0% found this document useful (0 votes)
82 views12 pages

BMTC 133

This document contains a 12 page examination question paper for Real Analysis with 3 sections - A, B and C. Section A contains 10 true/false questions with short justifications. Section B contains 5 numerical questions. Section C contains 7 open-ended questions where students must show working or proofs. The paper tests concepts related to sequences, series, limits, functions, integrals and other topics in real analysis.

Uploaded by

rahulinstiverse
Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content, claim it here.
Available Formats
Download as PDF, TXT or read online on Scribd
0% found this document useful (0 votes)
82 views12 pages

BMTC 133

This document contains a 12 page examination question paper for Real Analysis with 3 sections - A, B and C. Section A contains 10 true/false questions with short justifications. Section B contains 5 numerical questions. Section C contains 7 open-ended questions where students must show working or proofs. The paper tests concepts related to sequences, series, limits, functions, integrals and other topics in real analysis.

Uploaded by

rahulinstiverse
Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content, claim it here.
Available Formats
Download as PDF, TXT or read online on Scribd
You are on page 1/ 12

No.

of Printed Pages : 12 BMTC-133

BACHELOR OF SCIENCE (GENERAL)


(BSCG/BAG)
Term-End Examination
June, 2022

BMTC-133 : REAL ANALYSIS

Time : 3 hours Maximum Marks : 100


Note : The question paper has three sections – A, B and C.
All questions in Section A and Section B are
compulsory. In Section C, do any five questions
out of seven questions. Use of calculators is not
allowed.

SECTION A

1. State whether the following statements are True


or False. Give a short proof or a counter-example
in support of your answer. 102=20

(i) There is no bijection from N to Q  [0, 1].

(ii) Every finite set has empty interior.

(iii) Every real valued function f has a point x in


its domain such that f(x) = x.

(iv) If a sequence is bounded, then it has at least


two convergent subsequences.

BMTC-133 1 P.T.O.
1 1 1 1
(v) The series – + – + ... is a
3 7 11 15
convergent series.

(vi) The function f defined on R by


f(x) = |x + 15| has a local minimum at
x = – 15.

(vii) For  = 1, there does not exist any  > 0 such


that
x2
0 < |x| <   – 2 < .
x 1

(viii) The function f(x) = [x] is integrable on [0, 4].

x 2  nx
(ix) For any x  R, lim = x2.
n n

(x) The sequence (Sn)nN , where

1 1 1
Sn = 1 + + + .... + , is convergent.
2 3 n

BMTC-133 2
SECTION B

2. (a) Find the supremum of the set



 n 

 n  N . 3
n  1
 

(b) Check whether the sequence


 n2 – n  is monotone or not. 2
 
  nN

3. Find the nth partial sum of the following series,


and hence check whether they are convergent or
not. 5


(i)
 n 1


1
ln  1  
n


(ii)
 n 1
1
n(n  1)

4. Let f be a differentiable function whose


derivative never vanishes on [a, b]. Show that f is
either strictly decreasing or strictly increasing. 5


5. Show that the series

n 1
sin (n 3 x)
n3
is uniformly

convergent on [0, [ . 5

BMTC-133 3 P.T.O.
6. Let f and g be two real-valued functions defined
on [a, b] such that f is Riemann integrable and g
is differentiable with g(x) = f(x)  x  [a, b].
b

Then show that



a
f (x) dx = g(b) – g(a). 5

7. (a) Using the definition show that the


 1 
sequence   is Cauchy. 3
 n  nN

(b) Check whether the set of integers is


countable or not. 2

BMTC-133 4
SECTION C
8. (a) Show that if f is a real-valued continuous
function defined on a closed interval [, ],
then f is Riemann integrable over [, ]. 6
x –1
(b) Let f be a function defined by f(x) = ,
x2  3
x  R. Using the  –  definition, show that
1
f(x)  whenever x  2. 4
7

9. (a) Let f : [0, 2]  R be defined by


– 1, 0  x  1
f(x) =  .
 1, 1  x  2
Show that there is no real-valued function
defined on [0, 2] whose derivative is f. 5

