ †_‡K wb¤œ ZvcgvÎvi N
e¯‘‡Z mÂvwjZ nq| wKš‘ wb¤œ ZvcgvÎvi e¯‘ †_‡K Zvc D”P 3. 98.6F ZvcgvÎvi mgZzj¨ _v‡g©vWvqbvwgK ZvcgvÎv
ZvcgvÎvi e¯‘‡Z KLbI mÂvwjZ nq bv| GRb¨ Zv‡ci KZ? [P. †ev. 21; g. †ev. 21]
cwienb AcÖZ¨veZ©x cÖwµqv| 310.16 K 345.16 K
393.16 K 408.16 K
16. GK Møvm cvwb‡Z GK UzKiv eid ivLv n‡j Zv
DËi: 310.16 K
¯^Ztù~Z©fv‡e cvwb‡Z cwiYZ nq †Kb e¨vL¨v Ki| K – 273.16 F – 32
[miKvwi cvBIwbqvi gwnjv K‡jR, wm‡jU] e¨vL¨v: 5
=
9
DËi: ZvcMwZwe`¨vi 2q m~Î n‡Z Avgiv Rvwb, Ggb †Kv‡bv K – 273.16 98.6 – 32
wm‡÷g cvIqv m¤¢e bq, hv ¯^Ztù~Z©fv‡e wb¤œ DòZvi e¯‘  =
5 9
n‡Z D”PZi DòZvi e¯‘‡Z Zvc mÂvwjZ K‡i A_©vr me©`v = 7.4
D”PZi DòZvi e¯‘ n‡Z wb¤œZi DòZvi e¯‘‡Z Zvc mÂvwjZ  K = 310.16 K
nq| ZvB GK Møvm cvwb‡Z GK UzKiv eid ivL‡j Zv 4. †Kjwfb †¯‥‡j eid we›`y †KvbwU? [h. †ev. 19]
0 C 0K
¯^Ztù~Z©fv‡e cvwb‡Z cwiYZ nq|
273 C 273 K
DËi: 273 K
Type-6: Mixed Concept
5. 5C ZvcgvÎvi Rb¨ dv‡ibnvBU †¯‥‡j gvb KZ?
1. `yBwU eidLÐ GKwUi Ici AciwU †P‡c ai‡j Zv [Xv. †ev. 19]
41 F 37 F
GKwU L‡Ð cwiYZ nq †Kb? [h. †ev. 21]
9 F 2.78 F
DËi: Pvc e„wׇZ ei‡di Mjbv¼ K‡g hvIqvq `yBwU eid LÐ
DËi: 41 F
GKwU‡Z cwiYZ nq| KwVb n‡Z Zi‡j iƒcvšÍ‡ii mgq †hme F – 32 C
c`v‡_©i AvqZb n«vm cvq, Pvc evo‡j H mKj c`v‡_©i e¨vL¨v: 9 = 5
Mjbv¼ K‡g hvq| ZvB `yBwU eidLÐ GKwUi Ici AciwU F – 32 5
 =
†P‡c ai‡j ei‡di †hLv‡b Pvc c‡o‡Q †mLv‡b Mjbv¼ K‡g 9 5
hvq| ZvB ei‡di ZvcgvÎv‡ZB †mLvbKvi eid M‡j hvq|  F = 41F
Pvc mwi‡q wb‡j Mjbv¼ Avevi c~‡e©i gvb wd‡i cvq| ZLb 6. cvwbi •Îa we›`y‡Z Pvc KZ? [h. †ev. 17]
64.58 mm water 64.58 cm water
M‡j hvIqv cvwb ei‡d iƒcvšÍwiZ n‡q GKwU eid L‡Ð
4.58 cm Hg 4.58 mm Hg
cwiYZ nq| DËi: 4.58 mm Hg
ZvcMwZwe`¨v  Final Revision Batch 25
7. GK w¯’iwe›`y c×wZ‡Z ZvcgvÎv cwigv‡ci g~jbxwZ ZvcMwZwe`¨vi k~b¨Zg m~Î
e¨eüZ nq wb‡¤œi †Kvb †¯‥‡j? [iv. †ev. 15]
†mjwmqvm †ivgvi 14. Zv‡ci hvwš¿K mgZvi GKK n‡jvÑ
[w`. †ev. 23; g. †ev. 22; mw¤§wjZ †ev. 18]
†Kjwfb dv‡ibnvBU
K¨vjwi/MÖvg Ryj/K¨vjwi
DËi: †Kjwfb
Ryj K¨vjwi/Ryj
8. †Kvb ZvcgvÎvq †mjwmqvm I dv‡ibnvBU †¯‥‡j GKB
gvb cvIqv hvq? [w`. †ev. 15]
DËi: Ryj/K¨vjwi
15. _v‡g©vwgUvi Gi aviYv cvIqv hvq ZvcMwZwe`¨vi †Kvb
– 40 100
287.13 574.25 m~Î n‡Z? [h. †ev. 21; e. †ev. 17; P. †ev. 17; h. †ev. 15]
DËi: – 40 k~b¨Zg cÖ_g
TF – 32 TC wØZxq Z…Zxq
e¨vL¨v: 9 =
5 DËi: k~b¨Zg
T – 32 T 16. wP‡Î wZbwU eø‡Ki ZvcgvÎv h_vµ‡g 1C, 2C,
 = [∵ TF = TC = T]
9 5 3C hviv ci¯ú‡ii mv‡_ Zvcxq ms¯ú‡k© Av‡Q|
9 [wm. †ev. 16]
 T – 32 = T
5 1C 2C 3C
 T = – 40 eøK-1 eøK-2 eøK-3
9. wewKiY cvB‡ivwgUv‡i DËß e¯‘i wewKiY ag© Kv‡R
†Kvb ZvcgvÎv Zvcxq mvg¨ve¯’v wb‡`©k K‡i?
jvwM‡q †Kvb cwim‡ii ZvcgvÎv cwigvc Kiv nq?
1C 2C 3C
500C Gi †ewk 3000C Gi †ewk
5 10 5
1000C Gi †ewk 5000C Gi †ewk
10 5 10
DËi: 500C Gi †ewk
15 15 15
10. †h ZvcgvÎvq cÖgvY Pv‡c weï× eid Mj‡Z ïiæ K‡i
20 15 15
Zv‡K ejv nqÑ
EaŸ© w¯’i we›`y wb¤œ w¯’i we›`y DËi: 15 15 15
w÷g we›`y •Îa we›`y 17. wZbwU e¯‘ Zvcxq mvg¨ve¯’ v q _vK‡j Zv‡`i wb‡Pi †Kvb
DËi: wb¤œ w¯’i we›`y ivwkwU GKB n‡e? [P. †ev. 15]
11. cvwbi •Îa we›`yi ZvcgvÎv KZ? fi wefekw³
A_ev, cvwbi •Îawe›`yi ZvcgvÎv aiv nqÑ AšÍt¯’ kw³ ZvcgvÎv
273.16 K 273.15C DËi: ZvcgvÎv
273 K 100 K
DËi: 273.16 K ZvcMZxq wm‡÷g
12. GKwU ÎæwUc~Y© _v‡g©vwgUv‡ii eid we›`y 5C Ges w÷g
we›`y 115C| †Kvb e¯‘i cÖK…Z ZvcgvÎv 40C n‡j, H 18. GKwU Mvwo Pj‡Z _vK‡j Gi Uvqv‡ii wfZi †Kvb
_v‡g©vwgUv‡i e¯‘wUi ZvcgvÎv KZ cÖ`k©b Ki‡e? ZvcMZxq cÖwµqv P‡j? [wm. †ev. 23]
49 C 94 C m‡gvò iæ×Zvcxq
45 C 54 C mgAvqZb mgPvcxq
DËi: 49 C DËi: mgAvqZb
C–0 S–M 19. Db¥y³ wm‡÷‡g wm‡÷g I cwi‡e‡ki g‡a¨ Av`vb-cÖ`vb
e¨vL¨v: 100 – 0 = B – M
nq †KvbwU? [iv. †ev. 22]
40 S–M fi I fi‡eM fi‡eM I kw³
 =
100 115 – 5 fi I kw³ fi I Pvc
 S – 5 = 44
DËi: fi I kw³
 S = 49C
20. †Kvb wew”Qbœ e¨e¯’vi P~ovšÍ AwePj Ae¯’v‡K Kx e‡j?
13. †mjwmqvm †¯‥‡j 1 ZvcgvÎv e„w× †c‡j dv‡ibnvBU
†¯‥‡j KZ wWMÖx e„w× cv‡e? ZvcMZxq mvg¨ve¯’v cvwicvwk¦©K Ae¯’v
8 F 1.5 F ZvcMZxq cÖwµqv ZvcMKxq w¯’wZkxjZv
2.5 F 2 F DËi: ZvcMZxq mvg¨ve¯’ v
DËi: Blank 21. wb‡¤œi †KvbwU ZvcMZxq cwieZ©b bq? [†g. f. c. 03-04]
 – 32  m‡gvò cwieZ©b mgAvqZb cwieZ©b
e¨vL¨v: F 9 = 5C mgPvc cwieZ©b mgag©x cwieZ©b
5
C = (F – 32)
DËi: mgag© x cwieZ© b
9 22. ZvcMwZwe`¨vi †Kvb cÖwµqvq M¨v‡mi Dci †Kv‡bv KvR
5 nq bv?
 C = {(F2 – 32) – (F1 – 32)} [iv. †ev. 21]
9
m‡gvò mg-AvqZb
5
 1 = F mgPvcxq iæ× Zvcxq
9
 F = 1.8F DËi: mg-AvqZb
nd
26  HSC Physics 2
Paper Chapter-1
ZvcMwZwe`¨vi cÖ_g m~Î 31. wb‡Pi †Kvb †jLwPÎwU P  V Gi cwieZ©b wb‡`©k K‡i?
[Xv. †ev. 16]
23. †Kv‡bv e¨e¯’v cwi‡ek †_‡K 50 Ryj Zvckw³ †kvlY P P
K‡i Ges cwi‡e‡ki Dci 20 Ryj KvR m¤úv`b K‡i|
G‡Z e¨e¯’vi AšÍt¯’ kw³i cwieZ©b KZ? [Kz. †ev. 22] O O
V V
20 Ryj 30 Ryj P P
50 Ryj 70 Ryj
DËi: 30 Ryj 
O
e¨vL¨v: dQ = dU + dW V V
P
 50 = dU + 20
 dU = 30 J DËi:
24. †Kv‡bv wm‡÷g KZ…©K K…ZKvR k~b¨-Gi A_©Ñ [h. †ev. 22]
V
Pvc w¯’i wKš‘ AvqZb e„w× cvq 32. m‡gvò †iLv †KvbwU? [Xv. †ev. 15]
Pvi w¯’i wKš‘ AvqZb K‡g hvq
AvqZb w¯’i wKš‘ Pvc e„w× cvq P P
Pvc, AvqZb Ges ZvcgvÎv e„w× cvq
V V
DËi: AvqZb w¯’i wKš‘ Pvc e„w× cvq
25. ZvcMwZwe`¨vi 1g I 2q m~‡Îi mgwš^Z iƒcÑ [e. †ev. 21]
P P 
dU = TdS + PdV dU = TdS – PdV
dU = VdP + TdS dU = VdP + TdS V V
DËi: dU = TdS – PdV
26. T1 I T2 ZvcgvÎvi `ywU e¯‘i Af¨šÍixY kw³ h_vµ‡g DËi: P
U1 I U2, T1 > T2| wew”Qbœ wm‡÷‡g e¯‘Øq Zvcxq
V
mvg¨ve¯’vq Avm‡j wb‡Pi †KvbwU N‡U? [wm. †ev. 21] e¨vL¨v: m‡gv cÖwµqvq,
U1 e„w× U2 n«vm U1 n«vm U2 e„w× PV = K
hv, xy = C Gi Abyiƒc
U1 e„w× U2 e„w× U1 n«vm U2 n«vm
A_©vr Gi †jL Awae„ËvKvi|
DËi: U1 n«vm U2 e„w× 33. M¨vm KZ…©K K…ZKvR m¤úbœ n‡j wb‡Pi †KvbwU cÖ‡hvR¨ n‡e?
27. ZvcMwZwe`¨vq cÖ_g m~Î m¤úK© ¯’vcb K‡iÑ [P. †ev. 15]
[h. †ev. 21; wm. †ev. 15]
AvqZb e„ w× cvq AvqZb n« v m cvq
fi e„w× cvq fi n«vm cvq
Zvc I Pvc Gi g‡a¨ Zvc I ej Gi g‡a¨ DËi: AvqZb e„w× cvq
Zvc I KvR Gi g‡a¨ Zvc I ÿgZv Gi g‡a¨ 34. GKK Zvc Drcbœ Ki‡Z †h cwigvY KvR Ki‡Z nq
DËi: Zvc I KvR Gi g‡a¨ Zv‡K Kx e‡j?
28. ZvcMwZwe`¨vi cÖ_g m~‡Îi Ry‡ji wee„wZ †Kvb ZvcMZxq Zv‡ci hvwš¿K mgZv Kv‡Ri hvwš¿K Zzj¨v¼
K¬wmqv‡mi aªæeK Kv‡b©v Zzj¨v¼
cÖwµqviB GKwU we‡kl iƒc? [iv. †ev. 19]
DËi: Zv‡ci hvwš¿K mgZv
m‡gvò iæ×Zvcxq Af¨šÍixY kw³
mgPvc mgAvqZb 35. †Kvb wbw`©ó cwigvY M¨v‡mi Af¨šÍixY kw³ †Kej wbf©i
DËi: m‡gvò K‡i GiÑ [Xv. †ev. 23]
29. ZvcMwZwe`¨vi cÖ_g m~‡Îi MvwYwZK iƒc †KvbwU? ZvcgvÎvi Dci Pv‡ci Dci
[Xv. †ev. 17] AvqZ‡bi Dci G›Uªwci Dci
Q = U + W W = Q + U DËi: ZvcgvÎvi Dci
36. †Kvb e¨e¯’v cwi‡ek †_‡K 1500 Ryj Zvc †kvlY K‡i
Q = W – U W = Q – U
Ges e¨e¯’vi Dci 300 Ryj KvR m¤úvw`Z nq|
DËi: Q = U + W e¨e¯’vwUi Af¨šÍixY kw³i cwieZ©b KZ?
30. ZvcMwZwe`¨vi cÖ_g m~Î wb‡Pi †KvbwUi msiÿYkxjZv [h. †ev. 21; wm. †ev. 19; Kz. †ev. 17; w`. †ev. 16]
1200 Ryj –1200 Ryj
wb‡`©k K‡i? [P. †ev. 16] 1800 Ryj –1800 Ryj
kw³ Pvc DËi: 1800 Ryj
PvR© fi e¨vL¨v: dQ = dU + dW
DËi: kw³  1500 = dU – 300
 dU = 1800 J
ZvcMwZwe`¨v  Final Revision Batch 27
37. Zvc AšÍiK AveiYhy³ `„p cv‡Î GKwU Av`k© M¨v‡m 44. PV = aªæeK, mgxKiYwU †Kvb cÖwµqv‡K mg_©b K‡i?
k~b¨ gva¨‡g cÖmviY Kiv n‡jv| d‡j wb‡¤œi †KvbwU [Xv. †ev. 19]
NU‡e? [P. †ev. 21] m‡gvò mgAvqZb
AšÍt¯’ kw³i cwieZ©b n‡e bv mgPvc iæ×Zvc
ZvcgvÎv n«vm cv‡e DËi: m‡gvò
Pv‡ci †Kv‡bv cwieZ©b n‡e bv 45. m‡gvò cÖwµqvq wm‡÷‡gi †Kvb ivwkwU w¯’i _v‡K?
`kvi cwieZ©b n‡e  [w`. †ev. 16]
DËi: ZvcgvÎv n«vm cv‡e AvqZb Zvc
38. Af¨šÍixY kw³ wb‡Pi †Kvb `ywU kw³i mgwó? ZvcgvÎv Pvc
Zvcxqkw³ I MwZkw³ DËi: ZvcgvÎv
AvšÍtAvYweK e‡ji Kvi‡Y m„ó kw³ I w¯’wZkw³ 46. m‡gvò cÖwµqvi †ÿ‡Î wb‡Pi †Kvb mgxKiYwU mwVK?
wePiYkxj AYyi MwZkw³ I AvYweK w¯’wZkw³
dQ = dU dQ = dW
Zvcxqkw³ I N~Y©b MwZkw³
dW = dU dU = dW – dQ
DËi: wePiYkxj AYyi MwZkw³ I AvYweK w¯’wZkw³
DËi: dQ = dW
39. ÒM¨v‡mi Af¨šÍixY kw³ ïaygvÎ Gi ZvcgvÎvi Dci
wbf©i K‡i, Gi Pvc ev AvqZ‡bi Dci wbf©i K‡i bvÓ
GUv‡K ejv nqÑ iæ×Zvcxq cÖwµqv
†gqvi (Mayer) Gi cÖKí 47. iæ× Zvcxq I m‡gvò cÖwµqvi †ÿ‡Î P-V †jLwP‡Îi
†Rgm †cÖmKU Ryj Gi cÖKí †Q`we›`y‡Z Xvj؇qi AbycvZÑ [g. †ev. 23]
mvw` Kv‡b©v cÖKí 1
K¬wmqvm w_Iwi 
 
