0% found this document useful (0 votes)
78 views13 pages

HA17558 HitachiSemiconductor

Uploaded by

SD Bappi
Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content, claim it here.
Available Formats
Download as PDF, TXT or read online on Scribd
0% found this document useful (0 votes)
78 views13 pages

HA17558 HitachiSemiconductor

Uploaded by

SD Bappi
Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content, claim it here.
Available Formats
Download as PDF, TXT or read online on Scribd
You are on page 1/ 13

HA17558 Serise

Dual Operational Amplifier

Description

HA17558 is dual operational amplifiers which provides internal frequency compensation and high
performance. It can be applied widely to measuring control equipment and to general Use. The two
amplifiers share a common bias network and power supply leads.

Features

• High voltage Gain: 104dB (Typ)


• High speed: 1V/µs
• Continuous short-circuit protection
• Low-noise operational amplifiers
• Internal frequency compensation

Ordering Information
Type No. Application Package
HA17558FP Industrial use FP-8D
HA17558F Commercial use FP-8D
HA17558 Commercial use DP-8
HA17558PS Industrial use DP-8
HA17558 Serise

Pin Arrangement

Vout1 1 8 VCC
1
– +
Vin(–)1 2 7 Vout2
2
+ –
Vin(+)1 3 6 Vin(–)2

VEE 4 5 Vin(+)2

(Top View)

Circuit Schematic (1/2)

VCC

Vin(+)

Vin(–)

Vout

to VCC

VEE

2
HA17558 Serise

Absolute Maximum Ratings (Ta = 25°C)


Ratings
HA17558 HA17558 HA17558 HA17558
Item Symbol PS F FP Unit
Supply voltage VCC +18 +18 +18 +18 V
VEE –18 –18 –18 –18 V
Differential input voltage VIN (diff) ±30 ±30 ±30 ±30 V
Common-mode input voltage VCM* 3
±15 ±15 ±15 ±15 V
1 1 2 2
Power dissipation PT 670* 670* 385* 385* mW
Operating temperature Topr –20 to –20 to –20 to –20 to –20 to
+75 +75 +75 +75 +75
Storage temperature Tstg –55 to –55 to –55 to –55 to °C
+125 +125 +125 +125
Notes: 1. These are the allowable values up to Ta = 45 °C. Derate by 8.3mW/°C above that temperature.
2. These are the allowable values up to Ta = 31 °C mounting on 30% wiring density glass epoxy
board. Derate by 7.14mW/°C above that temperature.
3. If the supply voltage is less than ±15V, input voltage should be less than supply voltage.

Electrical Characteristics (Ta = 25°C, VCC = +15V, VEE = –15V)


Item Symbol Min Typ Max Unit Test conditions
Input offset voltage VIO — 0.5 6 mV RS ≤ 10kΩ
Input offset current I IO — 5 200 nA
Input bias current I IB — 50 500 nA
Voltage gain AVD 86 104 — dB RL ≥ 2kΩ, VO = ±10V
Maximum output voltage Vop-p ±12 ±14 — V RL ≥ 10kΩ
Maximum output voltage Vop-p ±10 ±12.4 — V RL ≥ 2kΩ
Common mode input voltage VCM ±12 ±14 — V
range
Common mode rejection ratio CMR 70 100 — dB RS ≤ 10kΩ
Supply voltage rejection ratio PSRR — 10 150 µV/V RS ≤ 10kΩ
Power dissipation Pd — 90 170 mW 2-channel, No load
Slew rate SR — 1.0 — V/µs AVD = 1
Equivalent input noise voltage VNI — 6 — µVp-p RS = 1kΩ, f = 1HZ to 1kHZ
Channel separation CS — 105 — dB f = 1kHz

3
HA17558 Serise

Characteristic Curves

Open Loop Voltage Gain vs. Frequency Maximum Output Voltage vs. Frequency
Open Loop Voltage Gain AV(OL) (dB)

