MATHEMATICS OPTIONAL
ORDINARY DIFFERENTIAL
EQUATIONS (ASSIGNMENT)
                                  By
                            Avinash Singh
                     (Ex IES, B.Tech IIT Roorkee)
DELHI CENTRE                                   BHOPAL CENTRE
27-B, Pusa Road, Metro Pillar No. 118,         Plot No. 46 Zone - 2, M.P Nagar,
Near Karol Bagh Metro, New Delhi-110060        Bhopal - 462011
  Phone: 8081300200, 8827664612 | E-mail : info@nextias.com | Web: www.nextias.com
 2            Mathematics Optional
                                                                 Tutorial Sheet - I
(1)    Solve : y  x        dy dx =a  y   2
                                                 
                                                     dy
                                                             
                                                             .  x  a  1  ay   cy 
                                                          dx 
(2)    Solve :          1  x 2  y 2  x2 y 2   xy  dy 
                                                             0
                                                          dx        
                                     
Ans. logx-log 1  (1  x 2 ) 1 2  (1  x 2 ) 1 2  (1  y 2 )1 2  c
(3)    ( x  y )(dx  dy )  dx  dy ;  x  y  c  log( x  y )
(4)    Solve ( x  2 y  1) dx  ( x  2 y  1)dy
Ans. 3x  6 y  1  ce 3( x  y )/2
(5)        y x   ydx  xdy   y sin  y x   xdy  ydx
        x cos
Ans. xy cos  x   c
             y
(6)    (4 y  3x)dy  ( y  2 x )dx  0
                                                                 1
             2
                            ( 3  1)x  2 y 
                             2
                                                                     2 3
Ans. c( x  2 xy  2 y )                      
                             ( 3  1)x  2 y 
(7)    ( x 2  4 xy  2 y 2 )dx  ( y 2  4 xy  2 x 2 )dy  0
Ans. y 3  6 xy 2  6 x 2 y  x 3  c
        dy
             dx  ( x  2 y  3) /(2 x  y  3)
(8)
(9)    dy/dx = (x+y+4)/(x-y-6)
                                          ( y  5) 
Ans: ( x  1)2  ( y  5)2  ce 2 tan 1           
                                          ( x  1) 
(10) (2 x 2  3 y 2  7) xdx - (3x 2  2 y 2  8) ydy=0
Ans: ( x 2  y 2  1)5  c( x 2  y 2  3)
(11) ( x  y )2 dx  ( y 2  2 xy  x 2 )dy  0
Ans: x 3  y 3  3xy( x  y )  c
                 x /y
(12) Solve (1  e )dx  e
                          x /y
                                            
                               1  x y dy  0
Ans: x  ye x/y  c
                                      By Avinash Singh, Ex IES, B.Tech IIT Roorkee
                                                                              Ordinary Differential Equations (Assignment)
                                                                                                                             3
                                              xdy  ydx
(13) Solve xdx  ydy                                                0
                                                  x2  y 2
Ans: x 2  y 2  2 tan 1 ( x / y )  c
(14) y sin 2 xdx  (1  y 2  cos 2 x )dy  0
Ans: 3 y cos 2 x  6 y  2 y 3  c
(15) Show(4x+3y+1)dx+(3x+2y+1)dy=0 is a family of hyperbolas with a common axis and tangent at
     the vertex.
(16) Find the values of constant  such that (2xey+3y2) (dy/dx) +(3x2+ey)=0 is exact. further for this
     value of , Solve the equation.
Ans: = 2 , x 3  2 e x  y 3  c
(17) Solve: ( x 3 y 3  x 2 y 2  xy  1)ydx  ( x 3 y 3  x 2 y 2  xy  1)xdy  0
Ans: xy  ( 1 xy )  2 log y  c
(18) Solve (2 ydx  3xdy )  2 xy(3 ydx  4xdy )  0
Ans: x2y3+2x3y4=c
(19) (2 x 2 y 2  y )dx  ( x 3 y  3 x )dy  0
            10           5              4           12
Ans: 4x          7   y        7    5x        7   y         7   c
(20) Sinx            dy dx +3y=cosx
     