DËi: †gqvi (Mayer) Gi cÖKí +1  – 1
m‡gvò cÖwµqv DËi: 
40. wb‡¤œi †KvbwU m‡gvò cwieZ©‡bi kZ©? [Kz. †ev. 23] 48. iæ×Zvcxq cÖmvi‡Y M¨v‡mi kw³i Drm n‡jvÑ [iv. †ev. 23]
GKwU `ªæZ MwZi cÖwµqv evwn¨K KvR Zvc eR©b
PZzcv© k¦©¯’ gva¨‡gi Zvc aviKZ¡ Kg Af¨šÍixY kw³ Zvc MÖnY
cv‡Îi †`qvj Zvc Kzcwienx DËi: Af¨šÍixY kw³
Zvi AcmviY ev mieivn cÖ‡qvRb 49. eû cvigvYweK M¨v‡mi †ÿ‡Î  Gi gvb KZ? [Kz. †ev. 23]
DËi: Zvi AcmviY ev mieivn cÖ‡qvRb
1.05 1.33
41. wb‡Pi †Kvb cÖwµqvi †ÿ‡Î dQ = dW nq?
[g. †ev. 23; h. †ev. 23]
1.44 1.66
m‡gvò cÖwµqv mgPvc cÖwµqv DËi: 1.33
mgAvqZb cÖwµqv iƒ×Zvcxq cÖwµqv 50. iæ×Zvcxq cÖwµqvq GKwU wØ-cigvYy M¨v‡mi Pvc 5%
DËi: m‡gvò cÖwµqv e„w× Ki‡j M¨v‡mi AvqZb kZKiv KZ Kg‡e? ( = 1.4)
42. ZvcgvÎv w¯’i †i‡L †h ZvcMZxq cÖwµqvq wKQz cwigvY M¨vm‡K [Kz. †ev. 23]
ms‡KvPb I cÖmviY Kiv nq, †m cÖwµqv‡K wK e‡j? [P. †ev. 19] 2.5% 3.42%
mgPvc iæ×Zvcxq 4.76% 5%
m‡gvò mg-AvqZb DËi: 3.42%
DËi: m‡gvò  
e¨vL¨v: P1V1 = P2V2
43. m‡gvò cÖwµqvq GKwU wmwjÛv‡ii g‡a¨ ivLv wKQz M¨vm 1

 V2 =    V1
800 J KvR m¤úv`b Ki‡j M¨vm KZ…©K †kvwlZ Zv‡ci P1 
P2
cwigvY KZ Ryj? [iv. †ev. 19]
1

=
0 400 1 1.4
800 900 1 + 0.05  V1
DËi: 800  V2 = 0.966 V1
e¨vL¨v: m‡gvò cÖwµqvq, V1 – 0.966 V1
 V =  100%
dQ = dW V1
 dQ = 800 J = 3.42%
nd
28  HSC Physics 2
Paper Chapter-1
51. wb‡Pi †Kvb †jLwU GKwU Av`k© M¨v‡mi iæ×Zvcxq 55. iæ×Zvcxq cÖwµqvq GKwU Av`k© M¨v‡mi Pvc I
m¤úªmviY‡K cÖKvk K‡iÑ [h. †ev. 23] ZvcgvÎvi g‡a¨ m¤úK©Ñ [h. †ev. 22]
lnT lnT P–1 T = aªæeK 
P T +1
= aªæeK
 –1 1– 
P T = aªæeK P T = aªæeK
lnP lnP 
1–
DËi: P T = aªæeK
lnT lnT 56. evqy gva¨‡g kã mÂvjb †Kvb ai‡bi cÖwµqv? [Xv. †ev. 21]
 m‡gvò mgPvcxq
lnP lnP
mgvqZb iæ×Zvcxq
lnT
DËi: iæ×Zvcxq
DËi: 57. iæ×Zvcxq cÖmvi‡Y †KvbwU mwVK? [Xv. †ev. 21]
lnP
1– [GLv‡b W = evwn¨K KvR, U = AšÍt¯’ kw³i

e¨vL¨v: TP =K cwieZ©b, Q = cÖhy³ Zvc]
1–
W = U W = – U
 ln TP ( )= lnK

Q = U Q = U
1–
 lnT + lnP = lnK DËi: W = – U

58. iæ×Zvcxq cwieZ©‡bi mgq Av`k© M¨v‡mi †ÿ‡Î Pvc I
1–
 lnT = lnP + lnk ZvcgvÎvi m¤úK© n‡jvÑ
 [P. †ev. 21; g. †ev. 21]
1– 1–
hv, y = mx + c Gi Abyiƒc  =  =
TP aªæeK PT aªæeK
5
52.  = Gi Rb¨ †KvbwU mwVK? [P. †ev. 23; iv. †ev. 16]  
3 TP1 –  = aªæeK PT1 –  = aªæeK
5 5 1–
Cp = R Cv = R
3 3 DËi: TP  = aªæeK
3 59. †h †f․Z cÖwµqvq GbUªwc w¯’i _v‡K Zv n‡jvÑ
Cv = R Cv = 2R
2 [Kz. †ev. 21; e. †ev. 16]
3 iƒ×Zvcxq cÖ wµqv m‡gvò cÖwµqv
DËi: Cv = R
2
mgPvc cÖwµqv mgAvqZb cÖwµqv

e¨vL¨v: CP = R DËi: iƒ×Zvcxq cÖwµqv
–1
60. iƒ×Zvcxq cwieZ©‡b †Kvb †f․Z ivwkwU cwieZ©b nq bv?
 
