V832TM 32-Bit Microprocessor Data Sheet
V832TM 32-Bit Microprocessor Data Sheet
µPD705102
V832TM
32-BIT MICROPROCESSOR
DESCRIPTION
The µPD705102 (V832) is a 32-bit RISC microprocessor for embedded control applications, with a high-
performance 32-bit V830TM processor core and many peripheral functions such as a SDRAM/ROM controller, 4-
channel DMA controller, real-time pulse unit, serial interface, interrupt controller, and power management.
In addition to high interrupt response speed and optimized pipeline structure, the V832 offers sum-of-products
operation instructions, concatenated shift instructions, and high-speed branch instructions to realize multimedia
functions, and therefore can provide high performance in multimedia systems such as Internet/intra-net systems, car
navigation systems, digital still cameras, and color faxes.
Detailed function descriptions are provided in the following user’s manuals. Be sure to read them before
designing.
V832 User’s Manual — Hardware: U13577E
V830 FamilyTM User’s Manual — Architecture: U12496E
FEATURES
• CPU function • DMA controller: 4 channels
• V830-compatible instructions • Serial interface function
• Instruction cache: 4 Kbytes • Asynchronous serial interface (UART): 1 channel
• Instruction RAM: 4 Kbytes • Clocked serial interface (CSI): 1 channel
• Data cache: 4 Kbytes • Dedicated baud rate generator (BRG): 1 channel
• Data RAM: 4 Kbytes • Timer/counter function
• Minimum number of instruction • 16-bit timer/event counter: 1 channel
execution cycles: 1 cycle • 16-bit interval timer: 1 channel
• Number of general purpose • Port function: 21 I/O ports
registers: 32 bits × 32 • Clock generation function: PLL clock synthesizer (6× or
• Memory space and I/O space: 4 Gbytes each 8× multiplication)
• Interrupt/exception processing function • Standby function: HALT, STOP, and power manage-
• Non-maskable: External input: 1 ment modes
• Maskable: External input: 8 (of which 4 are • Debug function
multiplexed with • Debug-dedicated synchronous serial
internal sources) interface: 1 channel
Internal source: 11 types • Trace-dedicated interface: 1 channel
• Bus control function
• Wait control function
• Memory access control function
The information in this document is subject to change without notice. Before using this document, please
confirm that this is the latest version.
Not all devices/types available in every country. Please check with local NEC representative for availability
and additional information.
ORDERING INFORMATION
GND_O
GND_O
GND_O
GND_I
GND_I
VDD_O
VDD_O
VDD_O
VDD_O
VDD_I
D31
D30
D29
D28
D27
D26
D25
D24
D23
D22
D21
D20
D19
D18
D17
D16
D15
D14
D13
D12
D11
D10
D9
D8
D7
D6
D5
D4
D3
D2
160
159
158
157
156
155
154
153
152
151
150
149
148
147
146
145
144
143
142
141
140
139
138
137
136
135
134
133
132
131
130
129
128
127
126
125
124
123
122
121
GND_O 1 120 VDD_I
CS1 2 119 D1
CS0 3 118 D0
WE 4 117 GND_O
RAS 5 116 VDD_O
UUDQM 6 115 MRD
ULDQM 7 114 MWR
LUDQM 8 113 LLBEN
LLDQM 9 112 LUBEN
VDD_O 10 111 ULBEN
GND_O 11 110 UUBEN
SDCLKOUT 12 109 IOWR
CKE 13 108 IORD
CAS 14 107 BCYST
A1 15 106 READY
A2 16 105 R/W
