No.
of Printed Pages : 12 BMTC-133
BACHELOR OF SCIENCE (GENERAL)
(BSCG/BAG)
Term-End Examination
June, 2022
BMTC-133 : REAL ANALYSIS
Time : 3 hours Maximum Marks : 100
Note : The question paper has three sections – A, B and C.
All questions in Section A and Section B are
compulsory. In Section C, do any five questions
out of seven questions. Use of calculators is not
allowed.
SECTION A
1. State whether the following statements are True
or False. Give a short proof or a counter-example
in support of your answer. 102=20
(i) There is no bijection from N to Q [0, 1].
(ii) Every finite set has empty interior.
(iii) Every real valued function f has a point x in
its domain such that f(x) = x.
(iv) If a sequence is bounded, then it has at least
two convergent subsequences.
BMTC-133 1 P.T.O.
1 1 1 1
(v) The series – + – + ... is a
3 7 11 15
convergent series.
(vi) The function f defined on R by
f(x) = |x + 15| has a local minimum at
x = – 15.
(vii) For = 1, there does not exist any > 0 such
that
x2
0 < |x| < – 2 < .
x 1
(viii) The function f(x) = [x] is integrable on [0, 4].
x 2 nx
(ix) For any x R, lim = x2.
n n
(x) The sequence (Sn)nN , where
1 1 1
Sn = 1 + + + .... + , is convergent.
2 3 n
BMTC-133 2
SECTION B
2. (a) Find the supremum of the set
n
n N . 3
n 1
(b) Check whether the sequence
n2 – n is monotone or not. 2
nN
3. Find the nth partial sum of the following series,
and hence check whether they are convergent or
not. 5
(i)
n 1
1
ln 1
n
(ii)
n 1
1
n(n 1)
4. Let f be a differentiable function whose
derivative never vanishes on [a, b]. Show that f is
either strictly decreasing or strictly increasing. 5
5. Show that the series
n 1
sin (n 3 x)
n3
is uniformly
convergent on [0, [ . 5
BMTC-133 3 P.T.O.
6. Let f and g be two real-valued functions defined
on [a, b] such that f is Riemann integrable and g
is differentiable with g(x) = f(x) x [a, b].
b
Then show that
a
f (x) dx = g(b) – g(a). 5
7. (a) Using the definition show that the
1
sequence is Cauchy. 3
n nN
(b) Check whether the set of integers is
countable or not. 2
BMTC-133 4
SECTION C
8. (a) Show that if f is a real-valued continuous
function defined on a closed interval [, ],
then f is Riemann integrable over [, ]. 6
x –1
(b) Let f be a function defined by f(x) = ,
x2 3
x R. Using the – definition, show that
1
f(x) whenever x 2. 4
7
9. (a) Let f : [0, 2] R be defined by
– 1, 0 x 1
f(x) = .
1, 1 x 2
Show that there is no real-valued function
defined on [0, 2] whose derivative is f. 5
(b) Check whether the sequence
–5
1 1 is convergent or not. 5
n
nN
10. (a) Find the sequence of partial sums of the
series
x
n(n 1)
n 1
, where x [0, [ . Does
the sequence converge pointwise ? Does it
converge uniformly ? Justify your answers. 5
(b) Test the absolute and conditional
convergence of the series
n 1
(– 1) n
(3n 5)
. 5
BMTC-133 5 P.T.O.
11. (a) Prove or disprove that
n
3
3n – 2n > n 2. 5
2
x2
(b) Prove that x – < ln (1 + x), x > 0. 5
2
12. (a) Show that the function f(x) = x3 is
uniformly continuous on R. 5
(b) Check whether the function f defined by
3x – 4
f(x) = , x {0, 1}, has a local
x2 – x
extrema. 5
13. (a) For any two real numbers x and y show
that |x – y| ||x| – |y||. 4
(b) Show that every convergent sequence is
bounded. Is the converse true ? Justify your
answer. 6
14. (a) Find the primitive of tan–1 x and evaluate
1
the integral
0
tan – 1 x . 5
(b) State and prove Bolzano-Weierstrass
Theorem. 5
BMTC-133 6
~r.E_.Q>r.gr.-133
{dkmZ ñZmVH$ (gm_mÝ`)
(~r.Eg.gr.Or. / ~r.E.Or.)