5


3

[e. †ev. 21; h. †ev. 15]
 R
5 Pvc AvqZb
 3
–1  ZvcgvÎv GbUªwc
5
 CP = R DËi: GbUªwc
2
1 61. m‡gvò †iLvi Xvj iƒ×Zvcxq †iLvi Xvj A‡cÿv KZ¸Y
 CV = R Lvov?
–1 [Xv. †ev. 21]

=
1  1
R + +
5 – 1 
3  1
– – 
3 
 CV = R
2 1
53. CO2 M¨v‡mi Rb¨  Gi gvb KZ? DËi: +
[P. †ev. 23] 
1.33 1.40 62. iƒ×Zvcxq 1 atm Pv‡c ivLv M¨vm‡K cÖmvwiZ K‡i wظY
1.67 1.69 Kiv n‡j †h P~ovšÍ Pvc nq, m‡gvò cÖwµqvq †mB GKB
DËi: 1.33 Pvc †c‡Z M¨vm‡K KZ¸Y cÖmvwiZ Ki‡Z n‡e?
54. iæ×Zvc cÖwµqvi †ÿ‡Î †KvbwU mwVK? [e. †ev. 23] [P. †ev. 21; g. †ev. 21]
dS = 0 dV = 0 1.4 2.6
dQ  0 dW = dU 5.2 7.8
DËi: dS = 0 DËi: 2.6
ZvcMwZwe`¨v  Final Revision Batch 29
   
e¨vL¨v: P1V1 = P2V2 e¨vL¨v: P1V1 = P 2V 2
 V1 
 P2 =   P2 =  
V1
V2  P1 V2  P1
1 1.4
1 1.4
 = 
P2 =  1
P1 2 3
m‡gvò cÖwµqvq,  P2 = 0.215 atm
P1V1 = P2V2 68. mgPv‡c I 17C ZvcgvÎvq 2 wjUvi‡K evqy‡Z 3 wjUvi
V2 P1 AvqZb Kivi Rb¨ ZvcgvÎv KZ n‡e?
 = = (2)1.4
V1 P2 100C 152C
 V2 = 2.6 V1 162C 262C
63. iæ×Zvcxq cÖmvi‡Yi †ÿ‡Î †KvbwU mwVK? [wm. †ev. 17] DËi: 162C
wm‡÷‡gi Ici KvR m¤úbœ nq V V
e¨vL¨v: T 1 = T 2
1 2
ZvcgvÎv w¯’i _v‡K 2 3
AšÍt¯’ kw³ n«vm cvq  =
(17 + 273) T2
Zvc ewR©Z nq   T2 = 435 K
DËi: AšÍt¯’ kw³ n«vm cvq  T2 = 162C
64. †Kv‡bv M¨vm‡K iƒ×Zvcxq cÖwµqvq msKzwPZ Ki‡j wb‡Pi 69. 127C ZvcgvÎvq †Kvb wbw`©ó cwigvY M¨vm nVvr
†KvbwU N‡U? msKzwPZ n‡q 1/3 AvqZb jvf K‡i| ZvcgvÎvi
cwieZ©b KZ? [ = 1.40]
Af¨šÍixY kw³ e„w× cvq, ZvcgvÎv n«vm cvq
620.74C 347.74C
Af¨šÍixY kw³ n«vm cvq, ZvcgvÎv e„w× cvq
220.74C 127C
Af¨šÍixY kw³ I ZvcgvÎv DfqB e„w× cvq
DËi: 220.74C
Af¨šÍixY kw³ I ZvcgvÎv DfqB n«vm cvq –1 –1
e¨vL¨v: T1V 1 = T2V2
DËi: Af¨šÍixY kw³ I ZvcgvÎv DfqB e„w× cvq
[]

V1 –1
 T2 = T1   
65. iƒ×Zvc cÖwµqvi †ÿ‡Î wb‡¤œi †KvbwU mwVK bq? V2
ZvcgvÎv aªæe _v‡K bv wKš‘ Zv‡ci cwieZ©b nq bv = (127 + 273)  (3)1.4–1
A_©vr dQ = 0  T2 = 620.738 K
GwU GKwU axi cÖwµqv  T = (620.738 – 273) – 127
= 220.74C
GB cÖwµqvq Zvc eR©b ev †kvlY Kiv nq bv
GB cÖwµqvq M¨v‡mi Pvc I AvqZ‡bi m¤úK©: cÖZ¨veZ©x I AcÖZ¨veZ©x cÖwµqv

PV = aªæeK 
70. cÖZ¨veZ©x cÖwµqvi †ÿ‡ÎÑ [w`. †ev. 22]
DËi: GwU GKwU axi cÖwµqv GwU ¯^Ztù~Z© cÖwµqv
66. M¨v‡mi iƒ×Zvcxq ms‡KvP‡bi mgq 350 J KvR GwU axi cÖwµqv
m¤úvw`Z nq D³ e¨e¯’vq AšÍt¯’ kw³i cwieZ©‡bi gvb ZvcMZxq mvg¨ve¯’v eRvq _v‡K bv
KZ n‡e? kw³i AcPq nq 
50 J – 150 J DËi: GwU axi cÖwµqv
350 J – 350 J 71. `y B wU e¯‘i g‡a¨ Nl©‡Yi d‡j Drcbœ Zvc †Kvb cÖwµqv
DËi: 350 J AbymiY K‡i? [P. †ev. 21; g. †ev. 21; w`. †ev. 17]
e¨vL¨v: iæ×Zvcxq cÖwµqv, cÖZ ¨veZ© x cÖ wµqv AcÖZ¨veZ©x cÖwµqv
dW = – dU iƒ×Zvcxq cÖwµqv m‡gvò cÖwµqv
 – 350 = – dU DËi: AcÖZ¨veZ©x cÖwµqv
 dU = 350 J 72. cÖ Z ¨veZ© x cÖwµqv m¤ú‡K© mwVK Z_¨ bq wb‡Pi †KvbwU?
67. evqy‡K iƒ×Zv‡c cÖmvwiZ K‡i Gi AvqZb wZb¸Y Kiv cwieZ©b Lye ax‡i ax‡i msNwUZ nq
GwU g~jZ •¯’wZK
n‡jv| hw` cÖv_wgK Pvc 1 evqygÛjxq Pvc nq Zvn‡j
Aeÿqx djvdj _v‡K
P~ovšÍ Pvc KZ n‡e? ( = 1.4)
•e`y¨wZK †iv‡ai ga¨ w`‡q ax‡i ax‡i we`y¨rcÖevn
2.176  104 Nm–2 31.76  104 Nm–2 cÖZ¨veZ©x cÖwµqv 
2.176  103 Nm–2 31.76  105 Nm–2 DËi: •e`y¨wZK †iv‡ai ga¨ w`‡q ax‡i ax‡i we`y¨rcÖevn
DËi: Blank cÖZ¨veZ©x cÖwµqv
nd
30  HSC Physics 2 Paper Chapter-1
73. cÖZ¨vMvgx cÖwµqv †KvbwUÑ [h. †ev. 16] 81. †Kvb M¨v‡mi Rb¨ iƒ×Zvcxq †jL AwaK Lvov?
¯^Ztù~Z© cÖwµqv `ªæZ cÖwµqv [e. †ev. 19]
GKgyLx cÖwµqv ZvcMZxq cÖwµqv wg‡_b Aw·‡Rb
DËi: ZvcMZxq cÖwµqv wnwjqvg Kve©b-WvB-A·vBW
74. AcÖZ¨veZ©x cÖwµqvi †ÿ‡Î mZ¨ bq †KvbwU? DËi: wnwjqvg
AcÖZ¨veZ©x cÖwµqv nVvr Ges ¯^Ztù~Z©fv‡e msNwUZ nq 82. wØ-cvigvYweK M¨v‡mi Rb¨ †gvjvi Av‡cwÿK Zvc؇qi
ZvcMZxq mvg¨e¯’v eRvq _v‡K bv
AbycvZ () KZ? [h. †ev. 19]
cÖwµqvwU Ac‡bq cÖwµqv bv‡gI cwiwPZ
e›`yK n‡Z ¸wj †Quvov GKwU AcÖZ¨veZ© cÖwµqv 1.33 1.40
DËi: cÖwµqvwU Ac‡bq cÖwµqv bv‡gI cwiwPZ 1.67 1.69
DËi: 1.40
M¨v‡mi Av‡cwÿK Zvc 83. †Kv‡bv M¨v‡mi `ywU †gvjvi Av‡cwÿK Zv‡ci AbycvZ