Maximum Output Voltage VOP-P (V)


120 36
VCC = 15 V VCC = 15 V
32
100 VEE = –15 V VEE = –15 V
RL = 2 kΩ 28 RL = 2 kΩ
80 24
20
60
16
40 12
8
20
4
0 0
1 10 100 1 k 10 k 100 k 1 M 10 M 100 1k 10 k 100 k 1M
Frequency f (Hz) Frequency f (Hz)

Power Supply Rejection Ratio Voltage Gain vs. Ambient Temperature


vs. Ambient Temperature
Power Supply Rejection Ratio PSRR (dB)

120 130
VCC = 15 V VCC = 15 V
VEE = –15 V VEE = –15 V
110 120
Voltage Gain AVD (dB)

100 110

90 100

80 90

70 80
–20 0 20 40 60 80 –20 0 20 40 60 80
Ambient Temperature Ta (°C) Ambient Temperature Ta (°C)

4
HA17558 Serise

Power Supply Rejection Ratio vs. Frequency

120

Power Supply Rejection Ratio PSRR (dB)


VCC = 15 V
VEE = –15 V
100

80

60

40

20

0
100 300 1k 3k 10 k 30 k 100 k 300 k 1M
Frequency f (Hz)

Common-mode Rejection Ratio vs. Frequency

120
Common–mode Rejection Ratio CMR (dB)

VCC = 15 V
VEE = –15 V
100 Ta = 25°C
RL = ∞

80

60

40

20

0
100 300 1k 3k 10 k 30 k 100 k 300 k 1M
Frequency f (Hz)

5
HA17558 Serise

Maximum Output Voltage


Transient Response vs. Ambient Temperature
10 40

Maximum Output Voltage VOP-P (VP-P)


VCC = 15 V VCC = 15 V
VEE = –15 V VEE = –15 V
Output Voltage VO (V)

RL = 2 kΩ
5 32

0 24

–5 16

–10 8
0 10 20 30 40
Time t (µs)
0
–20 0 20 40 60 80
Ambient Temperature Ta (°C)

Power Dissipation vs. Ambient Temperature Maximum Output Voltage vs. Load Resistance

100 30
Maximum Output Voltage VOP-P (VP-P)

VCC = 15 V
VEE = –15 V
Power Dissipation Pd (mW)

90 RL = ∞ 25

VCC = 15 V
80 20 VEE = –15 V
f = 1 kHz

70 15

10
60

5
50 100 200 500 1k 2k 5k 10 k
–20 0 20 40 60 80
Load Resistance RL (Ω)
Ambient Temperature Ta (°C)

6
HA17558 Serise

Common-mode Input Voltage vs.


Supply Current vs. Supply Voltage
Supply Voltage
5 20
RL = ∞

Common-mode Input Voltage VCM (V)


Supply Current ICC (mA)

4
10

0
2

1 –10

0
±4 ±6 ±9 ±12 ±15 ±18
–20
Supply Voltage VCC, VEE (V) ±4 ±8 ±12 ±16 ±18
Supply Voltage VCC, VEE (V)

Input Bias Current vs. Ambient Temperature


100
VCC = 15 V Slew Rate vs. Supply Voltage
VEE = –15 V 1.2
Input Bias Current IIB (nA)

80
Slew Rate SR (V/µs)

1.0
60

0.8
f = 1 kHz
40
RL = 2 kΩ
0.6 CL = 100 pF
20 Ta = 25°C
AV = 1
0.4
±4 ±6 ±9 ±12 ±15 ±18
0
–20 0 20 40 60 80 Supply Voltage VCC, VEE (V)
Ambient Temperature Ta (°C)

7
HA17558 Serise

Input Offset Current vs. Ambient Temperature


40 Input Offset Voltage vs. Supply Voltage
VCC = 15 V
VEE = –15 V 4
Input Offset Current IIO (nA)

Input Offset Voltage VIO (mV)