Ans:  y 
     
                 1
                 3
                                    
                    tan x 2  2 tan x 2  x  c
                         3
                                                                 
(21) ( x  2 y 3 ) dy
                      dx  
                         y          
Ans: x y  y  c
            2
(22) (1  y 2 )dx  (tan 1 y  x )dy
                                                   1
Ans: x  tan 1 y  1  ce tan                          y
(23)
       dy
            dx
                      y cos x  1        2 sin 2x
Ans: y  ce  sin x  sin x  1
                                                        By Avinash Singh, Ex IES, B.Tech IIT Roorkee
  4             Mathematics Optional
                    dz z        z
(24) Solve             log z  2 (log z)2
                    dx x       x
        1       1
Ans: x(log z)  2  c
               2x
(25) ( x 2  2 x  2 y 2 )dx  2 xydy  0
                     2x3 x4
Ans: y 2 x 2              c
                      3   4
                     1
(26) ( xy 2  e           x 3 )dx  x 2 ydy   0
                      3 e
                              1
       y2
Ans:            2    2            x3   c
            x
(27) Solve x( dy / dx )  y  y 2 log x
     1
Ans: y  log x  1  cx
(28) ( x 3 y 2  xy )dx  dy
                                        x2
Ans: y 1  (2  x 2 )  ce  2
(29) ( x 2 y 3  xy )       dy dx  1
                                y2
    1              
Ans:  2  y 2  ce 2
    x
(30)    Find the curve for which the position of y axis cut off between the origin and tangent varies as
        the cube of the abscissa of the point of contact.
Ans: 2y   kx 3  cx
(31) Find the Cartesian equation of the curve in which the perpendicular from the foot of the ordinate
     on the tangent is of constant length.
Ans: y = k cosh {(x+c)/ k}
(32)    Find the family of curves whose tangent form an angle  4 will the hyperbola xy=c
Ans:     y  x  2 c tan
                         1 x
                              c
                                 c     
(33)     Show that the Curve in which the angle between the tangent and the radius vector at any
        point is half of the vectorial angle is a cardioid.
                                             By Avinash Singh, Ex IES, B.Tech IIT Roorkee
                                                  Ordinary Differential Equations (Assignment)
                                                                                                 5
Ans: kr – 1 = rce
(34) If the population of country doubles in 50 years in how many years will treble under the
     assumption that rate of increase is proportional to the number of inhabitants.
Ans: 78.25 yrs
(35) A metal bar at temperature of 100°F is placed at a constant temp of 0°F. If after 20 Minutes the
     temperature of the bar is half , find an expression for the temperature of the bar at any time.
Ans: T = 100 e(-0.035)t
(36) Show that the only curves having constant curvatures are circles and straight lines.
(37) Find the curve for which sum of the reciprocal of the radius vector and the polar subtangent is
     costant.
                           By Avinash Singh, Ex IES, B.Tech IIT Roorkee
 6           Mathematics Optional
                                                         Tutorial Sheet - II
(38) Find the orthogonal trajectories of the family of curves 3xy=x3-a3 a being parameter of the family.
      2           2y
                     
Ans. x  y  1 2 e  c
39)    Find the orthogonal trajectories of x2+y2=2ax.
Ans. x 2  y 2  cy , c being parameter.
(40) Find the orthogonal trajectories of the family of circles x 2  y 2  2 fy  1  0 , where f is parameter
Ans) x 2  y 2  2 gx  1  0
(41) Find the orthogonal trajectories of family of parabolas y 2  4 a( x  a ) , where a is parameter.
                                      
                                             2
Ans. y  2 x dy    y
                      dy
                dx       dx
                                                                2                             y2
(42) Find the orthogonal trajectories of the family of curves x                  2                              1 , where  is a
                                                                               (a   )            (b 2   )
parameter.
(Ans) { x  y   dy dx} x  y dx dy   a    2
                                                      b2
(43) Find the orthogonal trajectories of r=a(1+cosn  )
         2
Ans. r n  b(1  cos n )
(44) Find the equation of the family of oblique trajectories which cut the family of concentric circles at
     30°.
(45) p 3  2 xp 2  y 2 p 2  2 xy 2 p  0
                     2           1
                                         
Ans. ( y  c )( y  x  c )[ x  y  c ]  0
(46) p( p  y )  x( x  y )
(47) x 2 p 2  2 xyp  2 y 2  x 2
               sin
                      1   y x 
Ans. x  ce
(48) p 2  2 py cot x  y 2
                                    