75. AvM©b M¨v‡mi †ÿ‡Î  =


5
n‡j w¯’i AvqZ‡b †gvjvi GKwU aªæe ivwk| G aªæe ivwk‡K †h cÖZxK Øviv cÖKvk
3
Kiv nq Zv n‡jvÑ [mw¤§wjZ †evW©-18]
Av‡cwÿK Zvc KZ? [wm. †ev. 22]
7 5  R
R R
2 2  K
3 DËi: 
R R
2
3 84. Ne M¨v‡mi †ÿ‡Î  Gi gvbÑ [Kz. †ev. 16]
DËi: 2
R
1.33 1.40
R 1.67 1.76
e¨vL¨v: CV =
–1
DËi: 1.67
R
=
5 85. †Kv‡bv M¨v‡mi Av‡cwÿK Zvc؇qi AbycvZ  = 1.41
–1
3 n‡j M¨vmwUi AYy n‡eÑ [e. †ev. 15]
3 GK-cigvYyK wØ-cigvYyK
 CV = R
2
76. wÎcigvYyK M¨v‡mi Rb¨  Gi gvbÑ [Kz. †ev. 22]
wÎ-cigvYyK eû-cigvYyK
1.33 1.41 DËi: wØ-cigvYyK
1.66 3.00
DËi: 1.33 ZvcMwZwe`¨vi wØZxq m~Î
77. GK cigvYyK M¨v‡mi †ÿ‡Î  Gi gvb KZ? [h. †ev. 22]
1.11 1.33 86. 1.0  105 Nm–2 w¯’i Pv‡c †Kv‡bv Av`k© M¨v‡mi
1.41 1.67 AvqZb 0.04 m3 †_‡K cÖmvwiZ n‡q 0.05 m3 n‡jv|
DËi: 1.67 ewnt¯’ Kv‡Ri cwigvY KZ? [Xv. †ev. 22]
78. I‡Rvb M¨v‡mi Rb¨  Gi gvb †KvbwU? [h. †ev. 21] 1J 10 J
1.03 1.33 100 J 1000 J
1.4 1.67
DËi: 1000 J
DËi: 1.33
e¨vL¨v: dW = PdV
79. wnwjqvg M¨v‡mi †ÿÎ CP/CV Gi AbycvZ wb‡Pi
†KvbwU? [w`. †ev. 21] = 1  105  (0.05 – 0.04)
1.67 1.41 dW = 1000 J
1.33 k~b¨ 87. ZvcMwZe`¨vi 1g m~Î n‡Z Rvbv hvq bvÑ [e. †ev. 19]
DËi: 1.67 KvR I Zv‡ci m¤úK©
80. †Kvb M¨v‡mi Rb¨ iƒ×Zvcxq †jL AwaK Lvov? kw³i msiÿYkxj bxwZ
[w`. †ev. 21]
wbqb Aw·‡Rb Af¨šÍixY kw³i aviYv
I‡Rvb Kve©b-WvB-A·vBW Zvc cÖev‡ni AwfgyL
DËi: wbqb DËi: Zvc cÖev‡ni AwfgyL
ZvcMwZwe`¨v  Final Revision Batch 31
Zvcxq BwÄb 94. †iwd«Rv‡iUi ZvcMwZwe`¨vi †Kvb m~‡Îi wfwˇZ
88. Ò†Kv‡bv wbw`©ó cwigvY Zvckw³ m¤ú~Y©fv‡e hvwš¿K wbwg©Z nq? [wm. †ev. 22]
kw³‡Z iƒcvšÍi Kivi gZ hš¿ wbg©vY m¤¢e bq|ÓÑ k~ b ¨Zg cÖ
_ g
wee„wZwU cÖ`vb K‡i †Kvb weÁvbx? [wm. †ev. 23; w`. †ev. 21] wØZxq Z…Zxq
cøvsK Kv‡b©v DËi: wØZxq
†Kjwfb K¬wmqvm 95. Kv‡b©vi Bwćbi †ÿ‡Î wb‡Pi †KvbwU mwVK bq?
DËi: Kv‡b©v [h. †ev. 21]
89. GKwU Kv‡b©v Bwćbi `ÿZv 60%| hw` Zvi Zvc m‡gvò cwieZ© b N‡U
MÖvn‡Ki ZvcgvÎv 17C nq Z‡e Dr‡mi ZvcgvÎv KZ? iƒ×Zvcxq cwieZ©b N‡U
[P. †ev. 23; K. †ev. 15] Zvc Dr‡mi ZvcgvÎvi cwieZ©b nq
725C 700C Zvc MÖvn‡Ki ZvcgvÎvi cwieZ©b nq bv
452C 290C DËi: Zvc Dr‡mi ZvcgvÎvi cwieZ©b nq
DËi: 452C 96. †Kv‡bv Zvc BwÄb n‡Z A‡a©K Zvc eR©b n‡j Bwćbi
e¨vL¨v:  = 1 – 2  100%
T `ÿZv KZ n‡e? [Kz. †ev. 21]
 T1 25% 50%
 60% = 1 – 
 273 + 17
 T1   100%
75% 80%

DËi: 50%
290
 = 0.4 97. †iwd«Rv‡iUi cÖ‡Kv‡ô iwÿZ Lv`¨`ªe¨ n‡Z M„nxZ Zvc
T1
 T1 = 452C Q2 Ges cwi‡e‡k ewR©Z Zvc Q1 n‡j Kvh©mnM K Gi
90. –8C Ges 27C ZvcgvÎvi g‡a¨ wµqviZ GKwU gvb njÑ [wm. †ev. 21]
wngvq‡Ki m‡e©v”P Kvh©K…Z mnM KZ? [e. †ev. 23] Q 1 Q 1
K= K=
8.57 7.57 Q2 – Q1 Q 1 – Q2
2.132 0.469 Q2 Q2
K= K= 
DËi: 7.57 Q 1 – Q 2 Q 2 – Q1

T Q2
e¨vL¨v: K = T –2T DËi: K=
Q1 – Q2
1 2
(273 – 8) 98. Kv‡b©v P‡µi PZz_©av‡c wm‡÷‡gi GbUªwcÑ [P. †ev. 19]
= k~b¨ nq e„w× cvq
(273 + 27) – (273 – 8)
 K = 7.571 K‡g hvq AcwiewZ©Z _v‡K
91. GKwU Kv‡b©v BwÄb 427C I 227C ZvcgvÎvi cwim‡i DËi: k~b¨ nq
KvR K‡i| Bwćbi `ÿZv KZ? 99. Kv‡b©vi P‡µi PZz_© av‡c wK N‡U? [Kz. †ev. 17]
[wm. †ev. 23; Kz, †ev. 19; Xv. †ev. 17]
m‡gvò cÖmviY m‡gvò ms‡KvPb
28.5% 40%
46.83% 81%
iƒ×Zvcxq ms‡KvPb iƒ×Zvcxq cÖmviY
DËi: 28.5% DËi: iƒ×Zvcxq ms‡KvPb
100. GKwU Kv‡b©v P‡µ iæ×Zvcxq cÖmviY KqwU? [P. †ev. 17]
e¨vL¨v:  = 1 – T2  100%
T
1 1wU 2wU
= 1 – 
500 3wU 4wU
 700  100% DËi: 1wU
  = 28.5% 101. †Kvb m~·K Kv‡R jvwM‡q Zvcxq BwÄb I †iwd«Rv‡iUi
92. Kv‡b©v P‡µi †Kvb av‡c Zvc M„nxZ nq? [g. †ev. 23]
•Zwi Kiv nq? [iv. †ev. 16]
cÖ_g wØZxq
ZvcvMwZwe`¨vi k~b¨Zg m~Î
Z…Zxq PZz_©
ZvcMwZwe`¨vi 1g m~Î
DËi: cÖ_g
ZvcMwZwe`¨vi 2q m~Î
93. GKwU Kv‡b©v Bwćbi cvwbi wngv¼ I ùzUbvsK-Gi g‡a¨
ZvcMwZwe`¨vi 3q m~Î
Kvh©Ki `ÿZv KZ? [g. †ev. 22; e. †ev. 22]

100% 26.8%
DËi: ZvcMwZwe`¨vi 2q m~Î
20.6% 0%
102. GKwU †iwd«Rv‡iU‡i Kvh©K…Z mnM K = 2.6; GwU VvÐv
DËi: 26.8%
cÖ‡Kvô n‡Z cÖwZ P‡µ 500 J Zvc AcmviY K‡i, cÖwZ
e¨vL¨v:  = 1 – T2  100%
T
1 P‡µ mieivnK…Z Kvn KZ n‡e? [Xv. †ev. 16]

= 1 –
273 1250 J 502.5 J
 100%
 373 500 J 200 J
  = 26.8% DËi: 200 J
nd
32  HSC Physics 2Paper Chapter-1
103. Kv‡b©v P‡µi 1g av‡ci †ÿ‡Î wb‡Pi †KvbwU mwVK? 112. wb¤œ ùzUbv‡¼i †Kv‡bv Zij cwicvk¦© n‡Z jxbZvc ev
[P. †ev. 15] myßZvc MÖnY K‡i cwicvk¦©‡K kxZj K‡i Zv‡K Kx e‡j?
ZvcgvÎv e„w× cvq ZvcgvÎv w¯’i _v‡K wngvqb wngvqK
AšÍt¯’ kw³ n«vm cvq Zvc ewR©Z nq Zvcxq BwÄb †iwd«Rv‡iUi
DËi: ZvcgvÎv w¯’i _v‡K
DËi: wngvqb
104. hw` †Kv‡bv Zvc BwÄb †_‡K Zvc ewR©Z bv nq, Z‡e
113. †Kvb kxZj e¯‘ †_‡K Zvc Dò e¯‘‡Z mÂvwjZ Ki‡Z
Bwćbi ÿgZv KZ n‡e? [iv. †ev. 15]
n‡j hvwš¿K kw³ e¨q Ki‡Z nq| GB e¨e¯’v‡K Kx
0% 1%
e‡j?
50% 100%
DËi: 100% Zvc BwÄb Kv‡b©v BwÄb
105. GKwU Kv‡b©v-P‡µ †gvU GbUªwci cwieZ©b n‡jvÑ Zvc cv¤ú K‡¤úªmi
Q1 – Q2 DËi: Zvc cv¤ú
Zero 114. †iwd«Rv‡iUi Kvh©K…Z mnM K Gi gvb KZ?
T1 –T2
less than zero greater than zero 2 †_‡K 6 3 †_‡K 9
DËi: Zero 5 †_‡K 8 0.5 †_‡K 1.5
106. M„nxZ Zvc Q1 Ges ewR©Z Zvc Q2 n‡j Zvcxq Bwćbi DËi: 2 †_‡K 6
`ÿZv KZ? 115. GKwU †iwd«Rv‡iU‡i Kvh©K…Z mnM K = 4.6; GwU VvÐv
Q1 cÖ‡Kvô n‡Z cÖwZ P‡µ 250 J Zvc AcmviY K‡i, cÖwZ
Q2
P‡µ †iwd«Rv‡iUi Pvjbv Rb¨ Kx cwigvY KvR mieivn
Q2
1 1+
Q
 Ki‡Z n‡e?
1
Q2 46 J 54 J
DËi: 1– 56 J 75 J
Q1
107. GKwU Zvc Bwćbi Kvh©Ki e¯‘ 400K ZvcgvÎvi Drm DËi: 54 J
n‡Z 840J Zvc MÖnY K‡i kxZj Avav‡i 420J Zvc
eR©b K‡i| kxZj Avav‡ii ZvcgvÎvÑ GbUªwc
200K 420K 116. 0C ZvcgvÎvq 40g eid‡K 0C ZvcgvÎvq 40g
300K 100K ZvcgvÎvq 40g cvwb‡Z cwienY Ki‡Z G›Uªwci
DËi: 200K cwieZ©b KZ? [iv. †ev. 23]
108. GKwU Kv‡b©v BwÄb 500K ZvcgvÎvi Zvc Drm †_‡K 49.2 JK–1 49.2  102 JK–1
300 cal Zvc MÖnY K‡i Ges Zvc MÖvn‡K 225 cal 49.2  103 JK–1 49.2  103 KJK–1
Zvc eR©b K‡i| Zvc MÖvn‡Ki ZvcgvÎv KZ? DËi: 49.2 JK –1