20

2
0

0
–20

–2
–40

–4
–4 –6 –9 –12 –15 –18
–20 0 20 40 60 80
Supply Voltage VCC, VEE (V)
Ambient Temperature Ta (°C)

Slew Rate vs. Ambient Temperature


Voltage Gain vs. Supply Voltage 1.4
120 VCC = 15 V
VEE = –15 V
1.2 RL = 2 kΩ
Voltage Gain AVD (dB)

Slew Rate SR (V/µs)

100 CL = 100 pF
f = 10 Hz AV = 1
1.0
RL = 2 kΩ
80
0.8
60
0.6

40
–4 –6 –9 –12 –15 –18 0.4
Supply Voltage VCC, VEE (V) –20 0 20 40 60 80
Ambient Temperature Ta (°C)

8
HA17558 Serise

Output Short Current vs. Ambient Temperature


60
VCC = 15 V

Output Short Current IOS (mA)


VEE = –15 V
50

Sink
40

30
Source

20

10
–20 0 20 40 60 80
Ambient Temperature Ta (°C)

Input Noise Voltage vs. Frequency


100
RS = 100 Ω
Hz)
Input Noise Voltage VNI (nV/√

30

10

1
10 30 100 300 1k 3k 10 k
Frequency f (Hz)

9
HA17558 Serise

Common-mode Rejection Ratio


Input Offset Voltage vs. Ambient Temperature vs. Ambient Temperature

Common-mode Rejection Ratio CMR (dB)


140
VCC = 15 V VCC = 15 V
4 VEE = –15 V VEE = –15 V
Input Offset Voltage VIO (mA)

120
2
100
0
80
–2
60
–4
40
–20 0 20 40 60 80 –20 0 20 40 60 80
Ambient Temperature Ta (°C) Ambient Temperature Ta (°C)

10
HA17558 Serise

Circuit Example

RIAA Pre-amplifier
+15 V
0.0022 µF 0.01 µF

+
100 µF

36 kΩ 390 kΩ

– 33 µF
Otuput
Input 2.2 kΩ 33 µF HA17558
+

+ 10 kΩ
47 µF

56 kΩ
1 kΩ –
100 µF
+
–15 V

T.H.D. vs. Output Voltage (RIAA Pre-Amp) T.H.D. vs. Output Voltage (RIAA Pre–Amp)
1.0 60
VCC = 15 V
VEE = –15 V
0.3 50
Voltage Gain AVD (dB)

0.1 40
20 kHz
T.H.D (%)

0.03 30

10 kHz
0.01 20
1 kHz

0.003 10
20 kHz

0.001 0
0.01 0.03 0.1 0.3 1.0 3 10 10 30 100 300 1k 3k 10 k 30 k 100 k
Output Voltage (Vrms) Frequency f (Vrms)

11
HA17558 Serise

Package Dimensions

Unit: mm

9.6
10.6 Max
8 5

7.4 Max
6.3
1 4
0.89 1.3

1.27 Max 2.54 Min 5.06 Max 7.62


0.1 Min

+ 0.10
0.25 – 0.05

2.54 ± 0.25 0.48 ± 0.10 0° – 15°

Hitachi Code DP-8


JEDEC Conforms
EIAJ Conforms
Mass (reference value) 0.54 g

Unit: mm

4.85
5.25 Max
8 5
4.4

1 4
*0.22 ± 0.05
0.20 ± 0.04
2.03 Max

6.50 +– 0.15
0.25
0.75 Max
1.05

0° – 8°
0.10 ± 0.10

1.27 0.60 +– 0.18


0.25

*0.42 ± 0.08
0.40 ± 0.06
0.15

0.12 M
Hitachi Code FP-8D
JEDEC —
*Dimension including the plating thickness EIAJ Conforms
Base material dimension Mass (reference value) 0.10 g