Ans. ( y  c sec 2 x / 2) y  c cos ec 2 x / 2  0   
                                        By Avinash Singh, Ex IES, B.Tech IIT Roorkee
                                                            Ordinary Differential Equations (Assignment)
                                                                                                           7
(49) x 2 p 2  2 xyp  y 2  x 2 y 2  x 4  0
        y  x sinh(c  x )
Ans.                    0
       y  x sinh(c  x )
(50) y  2 px  p 2 y
Ans. 2 xc  y 2  c  0
(51) y 2 log y  xpy  p 2
Ans. log y  cx  c 2
(52) x= y+a log p
        y  c  a log(1  p )
Ans.                                  
                                        
       x  c  a log(1  p )  a log p 
(53) x = 4(p + p3)
      y  2 p2  3 p 4  c 
Ans.              3        
     x  4( p  p )        
(54) y  px  x 4 p 2
Ans. xy + c = c2x
(55) y = yp2 + 2px
Ans. c2y2 = 4(1 + x)
(56) y = 2 px + f(xp2)
Ans. y = 2cx1/2 + f(c2)
(57) y = 2 px – p2
Ans. x = (2/3)p + cp-2, y = (1/3)p2 + 2cp–1
(58) y = 3px + 4p2
Ans. x = –(8/5)p + cp-3/2
       y = 3cp–1/2 – (4/5)p2
(59) p  tan( px  y )
(60) sin px cos y  cos px.sin y  p
(61) Solve p 2 x( x  2)  p(2 y  2 xy  x  2)  y 2  y  0
(62) x 2 ( y  px )  yp 2
(63) ( px  y )( py  x )  h 2 p
                                    By Avinash Singh, Ex IES, B.Tech IIT Roorkee
 8          Mathematics Optional
      2             4 2            1    1
(64) y ( y  xp)  x p ( x          ,y )
                                   u    v
(65) y  2 px  y 2 p 3
(66) xp 2  2 yp  x  2 y  0. ( y  x  v & x 2  u )
(67) (px2 + y2)(px + y) = (p + 1)2
(68) ( x 2  y 2 )(1  p )2  2( x  y )(1  p )( x  yp )  ( x  yp )2  0
                                    By Avinash Singh, Ex IES, B.Tech IIT Roorkee
                                                                  Ordinary Differential Equations (Assignment)
                                                                                                                  9
                                                    Tutorial Sheet - III
69.    Find the differential equation of the family of circles x 2  y 2  2cx  2c 2  1  0 (c is arbitrary)
       Determine singular solution of the differential equation.
Ans. 2 y 2 p 2  2 xyp  x 2  y 2  1  0, x 2  2 y 2  2  0
                                                                                             dy
70.    Find the solution of the differential equation y  2 xp  yp 2 where p                  also find the singular
                                                                                             dx
       solution.
                       xy0
Ans. y 2  2cx  c 2 ; x  y  0
71.    Find general and singular solutions of 3 xy  2 px 2  2 p 2 or y  (2 x / 3) p  (2 / 3 x )p 2
Ans. (3y  2c )2  4cx 3 , x 3  6 y  0
72.    Solve the differential equation y  x  2 ap  ap 2 . Find the singular solution and interpret it
       geometrically.
Ans. 4a(y – c) = x2 + c2 – 2xc; y – x + a = 0
73.    Find the complete primitive (general solution) and singular solution of (xp – y)2 = p2 – 1.
Ans. x2 – y2 = 1
74.    Reduce the equation xyp2 – p(x2 + y2 – 1) + xy = 0 to clairaut's form by the substitutions x2 = u and
       y2 = v. Hence, show that the equation represents a family of conics touching the four sides of a
       square.
      2    2            c
Ans. y  cx 
                       c1
       x  y  1  0, x  y  1  0, x  y  1  0, x  y  1  0
75.     Solve (D2 + a2)y = cot ax
                               1                  ax 
Ans. c1 cos ax  c 2 sin ax   2  sin ax log tan  
                              a                   2 
76.    (4D2 + 12D + 9)y = 144e-3x
                                   2x
            2
77.    (9 D  12 D  4)y         e3
                       2x                2x