666.67K 135K ml
300K 375K e¨vL¨v: dS = T f
DËi: 375K 0.04  3.36  105
109. GKwU Kv‡b©v BwÄb 400K ZvcgvÎvi Zvc Drm †_‡K =
273
200 cal Zvc MÖnY K‡i Ges Zvc MÖvn‡K 150 cal  dS = 49.2 JK–1
Zvc eR©b K‡i| Zvc MÖvn‡Ki ZvcgvÎv KZ? 117. G›Uªwc ej‡Z eySvqÑ [Kz. †ev. 23]
400K 200K wm‡÷‡gi wek„•Ljv cwigvc
150K 300K iƒcvšÍ‡ii Rb¨ kw³i cÖvßZv
DËi: 300K kw³i iƒcvšÍ‡ii mÿgZv
110. BwÄb A KvR Ki‡Q 500K I 450K ZvcgvÎvq Ges
kw³ iƒcvšÍ‡ii m¤¢ve¨Zv
BwÄb B KvR Ki‡Q 450K I 400K ZvcgvÎvq| BwÄb DËi: wm‡÷‡gi wek„•Ljv cwigvc
B Gi `ÿZv BwÄb A †_‡K KZUzKz †ewk?
118. GbUªwci SI GKK wb‡Pi †KvbwU? [wm. †ev. 23, 22, 19;
0% 1.0% w`. †ev. 23, 21, 15; P. †ev. 22; Xv. †ev. 16; iv. †ev. 15]
1.5% 2.0% JK–1 NK–1
DËi: 1.0% Jkg K–1 –1
JK–1mol–1
111. †iwd«Rv‡i›U m¤úwK©Z mwVK Z_¨ bq †KvbwU? DËi: JK –1

G‡`i ùzUbv¼ Kÿ ZvcgvÎv †_‡K A‡bK †ewk 119. iæ×Zvcxq cÖwµqvq †Kvb †f․Z ivwk w¯’i _v‡K?
Giv M¨vmxq Ae¯’vq _v‡K [Xv. †ev. 22; g. †ev. 22; wm. †ev. 17; h. †ev. 17]
Pvc cÖ‡qv‡M Zi‡j cwiYZ nq ZvcgvÎv Pvc
†d«qb GKwU †iwd«Rv‡i›U GbUªwc Af¨šÍixY kw³
DËi: G‡`i ùzUbv¼ Kÿ ZvcgvÎv †_‡K A‡bK †ewk DËi: GbUªwc
ZvcMwZwe`¨v  Final Revision Batch 33
120. cÖZ¨vMvgx cÖwµqvq G›UªwcÑ [e. †ev. 22] 129. GbUªwc cwigvc K‡i wm‡÷‡giÑ [w`. †ev. 16]
w¯’i _v‡K e„w× cvq ZvcgvÎv AšÍt¯’¨kw³
n«vm cvq k~b¨ nq k„•Ljv wek„•Ljv
DËi: e„w× cvq DËi: wek„•Ljv
121. m f‡ii Ges s Av‡cwÿK Zv‡ci †Kv‡bv e¯‘i D”P 130. 10C ZvcgvÎvi 5 kg cvwb‡K 100C ZvcgvÎvi
ZvcgvÎv T1 †_‡K wb¤œ ZvcgvÎvi T2 †Z cwiewZ©Z cvwb‡Z DbœxZ Ki‡Z GbUªwci cwieZ©bÑ [iv. †ev. 16]
n‡j Gi GbUªwci cwieZ©b n‡e †KvbwU? [iv. †ev. 22]
5978.76 JK–1 6978 JK–1
ms (ln T2 – ln T1) ms (ln T1 – ln T2)
5798.76 JK–1 6000 JK–1
ms ln (T2 – T1) ms ln (T1 – T2)
DËi: 5798.76 JK–1
DËi: ms (ln T2 – ln T1)
T
122. wm‡÷‡gi †Kvb Ae¯’vq GbUªwc Kg cvIqv hvq? e¨vL¨v: dS = ms ln T2
1
[iv. †ev. 21; w`. †ev. 17; Xv. †ev. 15]
= 5  4200 ln
Zij cøvRgv 273 + 100
 273 + 10 
M¨vmxq KwVb –1
 dS = 5798.76 JK
DËi: KwVb
123. 100C ZvcgvÎvq 4kg cvwb‡K 100C ZvcgvÎvq
wewea
ev‡®ú cwiYZ Kiv n‡jv| GbUªwc e„w× KZ? [iv. †ev. 21]
2.24 × 104 JK–1 22.4 × 104 JK–1 131. wb‡Pi †Kvb¸‡jv ZvcMZxq PjK wb‡`©k K‡i? [Kz. †ev. 16]
24.32 × 104 JK–1 25.42 × 104 JK–1 P, V, T, M P, T, F, U
DËi: Blank P, V, T, S P, V, T, Q
ml DËi: Blank
e¨vL¨v: dS = T v
[we.`ª.: mwVK DËi †bB]
4  2.26  106
= 132. 500 m DuPz Rj cÖcv‡Zi Zj‡`k I kxl©‡`‡ki cvwbi
373
ZvcgvÎvi cv_©K¨ KZ n‡e? (g = 10 ms–2, cvwbi
 dS = 24235.325 JK–1
124. ZvcMwZwe`¨vi wØZxq m~‡Îi MvwYwZK iƒcÑ [h. †ev. 21] Av‡cwÿK Zvc = 4200 Jkg–1K–1) [Kz. †ev. 16]
dS 0.50C 1.19C
dQ = TdS dQ =
T 5.0C 50C
W = JH dQ = dU + dW DËi: 1.19C
DËi: dQ = TdS e¨vL¨v: ms = mgh
125. gnvwe‡k¦ GbUªwci cwigvYÑ [w`. †ev. 19]
gh 10  500
k~b¨ aªæeK   = =
s 4200
evo‡Q Kg‡Q   = 1.19C
DËi: evo‡Q
126. ¯^Ztù~Z© cwieZ©‡bÑ [wm. †ev. 17] eûc`x mgvßm~PK cÖ‡kœvËi
GbUªwc I wek„•Ljv n«vm cvq
GbUªwc I k„•Ljv e„w× cvq 133. GbUªwc m¤ú‡K© ejv hvqÑ [e. †ev. 23]
GbUªwc I k„•Ljv n«vm cvq (i) cig gvb wbY© q Kiv hvq bv
GbUªwc I wek„•Ljv e„w× cvq (ii) cwieZ©b abvZ¥K n‡Z cv‡i
DËi: GbUªwc I wek„•Ljv e„w× cvq (iii) cwieZ©b FYvZ¥K n‡Z cv‡i
127. mycviKÛvKUi mvaviY KÛvKU‡ii †P‡q †ewk myk„•Lj| wb‡Pi †KvbwU mwVK?
hw` mycviKÛvKUi Ges mvaviY KÛvKUi Ae¯’vq i I ii i I iii
GbUªwc h_vµ‡g Ss Ges Sn nq Z‡e wb‡¤œi †KvbwU ii I iii i, ii I iii
mwVK? DËi: i, ii I iii
Ss = Sn Ss > Sn 134. w¯’i Pv‡c GKwU M¨v‡m Zvc cÖ‡qvM Kivq GiÑ [w`. †ev. 23]
Ss < Sn Ss  Sn (i) ZvcgvÎv †e‡o hv‡e
DËi: Ss < Sn
(ii) ewnt¯’ KvR m¤úbœ n‡e
128. GbUªwc n‡jvÑ [h. †ev. 16]
(iii) AvqZb †e‡o hv‡e
k„•Ljvi cwigvY
wb‡Pi †KvbwU mwVK?
kw³i iƒcvšÍi ÿgZvi cwigvc
i I ii i I iii
iƒcvšÍ‡ii Rb¨ kw³ cvIqvi cwigvc
Zvcxq g„Zz¨i m¤¢vebvi cwigvc ii I iii i, ii I iii
DËi: Zvcxq g„Zz¨i m¤¢vebvi cwigvc DËi: i I iii
nd
34  HSC Physics 2 Paper Chapter-1
135. G›Uªwci †ejvq cÖ‡hvR¨Ñ [Xv. †ev. 23] 141. ZvcMZxq cÖwµqvi †ÿ‡Î cÖ‡hvR¨Ñ [e. †ev. 22]
(i) Gi †Kv‡bv cig gvb †bB (i) m‡gvò cÖwµqvq, dU = 0
(ii) cÖZ¨veZ©x cÖwµqvq G›Uªwci †Kv‡bv cwieZ©b nq bv (ii) iæ×Zvcxq cÖwµqvq, dW = – dU
(iii) AcÖZ¨veZ©x cÖwµqvq G›Uªwc w¯’i _v‡K (iii) mgAvqZb cÖwµqvq, dQ = dU
wb‡Pi †KvbwU mwVK? wb‡Pi †KvbwU mwVK?
i I ii i I iii i I ii i I iii
ii I iii i, ii I iii
ii I iii i, ii I iii
DËi: i, ii I iii
DËi: i I ii
142. ZvcMwZwe`¨vi cÖ_g I wØZxq m~‡Îi mgwš^Z iƒc n‡jvÑ
136. m‡gvò cÖmvi‡Yi †ÿ‡ÎÑ [iv. †ev. 23] [e. †ev. 22]
(i) Af¨šÍixY kw³ w¯’i _v‡K (i) dW = TdS – dU
(ii) Bnv `ªæZ cÖwµqv (ii) dU = TdS – PdV
(iii) cv‡Îi Dcv`vb mycwievnx (iii) dW = TdS – CVdT
wb‡Pi †KvbwU mwVK?
wb‡Pi †KvbwU mwVK?
i I ii i I iii
i I ii ii I iii
ii I iii i, ii I iii
i I iii i, ii I iii
DËi: i, ii I iii
DËi: i I iii 143. iæ× Zvcxq cÖwµqvqÑ [e. †ev. 22]
137. cwi‡e‡ki mv‡_ kw³ wewbgq Ki‡Z cv‡iÑ [h. †ev. 23] (i) Entropy AcwiewZ©Z _v‡K
(i) wew”Qbœ wm‡÷g (ii) Zv‡ci Av`vb cÖ`vb N‡U bv
(ii) Db¥y³ wm‡÷g (iii) ZvcgvÎvi cwieZ©b N‡U bv
(iii) e× wm‡÷g wb‡Pi †KvbwU mwVK?
wb‡Pi †KvbwU mwVK? i I ii i I iii
i I ii i I iii ii I iii i, ii I iii
ii I iii i, ii I iii DËi: i I ii
DËi: ii I iii 144. Kv‡b©vP‡µi wØZxq av‡cÑ [w`. †ev. 22]
138. AcÖZ¨veZ©x cÖwµqvÑ [Xv. †ev. 22] (i) Zvc n«vm cvq
(i) GKwU `ªæZ cÖwµqv (ii) ZvcgvÎv n«vm cvq
(iii) AvqZb e„w× cvq
(ii) GKwU ¯^Ztù~Z© cÖwµqv
wb‡Pi †KvbwU mwVK?
(iii) wm‡÷g ZvcMZxq mvg¨ve¯’v eRvq iv‡L bv
i I ii i I iii
wb‡Pi †KvbwU mwVK?
ii I iii i, ii I iii
i I ii i I iii
DËi: ii I iii
ii I iii i, ii I iii 145. AvqZb AcwiewZ©Z †i‡L †Kv‡bv M¨v‡m hw` wKQz Zvc
DËi: i, ii I iii cÖ‡qvM Kiv nq, Zvn‡j H M¨v‡mi †ÿ‡Î Ñ [iv. †ev. 22]
139. m‡gvò cÖwµqvi †ÿ‡Î cÖ‡hvR¨ njÑ [P. †ev. 22] (i) Pvc e„w× cvq
(i) G cÖwµqvi ZvcgvÎv w¯’i _v‡K (ii) MwZkw³ e„w× cvq
(ii) G cÖwµqvi dQ = –dW (iii) ZvcgvÎv e„w× cvq
(iii) G cÖwµqvi wm‡÷g I cwi‡e‡ki g‡a¨ Zv‡ci wb‡Pi †KvbwU mwVK?
Av`vb-cÖ`vb nq| i I ii i I iii
wb‡Pi †KvbwU mwVK? ii I iii i, ii I iii
i I ii i I iii DËi: i, ii I iii
ii I iii i, ii I iii 146. ax‡i ax‡i Pvc e„w× Kivq †Kv‡bv wm‡÷‡gi Pvc 2 Pa
DËi: i I iii n‡Z 4 Pa n‡jv| G‡ÿ‡Î mgAvqZb cÖwµqvq
140. iæ×Zvcxq cwieZ©bÑ [wm. †ev. 22]
wm‡÷‡gi Af¨šÍixY kw³ 200 J e„w× †c‡jv|
wm‡÷‡giÑ [Kz. †ev. 21]
(i) `ªæZ msNwUZ nq
(i) mieivnK…Z Zvc 200 J
(ii) Acwievnx cv‡Î msNwUZ nq
(ii) K…ZKvR k~b¨
(iii) PV–1 = aªæeK (iii) ZvcgvÎv e„w× cv‡e
wb‡Pi †KvbwU mwVK? wb‡Pi †KvbwU mwVK?
i I ii ii I iii i I ii i I iii
i I iii i, ii I iii ii I iii i, ii I iii
DËi: i I ii DËi: i, ii I iii
ZvcMwZwe`¨v  Final Revision Batch 35
147. iæ×Zvcxq ms‡KvP‡bi †ÿ‡ÎÑ [h. †ev. 21] 152. iæ× Zvcxq cwieZ©‡bi †ÿ‡ÎÑ [w`. †ev. 21]
(i) Zvc †kvwlZ (i) nVvr msNwUZ nq
(ii) wm‡÷‡gi Dci Kvh© m¤úvw`Z nq (ii) ZvcgvÎv w¯’i _v‡K
(iii) wm‡÷‡gi ZvcgvÎv e„w× cvq (iii) GbUªwci cwieZ©b k~b¨
wb‡Pi †KvbwU mwVK? wb‡Pi †KvbwU mwVK?
i I ii i I iii i I ii i I iii
ii I iii i, ii I iii
ii I iii i, ii I iii
DËi: ii I iii
DËi: i I iii
148. wb‡Pi wee„wZ¸‡jv jÿ¨ Ki [P. †ev. 21; g. †ev. 21]
153. cwi‡ek I wm‡÷‡gi g‡a¨ kw³i Av`vb cÖ`vb nqÑ
(i) †h ZvcgvÎvq †Kv‡bv c`v_© KwVb, Zij I
[Kz. †ev. 19; wm. †ev. 19]
evqexqiƒ‡c mvg¨ve¯’vq _v‡K Zv‡K H c`v‡_©i (i) Db¥y³ wm‡÷‡g
•Îa we›`y e‡j
(ii) eÜ wm‡÷‡g
(ii) †h cwieZ©‡bi Kvi‡Y ZvcMZxq ¯’vbvs‡Ki gv‡bi
(iii) wew”Qbœ wm‡÷‡g
cwieZ©b nq †mB cwieZ©b‡K ZvcMZxq cÖwµqv e‡j
(iii) †Kv‡bv wm‡÷‡gi kw³i iƒcvšÍ‡ii AÿgZv ev
wb‡Pi †KvbwU mwVK?
Am¤¢ve¨Zv‡K ev iƒcvšÍ‡ii Rb¨ kw³ i I ii i I iii
AcÖvc¨Zv‡K GbUªwc e‡j ii I iii i, ii I iii
wb‡Pi †KvbwU mwVK? DËi: i I ii
i I ii i I iii 154. ZvcMZxq PjK n‡”QÑ [P. †ev. 17]
ii I iii i, ii I iii (i) Pvc
DËi: i, ii I iii (ii) Zvc
149. iæ×Zvcxq cwieZ©‡bi †ÿ‡ÎÑ [e. †ev. 21] (iii) AvqZb