(b) Check whether the sequence


 –5 
  1  1   is convergent or not. 5
 n 
  nN

10. (a) Find the sequence of partial sums of the



series
 x
n(n  1)
n 1
, where x  [0, [ . Does

the sequence converge pointwise ? Does it


converge uniformly ? Justify your answers. 5

(b) Test the absolute and conditional



convergence of the series
n 1
(– 1) n
(3n  5)
. 5

BMTC-133 5 P.T.O.
11. (a) Prove or disprove that
n
3
3n – 2n >    n  2. 5
2

x2
(b) Prove that x – < ln (1 + x),  x > 0. 5
2

12. (a) Show that the function f(x) = x3 is


uniformly continuous on R. 5

(b) Check whether the function f defined by


3x – 4
f(x) = , x  {0, 1}, has a local
x2 – x

extrema. 5

13. (a) For any two real numbers x and y show


that |x – y|  ||x| – |y||. 4

(b) Show that every convergent sequence is


bounded. Is the converse true ? Justify your
answer. 6

14. (a) Find the primitive of tan–1 x and evaluate


1

the integral

0
tan – 1 x . 5

(b) State and prove Bolzano-Weierstrass


Theorem. 5

BMTC-133 6
~r.E_.Q>r.gr.-133

{dkmZ ñZmVH$ (gm_mÝ`)


(~r.Eg.gr.Or. / ~r.E.Or.)
gÌm§V narjm
OyZ, 2022

~r.E_.Q>r.gr.-133 : dmñV{dH$ {díbofU


g_` : 3 KÊQ>o A{YH$V_ A§H$ : 100
ZmoQ> : Bg àíZ-nÌ _| VrZ ^mJ h¢ — H$, I Am¡a J & ^mJ H$ Am¡a
^mJ I Ho$ g^r àíZ A{Zdm`© h¢ & ^mJ J _| gmV àíZm| _|
go H$moB© nm±M àíZ H$s{OE & H¡$ëHw$boQ>am| Ho$ à`moJ H$aZo H$s
AZw_{V Zht h¡ &

^mJ> H$
1. ~VmBE {H$ {ZåZ{b{IV H$WZ gË` h¢ `m AgË` & AnZo
CÎma Ho$ nj _| bKw Cnn{Îm `m à{V-CXmhaU Xr{OE & 102=20
(i) N go Q  [0, 1] na H$moB© EH¡$H$s-AmÀN>mXZ Zht h¡ &
(ii) àË`oH$ n[a{_V g_wƒ` H$m Aä`§Va [aº$ hmoVm h¡ &
(iii) àË`oH$ dmñV{dH$ _mZ \$bZ f Ho$ àm§V _| EH$ q~Xþ x
Eogm hmoVm h¡ {H$ f(x) = x hmo &
(iv) `{X EH$ AZwH«$_ n[a~Õ h¡, Vmo BgHo$ H$_-go-H$_ Xmo
A{^gmar CnAZwH«$_ hmoVo h¢ &
BMTC-133 7 P.T.O.
1 1 1 1
(v) loUr – + – + ... EH$ A{^gmar loUr
3 7 11 15
h¡ &

(vi) f(x) = |x + 15| Ûmam R na n[a^m{fV \$bZ f H$m


x = – 15 na ñWmZr` {ZpåZîR> h¡ &

(vii) =1 Ho$ {bE Eogm H$moB© ^r >0 H$m ApñVËd Zht
h¡ {OgHo$ {bE
x2
0 < |x| <   –2 < hmoVm hmo &
x 1

(viii) \$bZ f(x) = [x], [0, 4] na g_mH$bZr` h¡ &

x 2  nx
(ix) {H$gr ^r xR Ho$ {bE, lim = x2
n n

h¡ &

(x) AZwH«$_ (Sn)nN , Ohm±

1 1 1
Sn = 1 + + + .... + , A{^gmar h¡ &
2 3 n

BMTC-133 8
^mJ> I


 n 

2. (H$) g_wƒ`  n  N H$m Ý`yZV_ Cn[a
n  1
 

n[a~§Y kmV H$s{OE & 3

(I) Om±M H$s{OE {H$ AZwH«$_  n2 – n 



  nN
EH${XîQ> h¡ `m Zht & 2

3. {ZåZ{b{IV lo{U`m| Ho$ nd| Am§{eH$ `moJ\$b kmV H$s{OE,


Am¡a Bg àH$ma Om±M H$s{OE {H$ `o A{^gmar h¢ `m Zht & 5


(i)

n 1


1
ln  1  
n


(ii)

n 1
1
n(n  1)

4. _mZ br{OE f EH$ AdH$bZr` \$bZ h¡ {OgH$m AdH$bO


[a, b] na H$ht ^r eyÝ` Zht h¡ & {XImBE {H$ f `m Vmo {Za§Va
õmg_mZ h¡ `m {Za§Va dY©_mZ h¡ & 5