                                1
Ans.  c1  c 2 x    e3     ( )x 2 e    3
                               18
78.    ( D  1)(D2  2 D  2)y  e x
Ans. e x (c 1  c 2 cos x  c 3 sin x  x )
                                         By Avinash Singh, Ex IES, B.Tech IIT Roorkee
  10            Mathematics Optional
79.      ( D 4  2 D3  5D 2  8D  4)y  e x
                         x
Ans. P.I. = x 2 e 10
80.      ( D 2  6D  8)y  ( e 2 x  1)2
         2x      4x 1      4x    2x
Ans. c1 e  c 2 e    (4 xc  8xe  1)
                    8
          d4y   4
81.       4   m y  sin mx
          dx 
                               d2 y                                        dy
82.      Find the solution of  2   4 y  8 cos 2 x , given that y  0 and     0 , when x = 0
                               dx                                          dx
83.      ( D 3  3D 2  2 D )y  x 2
84.      ( D 3  D 2  6D )y  x 2  1
                                                                2
Ans. c1  c2 e3x  c 3 e 2 x  ( 1 18)( x 3  x                    2    25 x 6 )
85.      ( D 2  6 D  9)y  x 2 e 3 x
Ans.  c 1  c 2 x  e 3 x   1 12  x 4 e 3 x
86.      Solve ( D3  3D  2)y  540 x 3 e  x
87.      ( D 2  1)y  cosh x.cos x
Ans. c1 e x  c 2 e  x   2 5  sin x sinh x   2 5  cos x cosh x.
                                     x
88.      (D4  D2  1)y  e               2   cos( x   3
                                                           2)
89.      Solve ( D 2  4D  4)y  8 x 2 e 2 x sin 2 x
Ans. (c 1  c 2 x )e 2 x  e 2 x (3sin 2 x  4x cos 2 x  2 x 2 sin 2 x )
         d2 y
90.                     5 dy / dx  6 y  e 4 x ( x 2  9)
                dx 2
Ans. c1 e 2 x  c 2 e 3 x  (1 / 4)e 4 x (2 x 2  6 x  25)
91.      ( D 4  2 D2  1)y  x 2 cos x
                                                            4                        3x 2
Ans. (c 1  c 2 x )cos x  (c 3  c 4 x )sin x  (1 / 4)[( x / 12                        )cos x  ( x 3 / 3)sin x ]
                                                                                      4
92.      Solve (D2  1)2  24 x cos x given y  Dy  D 2 y  0 and D3 y  12 . When x  0 '.
                                               By Avinash Singh, Ex IES, B.Tech IIT Roorkee
                                                                                           Ordinary Differential Equations (Assignment)
                                                                                                                                                                11
                                                              5   21  /2
Ans. y = c1 x 2  c 2 x 5                   21  /2                           3
                                                        x                    x 5
97.     Find the values of  for which all solution of x 2                                       d2 y
                                                                                                         dx 2     3x    dy
                                                                                                                                dx     y  0 tends to zero as x  
Ans. 1    0
98.     ( x 2 D2  4 xD  2)y  e x
Ans. y  c1 x 2  c 2 x 1  x 2 e x
99.     Solve ( x 3 D3  2 x 2 D2  2)y  10  x  1 x 
Ans. c1 x 1  x[c 2 cos log x  c 3 sin log x ]  5x  2 x 1 log x.
100.     x  1         4
                              D3  2(x  1)3 D2  ( x  1)2 D  ( x  1) y                      1
                                                                                              ( x  1)
                                                      1  1          2
Ans. y  c1  c 2 log(1  x )(1  x )  c 3 (1  x )     1  x 
                                                           9
                                                          