(i) PV = aªæeK wb‡Pi †KvbwU mwVK?
(ii) TV1 –  = aªæeK i I ii i I iii
(iii) TP1 –  = aªæeK ii I iii i, ii I iii
wb‡Pi †KvbwU mwVK? DËi: i I iii
i I ii i I iii 155. ZvcMZxq PjK njÑ [w`. †ev. 17]
ii I iii i, ii I iii
(i) ZvcgvÎv
DËi: i I iii
(ii) AvqZb
150. Kv‡bv© P‡µi wØZxq av‡c Kvh©wbe©vnK e¯‘iÑ [wm. †ev. 21]
(iii) Af¨šÍixY kw³
(i) Zv‡ci †kvlY N‡U
(ii) Pvc n«vm cvq wb‡Pi †KvbwU mwVK?
(iii) ZvcgvÎv n«vm cvq i I ii i I iii
wb‡Pi †KvbwU mwVK? ii I iii i, ii I iii
i I ii i I iii DËi: i I ii
ii I iii i, ii I iii 156. iæ×Zvcxq cwieZ©‡bÑ [wm. †ev. 16]
DËi: ii I iii (i) ZvcgvÎvi cwieZ©b N‡U bv
151. m‡gvò cÖwµqvi †ÿ‡ÎÑ [w`. †ev. 21] (ii) cvÎ Zvc Kzcwievnx nIqv cÖ‡qvRb
(iii) Av`k© M¨v‡mi mgxKiY n‡jv, P1V1 = P2V2
(i) P wb‡Pi †KvbwU mwVK?
i I ii i I iii
V
ii I iii i, ii I iii
1 DËi: i I ii
(ii) P
157. hw` evqyc~Y© GKwU †ejyb dz‡U hvq, cÖwµqvwU‡ZÑ
V [wm. †ev. 16]
(i) KvR m¤úbœ n‡q‡Q
PV
(iii) (ii) Af¨šÍixY kw³ I ZvcgvÎv K‡g †M‡Q
(iii) GbUªwci cwieZ©b n‡q‡Q
V
wb‡Pi †KvbwU mwVK? wb‡Pi †KvbwU mwVK?
i I ii i I iii i I ii i I iii
ii I iii i, ii I iii ii I iii i, ii I iii
DËi: ii I iii DËi: i I ii
nd
36  HSC Physics 2 Paper Chapter-1
158. GKwU Zvc BwÄb m¤ú‡K© aviYv cvBÑ [Xv. †ev. 16]  wb‡Pi DÏxcKwUi Av‡jv‡K 164 I 165 bs cÖ‡kœi
(i) Gi `ÿZv Drm I Zvc MÖvn‡Ki ZvcgvÎvi Dci DËi `vI:
wbf©i K‡i 1
(ii) Gi `ÿZv KL‡bv 100% n‡Z cv‡i bv GKwU Kv‡b©v BwÄb M„nxZ Zv‡ci 4 Ask Kv‡R cwiYZ
(iii) GwU kxZj Drm †_‡K Zvc Dò cwi‡e‡k K‡i| Gi Zv‡ci MÖvn‡K ZvcgvÎv 30 K Kgv‡j `ÿZv
¯’vbvšÍi K‡i wظY nq|
wb‡Pi †KvbwU mwVK? 164. Bwćbi `ÿZv KZ? [Xv. †ev. 23]
i i I ii
80% 75%
i I iii ii I iii
33% 25%
DËi: i I ii
159. GKwU c`v‡_©i ZvcwgwZK ag©Ñ [w`. †ev. 15]
DËi: 25%
(i) Pv‡ci mgvbycvwZK W
e¨vL¨v:  = Q  100%
(ii) AvqZ‡bi mgvbycvwZK 1
1
(iii) ZvcgvÎvi mgvbycvwZK Q
4 1
wb‡Pi †KvbwU mwVK? =  100%
Q1
i ii
iii i I iii   = 25%
DËi: iii 165. Zvc Dr‡mi ZvcgvÎv KZ? [Xv. †ev. 23]
160. Zvcxq PjK n‡jvÑ [Xv. †ev. 15] 60 K 90 K
(i) Pvc 120 K 150 K
(ii) AvqZb DËi: 120 K
(iii) AšÍt¯’ kw³ e¨vL¨v: W = Q1 – Q2
wb‡Pi †KvbwU mwVK? 1
 Q1 = Q 1 – Q2
i I ii i I iii 4
ii I iii i, ii I iii 3
 Q1 = Q 2
DËi: i I ii 4
161. iæ×Zvcxq cwieZ©‡bi †ÿ‡Î †KvbwU mwVK? [Kz. †ev. 15] Q2 3
  =
(i) PV = aªæeK Q1 4
(ii) TV = aªæeK T2 3
 =
1– T1 4
(iii) TP  = aªæeK Avevi,
wb‡Pi †KvbwU mwVK? T2 – 30
2 = 1 –  100%
i I ii ii I iii  T1 
i I iii i, ii I iii
 2  25% = 1 – +   100%
T2 30
DËi: i I iii  T1 T1
Awfbœ Z_¨wfwËK cÖ‡kœvËi 3 30
1– + = 0.5
4 T1
 DÏxcKwUi Av‡jv‡K 162 I 163 bs cÖ‡kœi DËi `vI:  T1 = 120 K
GKwU wmwjÛv‡i wKQz M¨vm Ave× Av‡Q| M¨v‡mi Pvc
400 Pa w¯’i †i‡L wm‡÷‡g 800 J Zvckw³ cÖ`vb  wb‡Pi DÏxcKwUi co Ges 166 I 167 bs cÖ‡kœi
Kivq K…ZKvR 1200 J cvIqv hvq| DËi `vI:
162. M¨v‡mi AšÍt¯’ kw³i cwieZ©b KZ n‡e? [wm. †ev. 23] GKwU cÖZ¨veZ©x Kv‡b©v BwÄb hLb 27C ZvcgvÎvq
–800 J –400 J ZvcMÖvn‡K _v‡K ZLb Gi Kg©-`ÿZv nq 50%|
–100 J 0 J [g. †ev. 22]
DËi: –400 J 166. BwÄbwUi Dr‡mi ZvcgvÎv KZ?
e¨vL¨v: dQ = dU + dW
500 K 550 K
 800 = dU + 1200
600 K 650 K
 dU = – 400 J
163. wm‡÷‡g Zvckw³ ax‡i ax‡i mieivn Kiv n‡j wm‡÷g DËi: 600 K
KZ…©K m¤úvw`Z KvR KZ n‡e? [wm. †ev. 23] e¨vL¨v:  =1 – T2  100%
1200 J 800 J  T1
 50% = 1 –
400 J 0 J 273 + 27
 100%
DËi: 800 J  T1 
e¨vL¨v: m‡gv cÖwµqvq, U = 0 300
 = 0.5
T1
 dQ = dW
 dW = 800 J  T1 = 600 K
ZvcMwZwe`¨v  Final Revision Batch 37
167. BwÄbwUi `ÿZv 60% Ki‡Z n‡jÑ  wb‡Pi DÏxc‡Ki Av‡jv‡K 172 I 173 bs cÖ‡kœi
(i) Dr‡mi ZvcgvÎv 750 K Ki‡Z n‡e DËi `vI:
(ii) ZvcMÖvn‡Ki ZvcgvÎv 150 K Kgv‡Z n‡e GKwU Kv‡b©v BwÄb 327C ZvcgvÎvq 800 J Zvc MÖnY
(iii) Dr‡mi ZvcgvÎv 150 K evov‡Z n‡e K‡i Ges 127C ZvcgvÎvi ZvcMÖvn‡K Zvc eR©b
wb‡Pi †KvbwU mwVK? K‡i| cieZ©x‡Z Zvc MÖvn‡Ki ZvcgvÎv 227C G
i I ii i I iii DbœxZ Kiv nq| [iv. †ev. 21]
ii I iii i, ii I iii 172. BwÄb KZ…©K m¤úvw`Z KvR n‡eÑ
DËi: i I iii 250 J 267 J
500 J 800 J
e¨vL¨v:  = 1 – T2  100%
T
1
DËi: 267 J
Q T
 60% = 1 –
300 e¨vL¨v: Q2 = T2
 100%
 T1  1 1
Q2 400
 T1 = 750 K  =
800 600
Avevi,
 Q2 = 533.3 J
 T2  W = Q1 – Q2
= 1–  100%
 T1 = (800 – 533.3)
 T2   100%
 60% = 1 –
 W = 267 J
 600 173. cieZ©x Ae¯’vq `ÿZv c~‡e©iÑ [iv. †ev. 21]
 T2 = 240 K A‡a©K mgvb
wظY wZb¸Y
 DÏxcKwU co Ges 168 I 169 bs cÖ‡kœi DËi `vI: DËi: A‡a©K
†Kv‡bv Zvc Bwćbi ZvcMÖvn‡Ki ZvcgvÎv 360K Ges
1 – T2
`ÿZv 40%| [w`. †ev. 22]   T1
e¨vL¨v: =
168. Zvc Dr‡mi ZvcgvÎv njÑ  
1– 
T2
400K 600K  T1
720K 900K T1 – T2
=
DËi: 600K T1 – T2
169. Bwćbi `ÿZv wظY Ki‡Z n‡j Dr‡mi ZvcgvÎv e„w× 327 – 227
=
327 – 127
Ki‡Z n‡eÑ
1
450K 600K =
2
900K 1200K 1
DËi: 1200K  = 
2