gÌm§V narjm
OyZ, 2022
~r.E_.Q>r.gr.-133 : dmñV{dH$ {díbofU
g_` : 3 KÊQ>o A{YH$V_ A§H$ : 100
ZmoQ> : Bg àíZ-nÌ _| VrZ ^mJ h¢ — H$, I Am¡a J & ^mJ H$ Am¡a
^mJ I Ho$ g^r àíZ A{Zdm`© h¢ & ^mJ J _| gmV àíZm| _|
go H$moB© nm±M àíZ H$s{OE & H¡$ëHw$boQ>am| Ho$ à`moJ H$aZo H$s
AZw_{V Zht h¡ &
^mJ> H$
1. ~VmBE {H$ {ZåZ{b{IV H$WZ gË` h¢ `m AgË` & AnZo
CÎma Ho$ nj _| bKw Cnn{Îm `m à{V-CXmhaU Xr{OE & 102=20
(i) N go Q [0, 1] na H$moB© EH¡$H$s-AmÀN>mXZ Zht h¡ &
(ii) àË`oH$ n[a{_V g_wƒ` H$m Aä`§Va [aº$ hmoVm h¡ &
(iii) àË`oH$ dmñV{dH$ _mZ \$bZ f Ho$ àm§V _| EH$ q~Xþ x
Eogm hmoVm h¡ {H$ f(x) = x hmo &
(iv) `{X EH$ AZwH«$_ n[a~Õ h¡, Vmo BgHo$ H$_-go-H$_ Xmo
A{^gmar CnAZwH«$_ hmoVo h¢ &
BMTC-133 7 P.T.O.
1 1 1 1
(v) loUr – + – + ... EH$ A{^gmar loUr
3 7 11 15
h¡ &
(vi) f(x) = |x + 15| Ûmam R na n[a^m{fV \$bZ f H$m
x = – 15 na ñWmZr` {ZpåZîR> h¡ &
(vii) =1 Ho$ {bE Eogm H$moB© ^r >0 H$m ApñVËd Zht
h¡ {OgHo$ {bE
x2
0 < |x| < –2 < hmoVm hmo &
x 1
(viii) \$bZ f(x) = [x], [0, 4] na g_mH$bZr` h¡ &
x 2 nx
(ix) {H$gr ^r xR Ho$ {bE, lim = x2
n n
h¡ &
(x) AZwH«$_ (Sn)nN , Ohm±
1 1 1
Sn = 1 + + + .... + , A{^gmar h¡ &
2 3 n
BMTC-133 8
^mJ> I
n
2. (H$) g_wƒ` n N H$m Ý`yZV_ Cn[a
n 1
n[a~§Y kmV H$s{OE & 3
(I) Om±M H$s{OE {H$ AZwH«$_ n2 – n
nN
EH${XîQ> h¡ `m Zht & 2
3. {ZåZ{b{IV lo{U`m| Ho$ nd| Am§{eH$ `moJ\$b kmV H$s{OE,
Am¡a Bg àH$ma Om±M H$s{OE {H$ `o A{^gmar h¢ `m Zht & 5
(i)
n 1
1
ln 1
n
(ii)
n 1
1
n(n 1)
4. _mZ br{OE f EH$ AdH$bZr` \$bZ h¡ {OgH$m AdH$bO
[a, b] na H$ht ^r eyÝ` Zht h¡ & {XImBE {H$ f `m Vmo {Za§Va
õmg_mZ h¡ `m {Za§Va dY©_mZ h¡ & 5
5. {XImBE {H$ loUr
n 1
sin (n 3 x)
n3
, [0, [ na EH$g_mZV:
A{^gmar h¡ & 5
BMTC-133 9 P.T.O.