                2             2d2 y                          dy                        2
101.  1  2 x                        2
                                            6  1  2x         16 y  8  1  2 x 
                                dx                           dx
Ans. y( x )  (1  2 x )2 log(1  2 x )[1  log(1  2 x )]
102. (3  x )y " (9  4x )y   (6  3x )y  0
Ans. c 2 e x  ( 1 8 )c 1 e 3 x (4 x 3  42 x 2  150 x  183)
103. Solve: x 2 y   xy   y  0 , given that  x  1 x  is one integral by using the method of reduction of
       order.
Ans. y  c 2 ( x  1 x )  c1 ( 1 x )
104. sin 2 x             d2y
                                dx 2     2y ,given that y  cot x is a solution.
Ans. cot x[c 2 ]  c 1 (1  x cot x )
105.       d2 y
                   dx 2     (1  x)       dy
                                                 dx    xy  x
                                2
Ans. c1 e x  e  x  x             /2
                                           dx  c 2 e x  1 (Left in integral form).
                                                        By Avinash Singh, Ex IES, B.Tech IIT Roorkee
 12             Mathematics Optional
106. Make use of transformation y( x )  V ( x )sec x to obtain the solution of y   2 y  tan x  5y  0 , y(0)=0,
       y  (0)= 6
Ans. y  sec x sin  x 6 
                                                                  2
107. Solve y   4 xy   (4 x 2  1)y  3e x sin 2 x
                    2
Ans. y  e x (c1 cos x  c 2 sin x  sin 2 x )
108. Solve y   2 xy   ( x 2  1)y  x 3  3x
                    2
Ans. x  e  x          2   (c1 x  c 2 )
       d2 y             L     dy  1       1    6 
109.        2
                       1/3
                                 2  4  2 y  0
       dx           x         dx  4 x 3 6 x 3 x 
                 3  2/3
                  x
Ans. y  e        4
                          (c        1x
                                         3
                                              c 2 x 2 )
110. Solve y   (4 cos ec 2 x )y   (2 tan 2 x )y  e x cot x by changing the dependent variable.
Ans. cot x(c1 e x             2
                                   c2 e  x    2
                                                     ex )
111. Solve sin 2 xy   sin x cos x y   4 y  0
                        x                     x
Ans. c1 cos  2 log tan     c 2 sin  2 log tan 
                        2                     2
112. Solve (1  x 2 )2 y   2 x(1  x 2 )y  4 y  0
Ans. (1  x 2 )y  c 1 (1  x 2 )  2c 2 x
113. Solve xy   y   4 x 3 y  x 5
                                                    2
Ans. c1 cos x 2  c 2 sin x 2  x                       4
114. cos x y   y sin x  2 y cos 3 x  2 cos 5 x
                2 sin x               2 sin x
Ans. c1 e                    c2 e                   sin 2 x
                                                                                               d2 y         dy 
115. If y  y1 ( x ) and y  y 2 ( x) are the two solutions of the equation                      2
                                                                                                   p( x )    ( x )y  0 where
                                                                                               dx           dx 
        p(x),Q(x) are continuous function of x ,
                                                        By Avinash Singh, Ex IES, B.Tech IIT Roorkee
                                                              Ordinary Differential Equations (Assignment)
                                                                                                             13
                          dy 2      dy
       Prove that y1            y 2 1  ce   pdx , c arbitrary cont.
                          dx        dx
116. Apply the method of variation of parameters to solve the equation
        ( x  2)y 2  (2 x  5)y 1  2 y  ( x  1)ex
Ans. c1 (2 x  5)  c 2 e 2 x  e x
                                      By Avinash Singh, Ex IES, B.Tech IIT Roorkee
  14         Mathematics Optional
                                                      Tutorial Sheet - IV
                                                                             d2 y
117. Solve by the method of variation of parameters                                         (1  cot x ) dy dx  y cot x  sin 2 x.
                                                                                    dx 2
Ans. y  c 1 (sin x  cos x )  c 2 e  x  ( 1 10 )(sin 2 x  2 cos 2 x )
118. Solve by the method of variation of parameters x 2 y   2 x(1  x )y   2( x  1)y  x 3
Ans. y  c1 x  c 2 xe 2 x     x 2    x 4
                                 2
119. y 2  n 2 y  sec nx (use of vop)
Ans. y  c 1 cos nx  c 2 sin nx         1 n  cos nx log cos nx  ( x n)sin nx
                                              2
                                      By Avinash Singh, Ex IES, B.Tech IIT Roorkee
                                                                      Ordinary Differential Equations (Assignment)
                                                                                                                     15
                                                     Laplace Transform
120. Find out the Laplace transform of
(a)     cos2at                                                 (b)     sin32t
            1                                                          sin t, 0  t  
(c)                                                            (d)     0
            t                                                                   t
                                                                              0 0  t  1
                 x / a , 0  x  a                                           
(e)      f (x)                                               (f)     f(x) =  t 1  t  2
                 1     ,    xa
                                                                              0    t2
                                                                              