 wb‡Pi Aby‡”Q`wU co Ges 170 I 171 bs cÖ‡kœi  wb‡Pi Aby‡”Q`wU co Ges 174 I 175 bs cÖ‡kœi
DËi `vI: DËi `vI:
GKwU Kv‡b©v BwÄb hLb 72C ZvcgvÎvi ZvcMÖvn‡K GKwU Kv‡b©v Bwćbi Kvh©wbe©vnK e¯‘ 400K ZvcgvÎvi
_v‡K ZLb Gi Kg©`ÿZv 40%| [Xv. †ev. 21] Zvc Drm n‡Z 840 J Zvc MÖnY K‡i ZvcMÖvn‡K 630
170. DÏxcK Abymv‡i Bwćbi Dr‡mi ZvcgvÎv KZ? J Zvc eR©b K‡i| [e. †ev. 21]
138 K 207 K 174. Zvc MÖvn‡Ki ZvcgvÎv KZ?
575 K 863 K 210 K 300 K
DËi: 575 K 400 K 440 K
171. MÖvn‡Ki ZvcgvÎv w¯’i †i‡L BwÄbwU‡K 60% `ÿ DËi: 300 K
Ki‡Z n‡jÑ Q T
e¨vL¨v: Q2 = T2
(i) Dr‡mi cwiewZ©Z ZvcgvÎv n‡e 862.5 K 1 1
630 T2
(ii) Dr‡mi ZvcgvÎv e„w× cv‡e 287.5 K  =
840 400
(iii) Dr‡mi ZvcgvÎv n«vm 287.5 K
 T2 = 300 K
wb‡Pi †KvbwU mwVK? 175. BwÄbwUi `ÿZv KZ?
i iii 25% 30%
i I ii i I iii 40% 60% 
DËi: i I ii DËi: 25%
nd
38  HSC Physics 2 Paper Chapter-1
 DÏxcKwU jÿ Ki Ges 176 I 177 bs cÖ‡kœi DËi `vI: 181. ZvcgvÎv cwieZ©b Kivi †ÿ‡ÎÑ
(i) Dr‡mi ZvcgvÎv e„w× Kivq Bwćbi `ÿZv ev‡o
dQ
–2
5
P = 3.5×10 Nm (ii) MÖvn‡Ki ZvcgvÎv n«vm Kivq Bwćbi `ÿZv ev‡o
(iii) Dfq †ÿ‡Î BwÄb Øviv K…Z KvR mgvb bq
X Y wb‡Pi †KvbwU mwVK?
wP‡Î wmwjÛv‡i iwÿZ 1 mole M¨v‡m dQ Zvc mieivn i I ii i I iii
Kivq wc÷b X Ae¯’vb n‡Z Y Ae¯’v‡b Av‡m| G‡Z ii I iii i, ii I iii
AšÍ¯’tkw³ 207J n«vm cvq| wc÷‡bi cÖ¯’‡”Q‡`i DËi: i, ii I iii
†ÿÎdj = 0.1 m2
X I Y Gi `~iZ¡ = 5 × 10–2 m. [wm. †ev. 21]  DÏxc‡K P ~ V †jLwP‡Îi Av‡jv‡K 182 I 183 bs
176. m¤úbœ K…ZKvR KZ? wP‡Îi DËi `vI: [iv. †ev. ; h. †ev. 17]
1.75 × 103 J 1.75 × 105 J Q
7. × 105J 7 × 107 J I iæ×Zvcxq †jL
DËi: 1.75 × 103 J P
m‡gvò †jL
e¨vL¨v: dW = PdV
A
= 3.5  105  0.1  5  10–2 O
V
 dW = 1750 J
177. wmwjÛv‡i mieivnK…Z Zvckw³ dQ Gi cwigvY njÑ 182. AQ †jLwP‡Îi †ÿ‡Î wb‡Pi †Kvb m¤úK©wU mwVK?
7.002 × 105 J 6.998 × 105 J PV = aªæeK PV = aªæeK
1.957 × 103 J 1.543 × 103 J  PV–1 = aªæeK PV1–/ = aªæeK
DËi: 1.543 × 103 J
DËi: PV = aªæeK
e¨vL¨v: dQ = dU + dW
183. DÏxc‡Ki M¨vmwU nvB‡Wªv‡Rb n‡j AQ †jL Al †jL
= – 207 + 1750
A‡cÿv KZ¸Y Lvov n‡e?
 dQ = 1.543  103 J
1.1 1.33
 wb‡Pi Aby‡”Q`wU co Ges 178 I 179 bs cÖ‡kœi 1.4 1.66
DËi `vI: DËi: 1.4
GKwU Kv‡b©v BwÄb 327C I 27C ZvcgvÎv cwim‡i
KvR K‡i| BwÄbwU Drm n‡Z Q cwigvY Zvc MÖnY  wb‡Pi DÏxc‡Ki Av‡jv‡K wb‡Pi 184 I 185 bs cÖ‡kœi
K‡i wms‡K 3000 J Zvc eR©b K‡i| [w`. †ev. 21] DËi `vI:
178. Q Gi gvb KZ? V+dV
V,Q V,Q+dQ Q+dQ
1000 J 1500 J dW = 2J
2000 J 6000 J 20C 80C 80C
A B C
DËi: 6000 J
[h. †ev. 16]
179. Bwćbi `ÿZv KZ?
184. dQ = 5J n‡j A †_‡K B-†Z AšÍt¯’ kw³i cwieZ©b
100% 75%
KZ?
50% 25%
–3 J 0J
DËi: 50%
3J 7 J
 wb‡Pi DÏxcKwU co Ges 180 I 181 bs cÖ‡kœi DËi: 3J
DËi `vI: e¨vL¨v: dQ = dU + dW
GKwU Zvcxq BwÄb 27C I 227C ZvcgvÎvi g‡a¨  5 = dU + 2
Kvh©iZ Av‡Q| cieZ©x‡Z Dr‡mi I MÖvn‡Ki ZvcgvÎv  dU = 3 J
20C h_vµ‡g e„w× I n«vm Kiv n‡jv| [w`. †ev. 19] 185. hw` wZb Ae¯’vq wm‡÷gwUi AšÍt¯’kw³ h_vµ‡g UA,
180. ZvcgvÎv cwieZ©‡bi c~‡e© Bwćbi `ÿZv KZ? UB, UC nq Z‡e †KvbwU mwVK?
33.33% 40% UA = U B = U C UC = U B > U A
46% 66.67% UB < U C = U A U A = U B < UC 
DËi: 40% DËi: UC = U B > U A
ZvcMwZwe`¨v  Final Revision Batch 39
 wb‡Pi Pvc ebvg AvqZb †jLwP‡Îi Av‡jv‡K 186 I
†miv K‡jRmg~n †_‡K evQvBK…Z MCQ
187 bs cÖ‡kœi DËi `vI:
Y 1. †gvjvi Zvc aviY ÿgZvi mgxKiY:
A
dQ dQ
C= C=
mdT dT
dQ dQ
C=M C=M 
B mdT dT
Pvc, P