6. _mZ br{OE f Am¡a g, [a, b] na n[a^m{fV Xmo dmñV{dH$-_mZ
\$bZ Bg àH$ma h¢ {H$ f ar_mZ g_mH$bZr` h¡ Am¡a g
AdH$bZr` h¡ Am¡a g^r x [a, b] Ho$ {bE g(x) = f(x)
b
h¡ & V~ {XImBE {H$
a
f (x) dx = g(b) – g(a). 5
7. (H$) n[a^mfm H$m à`moJ H$aHo$ {XImBE {H$ AZwH«$_
1
H$m°er h¡ & 3
n nN
(I) Om±M H$s{OE {H$ nyUmªH$m| H$m g_wƒ` JUZr` h¡ `m
Zht & 2
BMTC-133 10
^mJ> J
8. (H$) {XImBE {H$ `{X f EH$ g§d¥V A§Vamb [, ] na
n[a^m{fV EH$ g§VV dmñV{dH$-_mZ \$bZ h¡, Vmo f,
[, ] na ar_mZ g_mH$bZr` h¡ & 6
x –1
(I) _mZ br{OE f EH$ \$bZ h¡ Omo f(x) = ,
x2 3
xR Ûmam n[a^m{fV h¡ & – n[a^mfm H$m à`moJ
1
H$aHo$, {XImBE {H$ f(x) O~ ^r x 2 h¡ & 4
7
9. (H$) _mZ br{OE f : [0, 2] R {ZåZ àH$ma go
n[a^m{fV h¡ :
– 1, 0 x 1
f(x) =
1, 1 x 2
{XImBE {H$ [0, 2] na n[a^m{fV Eogm H$moB© ^r
dmñV{dH$-_mZ \$bZ Zht h¡ {OgH$m AdH$bO f h¡ & 5
–5
(I) Om±M H$s{OE {H$ AZwH«$_ 1 1
n
nN
A{^gmar h¡ `m Zht & 5
10. (H$) loUr
n 1
x
n(n 1)
Ho$ Am§{eH$ `moJ\$bm| H$m
AZwH«$_ kmV H$s{OE, Ohm± x [0, [ h¡ & Š`m `h
AZwH«$_ q~Xþe: A{^gaU H$aVm h¡ ? Š`m `h
EH$g_mZV: A{^gaU H$aVm h¡ ? AnZo CÎmam| H$s
nw{îQ> H$s{OE & 5
(I) loUr n 1
(– 1) n
(3n 5)
Ho$ {Zanoj A{^gaU d
gà{V~§Y A{^gaU H$s Om±M H$s{OE & 5
BMTC-133 11 P.T.O.
11. (H$) {gÕ `m A{gÕ H$s{OE {H$ : 5
n
3
3n – 2n > n 2
2
(I) {gÕ H$s{OE {H$ g^r x > 0 Ho$ {bE,
2
x
x– < ln (1 + x) h¡ & 5
2
12. (H$) {XImBE {H$ \$bZ f(x) = x3, R na EH$g_mZV:
g§VV h¡ & 5
3x – 4
(I) Om±M H$s{OE {H$ f(x) = , x {0, 1}, Ûmam
x2 – x
n[a^m{fV \$bZ f Ho$ ñWmZr` Ma_ _mZ h¢ `m Zht & 5
13. (H$) H$moB© ^r Xmo dmñV{dH$ g§»`mAm| x Am¡a y Ho$ {bE,
{XImBE {H$ |x – y| ||x| – |y|| hmoVm h¡ & 4
(I) {XImBE {H$ àË`oH$ A{^gmar AZwH«$_ n[a~Õ hmoVm
h¡ & Š`m BgH$m {dbmo_ ^r gË` h¡ ? AnZo CÎma H$s
nw{îQ> H$s{OE & 6
14. (H$) tan–1 x H$m nyd©J kmV H$s{OE Am¡a g_mH$b
1
0
tan – 1 x H$m _mZ kmV H$s{OE & 5
(I) ~moëOmZmo-dm`ñQ´>m©g à_o` H$m H$WZ Xr{OE Am¡a Bgo
{gÕ H$s{OE & 5
BMTC-133 12