                                                                           cos t    1 4 s
(g)     Find L. sin t                                         (h)     L.           e
                                                                              t    5
                      1
                  
            e        4s
Ans.              3
            2s        2
(i)     (t  3)2 et
        9s 2  12s  s
Ans.
             (s  1)3
                                     1     3           6           6
        Show L (1  te )  
                       t 3
(j)                                           2
                                                          3
                                                             
                                     s (s  1)     (s  2)     (s  3)4
                                               
                sin  t                      t
        G(t )    3                             3
                                                  
                                                t
                0                                 3
              t   1
                  3/2 , show that 1/ 2  L 
                                     1          1 
(l)     If L 2                                    .
               s                 s          t 
(m) Find L f (t), if f (t )  3 f (t )  2 f (t )  0 , f (0)  1, f (0)  2 .
(n) L(t sin at ), L((sin 2t / t )
(o) Find the replace transform of (sin at)/t. Does the replace transform of (cos at)/t exist ?
                  cos at  cos bt  1    s 2  b2
(p) Prove that L                    log 2
                         t         2    s  a2
(q)              sin 2 t      
        0          2
                         dt 
                   t          2
                                      By Avinash Singh, Ex IES, B.Tech IIT Roorkee
 16              Mathematics Optional
                       sin x 
(r)      Evaluation L  0  t   dx 
                             x    
         cot 1 s
Ans.
           s
                                                                           sin t 0  t  
(s)      Evaluate L(f(t), if f(t) has a period 2 and is given by f (t )  
                                                                           0       t  2
            1
Ans.            (1  e  s )
         1  s2
(t)      Find the replace of square wave given by
                   E 0  t  T / 2
          f (t )                  and f(t + T) = f(t)
                    E T 2  t  T
          E      ST
Ans.        tanh
          S       4
      (u) 0   te2t cos tdt  3 25
      (v) 0   e t sin t dt   4
                       t
      (w) To Prove that                                        
                                                      L erf ( t ) 
                                                                        1
                                                                      s s 1
121. Evaluate L–1 of.
                   6     3  4S    8  6S
         (a)                    
                 2S  3 9S 2  16 16S 2  9
                       1    4t 4   4t 2  3t 3   3t
         Ans. 3e 3t 2  sinh  cosh  sin  cos
                       4    3 9    3 3   4 8    4
                 1    1       t2       t4       t6
         (b)       cos  1       2
                                          2
                                                     ....
                 s    s      (2!)     (4!)     (6!)2
         
                              1
          cos x dx  2 (
                       2                      1
(c)                               
                                      2   )       2
         
                              
         e
                x2
(d)                   dx 
         0
                             2
              2s 2  6s  5 
(e)      L1  3                      t   2 t
                                  = e  2e  3e
                                                 3t
              s  6 s  11s  6 
                                                           By Avinash Singh, Ex IES, B.Tech IIT Roorkee
                                                                Ordinary Differential Equations (Assignment)
                                                                                                               17
(f)                 s             1
      L1                      2      (cos bt  cos at )
            ( s  a )( s  b ) a  b 2
                2   2   2   2
          sa                                               1
(g)                                              (h)
      (s  a)2  b2                                    s ( s  1) 2
                                                        2
              s       1
(i)   L1  4     4 
                       2 sinh at . sin at
           s  4a  2 a
                             t t                       1 2 t 
                                     4
                  1                     t3 t2   t   1
(j)   L1         5          e                    e 
           (s  1) (s  2)       72 54 54 81 243 243         
           e 4  3s 
(k)   L1             
           ( s  4) 2 
                    5
            2 s 
              se 3 
(l)   L1  2
            s  9 
              e  s    cos 2 t
                    1
          1
(m)   If L              
               s1/2       t
                e  s   cos 2 ta 
                      a
      Find L1                    
                 s1/2       t 
               s    
(m)   L1  2     2 2
           (s  a ) 
               1  s                         1  et
(n)   L1 log                         Ans.
               s                                t
                   1                         2  1  cosh t 
(o)   L1 log  1  2                  Ans.
                  s                                  t
(p)         
      L1 tan 1  1 s                       1
                                          Ans.   sin t
                                               t
(q)   L1      1
                s
                  log
                      s2
                      s1   
                                                                      1
122. Apply convolution theorem to show that 0  t sin u.cos(t  u)du  t sin t
                                                                      2
                                 By Avinash Singh, Ex IES, B.Tech IIT Roorkee
 18        Mathematics Optional
              s     
123. L1  2        2
          (s  2 s) 
124. Solve y (t )  y(t )  t with y(0)  1 , y( )  0
Ans. y   cos t  t
125. Solve ( D2  n 2 )y  a sin(nt   ) if y  Dy  0 when t=0
        a
Ans.        [cos  sin nt  nt cos(  nt )]
       2n 2
126. Solve [tD2  (1  2t )D  2]y  0 , y(0)  1 , y(0)  2
Ans. y  e 2t
127. Solve y   ty   y  1 , if y(0)  1 , y(0)  2
Ans. y(t )  1  2t
                                By Avinash Singh, Ex IES, B.Tech IIT Roorkee