dQ
C
X DËi: C=
mdT
O AvqZb, V 2. GKwU Av`k© M¨v‡mi †ÿ‡Î Cp/Cv =  n‡j, wb‡Pi †Kvb
[wm. †ev. 15]
m¤úK©wU GK †gv‡ji Rb¨ mwVK?
186. AB †jLwP‡Îi †ÿ‡Î †Kvb m¤úK©wU mwVK?
Cv = ( – 1)R Cv = R/( – 1)
PV – 1 = aªæeK PV = aªæeK
Cv = R/(1 – ) Cv = R/(1 + R)
PV – 1 = aªæeK PV = aªæeK
DËi: Cv = R/( – 1)
DËi: PV = aªæeK
3. GKwU Kv‡b©v Bwćbi Rb¨ hw` Zvc Dr‡mi ZvcgvÎv
187. AC †jLwP‡Îi †ÿ‡Î †Kvb m¤úK©wU mwVK?
AcwiewZ©Z †i‡L Zvc MÖvn‡Ki ZvcgvÎv ax‡i ax‡i
PV = aªæeK PV – 1 = aªæeK
+1
Kgv‡bv nq, Zvn‡j Bwćbi Kg©`ÿZv †Kgbfv‡e
PV = aªæeK PV = aªæeK cwiewZ©Z n‡e?
DËi: PV = aªæeK e„w× cvq AcwiewZ©Z _v‡K
 wb‡Pi DÏxc‡Ki Av‡jv‡K 188 I 189 bs cÖ‡kœi Kg‡Z _vK‡e ejv m¤¢e bq
DËi `vI: DËi: e„ w× cvq
GKwU Zvc BwÄb 327C ZvcgvÎvq 500J Zvc MÖnY 4. 0C ZvcgvÎvq cvwb‡K ev®úxf~Z Kiv †h‡Z cv‡i, hw`
K‡i Ges 27C ZvcgvÎvq Zvc eR©b K‡i| wKQz mgq cvwicvwk¦©K Pvc nqÑ
ci ZvcMÖvn‡Ki ZvcgvÎv 177C-G DbœxZ nq| 760 mm of Hg 76 mm of Hg
[Xv. †ev. 15] 40 mm of Hg 4 mm of Hg
188. BwÄb KZ…©K m¤úvw`Z Kv‡Ri cwigvY KZ? DËi: 76 mm of Hg
1500 J 1000 J 5. †Kvb Zvc-hyM‡ji Rb¨ wb‡Pi gšÍe¨¸‡jvi g‡a¨ †KvbwU
500 J 250 J mwVK bq?
DËi: 250 J †Kvb GKwU wbw`©ó Zvc-hyMj †m‡Ui Rb¨ wbi‡cÿ
Q T ZvcgvÎv w¯’i _v‡K
e¨vL¨v: Q2 = T2
1 1 wbi‡cÿ ZvcgvÎv kxZj ms‡hv‡Mi ZvcgvÎvi Dci
Q2 300 wbf©i K‡i bv
 =
500 600 Drµg ZvcgvÎv kxZj ms‡hv‡Mi ZvcgvÎvi Dci
 Q2 = 250 J wbf©i K‡i bv
 W = Q 1 – Q2 wbi‡cÿ ZvcgvÎvq m‡e©v”P Zvcxq Zwor”PvjK kw³
= (500 – 250)
(thermo-e.m.f.) cvIqv hvq
 W = 250 J
DËi: Drµg ZvcgvÎv kxZj ms‡hv‡Mi ZvcgvÎvi Dci
189. `yB Ae¯’vq Bwćbi Kg©`ÿZvi AbycvZ KZ?
wbf©i K‡i bv
3:4 1:1
6. mvaviY Pvc e„w×i d‡j ùzUbvsKÑ
2:3 2 : 1
DËi: 2:1 n«vm cvq AcwiewZ©ZZ _v‡K
e„w× cvq Gi †KvbwUB bq
 wb‡Pi DÏxc‡Ki Av‡jv‡K 190 I 191 bs cÖ‡kœi DËi: n«vm cvq
DËi `vI: 7. 1000C ZvcgvÎvi AwaK ZvcgvÎv cwigvcK h‡š¿i
GKwU Kv‡b©v BwÄb 600 K ZvcgvÎvi Zvc Drm †_‡K bvg wK?
1200 J Zvc MÖnY K‡i Ges Zvc MÖvn‡K 300 J Zvc
K¨vjwiwgUvi cvi` _v‡g©vwgUvi
eR©b K‡i| [h. †ev. 15]
cvB‡ivwgUvi A¨vj‡Kvnj _v‡g©vwgUvi
190. ZvcMÖvn‡Ki ZvcgvÎv KZ?
DËi: A¨vj‡Kvnj _v‡g©vwgUvi
150 K 300 K
600 K 2400 K 8. GKwU c`v_© †_‡K Ab¨ c`v‡_©i Zv‡ci cÖevn wbf©i K‡iÑ
DËi: 150 K c`v‡_©i AvK…wZi Dci
191. Bwćbi `ÿZv KZ? ZvcgvÎvi cv_©‡K¨i Dci
44% 50% evqy gÛ‡ji ZvcgvÎvi Dci
60% 75% Dc‡ii †KvbwUB bq 
DËi: 75% DËi: ZvcgvÎvi cv_©‡K¨i Dci
nd
40  HSC Physics 2 Paper Chapter-1
9. mxmvi Mjbv¼ 327C Ges mxmv Mj‡bi jxb Zvc 5.86 16. †jLwP‡Î, X Øviv GKwU M¨v‡mi cÖv_wgK Ae¯’v †`Lv‡bv
cal/gm nB‡j 4 gm.mol mxmv Mj‡Z GbUªwci n‡”Q| †jLwP‡Î †Kvb †iLvwU GKwU cÖwµqvq M¨vmwU Øviv
cwieZ©b KZ n‡e? mxmvi cvigvYweK IRb 207| ev M¨v‡mi Dci †Kvb KvR Kiv n‡”Q bv wb‡`©k K‡i|
8.1 cal/K 1.38 cal/K
14.8 cal/K None P B
DËi: 8.1 cal/K C
A
ml
e¨vL¨v: dS = T f X
D
4  207  2.86 V
=
(273 + 327) XA XB
 dS = 8.1 cal/K XC XD
10. hLb Zzwg †Zvgvi Av½yj w`‡q GK LÛ VvÛv eid‡K PV = constant T = constant
¯úk© Ki ZLb kw³ cÖevwnZ nqÑ DËi: XB
†Zvgvi Av½yj †_‡K ei‡di w`‡K 17. dv‡ibnvBU †¯‥‡j †Kvb e¯‘i ZvcgvÎv 50F n‡j
eid †_‡K †Zvgvi Av½y‡ji w`‡K †Kjwfb †¯‥‡j H ZvcgvÎv n‡eÑ
cÖK…Z c‡ÿ Dfq w`‡K 273 K 283 K
None of these 
290 K 300 K
DËi: †Zvgvi Av½yj †_‡K ei‡di w`‡K DËi: 283 K
11. GKwU Mvwo Pj‡Z _vK‡j Gi Uvqv‡ii wfZi GKwU
18. GKwU Kv‡b©v BwÄb 800K I 400K ZvcgvÎvq †h
ZvcMZxq cÖwµqv P‡j| GB cÖwµqvwU n‡jvÑ
`ÿZvi KvR K‡i, wVK mg`ÿZvi KvR K‡i T I
mgAvqZb cÖwµqv m‡gvò cÖwµqv
900K ZvcgvÎvq| ZvcgvÎv T Gi gvb KZ?
iƒ×Zvcxq cÖwµqv mgPvc cÖwµqv
900 K 450 K
DËi: mgAvqZb cÖwµqv
1800K 500K
12. wb‡¤œi †Kvb mgxKiYwU ZvcMwZwe`¨vi Rb¨ mwVK?
DËi: 1800K
dQ = W Cp – Cv = aªæeK
–1 e¨vL¨v: 1 = 2
TV = aªæeK PV = R
T2 T4
DËi: TV–1 = aªæeK 1– =1–
T1 T3
13. †h cÖwµqvq †Kvb wm‡÷‡gi ZvcgvÎv w¯’i †i‡L M¨vmxq
400 900
c`v‡_©i Pvc I AvqZ‡b cwieZ©b NUv‡bv nq, Zv wb‡¤œ  =
800 T
D‡jøwLZ †Kvb cÖwµqv?  T = 1800 K
ZvcMZxq mgPvc 19. †Kvb e¨w³ ce©‡Zi P~ovq cvwb dzUv‡Z PvB‡j cvwbi
m‡gvò iæ×Zvcxq cv·K †h ZvcgvÎvq DËß Ki‡Z n‡e ZvÑ
DËi: m‡gvò
higher than 100C
14. evB‡ii kw³i mvnvh¨ Qvov †Kvb ¯^qswµq h‡š¿i c‡ÿ
lower than 100C
wb¤œ DòZvi e¯‘ n‡Z D”PZi DòZvi e¯‘‡Z Zv‡ci
to 100C
¯’vbv¯Íi m¤¢e bq| GwU †Kvb wee„wZ?
cannot be determined
†Kjwf‡bi wee„wZ Kv‡b©vi wee„wZ
DËi: lower than 100C
K¬wmqv‡mi wee„wZ cø¨v‡¼i wee„wZ
20. cvwb eid I Rjxq ev®ú †h ZvcgvÎvq GKm‡½ _vK‡Z
DËi: K¬wmqv‡mi wee„wZ
cv‡i Zv n‡jvÑ
15. wb‡¤œi †KvbwU AcÖZ¨vMvgx cÖwµqv bq?
e¨vcb cwiPjb 2C 273.16 K
wewKiY cÖwZmiY 100C 4C
DËi: cÖwZmiY DËi: 273.16 K

---

You might also like