12
HA17558 Serise

Cautions

1. Hitachi neither warrants nor grants licenses of any rights of Hitachi’s or any third party’s patent,
copyright, trademark, or other intellectual property rights for information contained in this document.
Hitachi bears no responsibility for problems that may arise with third party’s rights, including
intellectual property rights, in connection with use of the information contained in this document.
2. Products and product specifications may be subject to change without notice. Confirm that you have
received the latest product standards or specifications before final design, purchase or use.
3. Hitachi makes every attempt to ensure that its products are of high quality and reliability. However,
contact Hitachi’s sales office before using the product in an application that demands especially high
quality and reliability or where its failure or malfunction may directly threaten human life or cause risk
of bodily injury, such as aerospace, aeronautics, nuclear power, combustion control, transportation,
traffic, safety equipment or medical equipment for life support.
4. Design your application so that the product is used within the ranges guaranteed by Hitachi particularly
for maximum rating, operating supply voltage range, heat radiation characteristics, installation
conditions and other characteristics. Hitachi bears no responsibility for failure or damage when used
beyond the guaranteed ranges. Even within the guaranteed ranges, consider normally foreseeable
failure rates or failure modes in semiconductor devices and employ systemic measures such as fail-
safes, so that the equipment incorporating Hitachi product does not cause bodily injury, fire or other
consequential damage due to operation of the Hitachi product.
5. This product is not designed to be radiation resistant.
6. No one is permitted to reproduce or duplicate, in any form, the whole or part of this document without
written approval from Hitachi.
7. Contact Hitachi’s sales office for any questions regarding this document or Hitachi semiconductor
products.

Hitachi, Ltd.
Semiconductor & Integrated Circuits.
Nippon Bldg., 2-6-2, Ohte-machi, Chiyoda-ku, Tokyo 100-0004, Japan
Tel: Tokyo (03) 3270-2111 Fax: (03) 3270-5109
URL NorthAmerica : http:semiconductor.hitachi.com/
Europe : http://www.hitachi-eu.com/hel/ecg
Asia (Singapore) : http://www.has.hitachi.com.sg/grp3/sicd/index.htm
Asia (Taiwan) : http://www.hitachi.com.tw/E/Product/SICD_Frame.htm
Asia (HongKong) : http://www.hitachi.com.hk/eng/bo/grp3/index.htm
Japan : http://www.hitachi.co.jp/Sicd/indx.htm
For further information write to:
Hitachi Semiconductor Hitachi Europe GmbH Hitachi Asia Pte. Ltd. Hitachi Asia (Hong Kong) Ltd.
(America) Inc. Electronic components Group 16 Collyer Quay #20-00 Group III (Electronic Components)
179 East Tasman Drive, Dornacher Straβe 3 Hitachi Tower 7/F., North Tower, World Finance Centre,
San Jose,CA 95134 D-85622 Feldkirchen, Munich Singapore 049318 Harbour City, Canton Road, Tsim Sha Tsui,
Tel: <1> (408) 433-1990 Germany Tel: 535-2100 Kowloon, Hong Kong
Fax: <1>(408) 433-0223 Tel: <49> (89) 9 9180-0 Fax: 535-1533 Tel: <852> (2) 735 9218
Fax: <49> (89) 9 29 30 00 Fax: <852> (2) 730 0281
Hitachi Europe Ltd. Hitachi Asia Ltd. Telex: 40815 HITEC HX
Electronic Components Group. Taipei Branch Office
Whitebrook Park 3F, Hung Kuo Building. No.167,
Lower Cookham Road Tun-Hwa North Road, Taipei (105)
Maidenhead Tel: <886> (2) 2718-3666
Berkshire SL6 8YA, United Kingdom Fax: <886> (2) 2718-8180
Tel: <44> (1628) 585000
Fax: <44> (1628) 778322
Copyright ' Hitachi, Ltd., 1998. All rights reserved. Printed in Japan.

13

You might also like