5. {XImBE {H$ loUr 
n 1
sin (n 3 x)
n3
, [0, [ na EH$g_mZV:

A{^gmar h¡ & 5

BMTC-133 9 P.T.O.
6. _mZ br{OE f Am¡a g, [a, b] na n[a^m{fV Xmo dmñV{dH$-_mZ
\$bZ Bg àH$ma h¢ {H$ f ar_mZ g_mH$bZr` h¡ Am¡a g
AdH$bZr` h¡ Am¡a g^r x  [a, b] Ho$ {bE g(x) = f(x)
b

h¡ & V~ {XImBE {H$



a
f (x) dx = g(b) – g(a). 5

7. (H$) n[a^mfm H$m à`moJ H$aHo$ {XImBE {H$ AZwH«$_


 1 
  H$m°er h¡ & 3
 n  nN

(I) Om±M H$s{OE {H$ nyUmªH$m| H$m g_wƒ` JUZr` h¡ `m


Zht & 2

BMTC-133 10
^mJ> J
8. (H$) {XImBE {H$ `{X f EH$ g§d¥V A§Vamb [, ] na
n[a^m{fV EH$ g§VV dmñV{dH$-_mZ \$bZ h¡, Vmo f,
[, ] na ar_mZ g_mH$bZr` h¡ & 6
x –1
(I) _mZ br{OE f EH$ \$bZ h¡ Omo f(x) = ,
x2  3
xR Ûmam n[a^m{fV h¡ & – n[a^mfm H$m à`moJ
1
H$aHo$, {XImBE {H$ f(x)  O~ ^r x  2 h¡ & 4
7
9. (H$) _mZ br{OE f : [0, 2]  R {ZåZ àH$ma go
n[a^m{fV h¡ :
– 1, 0  x  1
f(x) = 
 1, 1  x  2
{XImBE {H$ [0, 2] na n[a^m{fV Eogm H$moB© ^r
dmñV{dH$-_mZ \$bZ Zht h¡ {OgH$m AdH$bO f h¡ & 5
 –5 
(I) Om±M H$s{OE {H$ AZwH«$_   1  1  
 n 
  nN
A{^gmar h¡ `m Zht & 5

10. (H$) loUr 
n 1
x
n(n  1)
Ho$ Am§{eH$ `moJ\$bm| H$m

AZwH«$_ kmV H$s{OE, Ohm± x  [0, [ h¡ & Š`m `h


AZwH«$_ q~Xþe: A{^gaU H$aVm h¡ ? Š`m `h
EH$g_mZV: A{^gaU H$aVm h¡ ? AnZo CÎmam| H$s
nw{îQ> H$s{OE & 5

(I) loUr n 1
(– 1) n
(3n  5)
Ho$ {Zanoj A{^gaU d

gà{V~§Y A{^gaU H$s Om±M H$s{OE & 5

BMTC-133 11 P.T.O.
11. (H$) {gÕ `m A{gÕ H$s{OE {H$ : 5
n
3
3n – 2n >    n  2
2

(I) {gÕ H$s{OE {H$ g^r x > 0 Ho$ {bE,


2
x
x– < ln (1 + x) h¡ & 5
2

12. (H$) {XImBE {H$ \$bZ f(x) = x3, R na EH$g_mZV:


g§VV h¡ & 5

3x – 4
(I) Om±M H$s{OE {H$ f(x) = , x  {0, 1}, Ûmam
x2 – x
n[a^m{fV \$bZ f Ho$ ñWmZr` Ma_ _mZ h¢ `m Zht & 5

13. (H$) H$moB© ^r Xmo dmñV{dH$ g§»`mAm| x Am¡a y Ho$ {bE,


{XImBE {H$ |x – y|  ||x| – |y|| hmoVm h¡ & 4

(I) {XImBE {H$ àË`oH$ A{^gmar AZwH«$_ n[a~Õ hmoVm


h¡ & Š`m BgH$m {dbmo_ ^r gË` h¡ ? AnZo CÎma H$s
nw{îQ> H$s{OE & 6

14. (H$) tan–1 x H$m nyd©J kmV H$s{OE Am¡a g_mH$b


1


0
tan – 1 x H$m _mZ kmV H$s{OE & 5

(I) ~moëOmZmo-dm`ñQ´>m©g à_o` H$m H$WZ Xr{OE Am¡a Bgo


{gÕ H$s{OE & 5

BMTC-133 12

You might also like