A3 17 104 HLDRQ
A4 18 103 HLDAK
VDD_I 19 102 GND_O
GND_I 20 101 VDD_O
VDD_O 21 100 CS2
GND_O 22 99 CS3
A5 23 98 CS4
A6 24 97 CS5
A7 25 96 CS6
A8 26 95 CS7
A9 27 94 TC/STOPAK
A10 28 93 PORTA1/DMAAK0
A11 29 92 PORTA3/DMAAK1
VDD_O 30 91 PORTA5/DMAAK2
GND_O 31 90 PORTA7/DMAAK3
A12 32 89 PORTA0/DMARQ0
A13 33 88 PORTA2/DMARQ1
A14 34 87 PORTA4/DMARQ2
A15 35 86 PORTA6/DMARQ3
A16 36 85 PORTB7/INTP03
A17 37 84 PORTB6/INTP02
A18 38 83 PORTB4/INTP01
A19 39 82 PORTB2/INTP00
VDD_O 40 81 GND_I
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
GND_O
A20
A21
A22
A23
CLKOUT
TRCDATA0
TRCDATA1
TRCDATA2
TRCDATA3
DDI
DCK
DMS
DDO
VDD_PLL
X1
X2
GND_PLL
VDD_I
GND_I
IC1
BT16B
RESET
NMI
DRST
CMODE
PORT3/RXD
PORT4/TXD
PORT2/SI
PORT1/SO
PORT0/SCLK
VDD_O
GND_O
INTP10/TO10
INTP12/TO11
PORTB5/INTP11
PORTB3/INTP13
PORTB0/TI
PORTB1/TCLR
VDD_I
PIN NAMES
DCK R/W
DMS IOWR
DDI IORD
DCU MWR
DDO
MRD
TRCDATA3 to TRCDATA0
UUBEN, ULBEN, LUBEN, LLBEN
DRST READY
X1 BT16B
X2 BCYST
CG
CLKOUT CS7 to CS0
SDCLKOUT BCU A23 to A1
D31 to D0
RESET V830 core HLDRQ
SYU
NMI HLDAK
RAS
TI, TCLR
CAS
INTP10/TO10, RPU UUDQM, ULDQM, LUDQM, LLDQM
INTP12/TO11 CKE
WE
INTP11, INTP13 ICU STOPAK
INTP00 to INTP03 CMODE
PIO
SCLK BRG TC
SO CSI UART DMAC DMARQ3 to DMARQ0
SI DMAAK3 to DMAAK0
TXD
RXD
CONTENTS
1. PIN FUNCTIONS
(1/2)
Pin Name I/O Function Alternate Function
D0 to D31 3-state I/O Data bus —
A1 to A23 3-state output Address bus —
READY Input End of bus cycle enable —
HLDRQ Input Bus hold request —
HLDAK Output Bus hold enable —
MRD 3-state output Memory read strobe —
UUBEN Byte enable output (most significant byte: D31 to D24) —
ULBEN Byte enable output (enables second byte: D23 to D16) —
LUBEN Byte enable output (enables third byte: D15 to D8) —
LLBEN Byte enable output (enables least significant byte: D7 to D0) —
IORD I/O read strobe —
IOWR I/O write strobe —
MWR Memory write strobe —
BT16B Input CS7 space bus size setting —
BCYST 3-state output Bus cycle start output —
R/W R/W output —
RESET Input Reset input —
X1 — Crystal resonator connection (open when external clock input) —
X2 Schmitt input Crystal resonator connection/external clock input —
CLKOUT Output Bus clock output —
CMODE Input PLL multiplication factor setting (×6, ×8) —
CS2, CS7 3-state output Memory chip select output —
CS3 to CS6 Memory I/O chip select output —
STOPAK Output STOP mode report output TC
INTP10 Input Maskable interrupts TO10
INTP11 PORTB5
INTP12 TO11
INTP13 PORTB3
INTP00 PORTB2
INTP01 PORTB4
INTP02 PORTB6
INTP03 PORTB7
NMI Non-maskable interrupt —
RAS 3-state output SDRAM RAS strobe —
UUDQM DQ mask enable (most significant byte: D31 to D24) —
ULDQM DQ mask enable (second byte: D23 to D16) —
LUDQM DQ mask enable (third byte: D15 to D8) —
LLDQM DQ mask enable (least significant byte: D7 to D0) —
(2/2)
Pin Name I/O Function Alternate Function
WE 3-state output SDRAM write strobe —
CAS SDRAM CAS strobe —
CS0 SDRAM chip select —
CS1 SDRAM/SRAM (ROM) chip select —
CKE SDRAM clock enable —
SDCLKOUT Output SDRAM clock output —
DMARQ0 Input DMA requests (CH0 to CH3) PORTA1
DMARQ1 PORTA3
DMARQ2 PORTA5
DMARQ3 PORTA7
DMAAK0 Output DMA enable (CH0 to CH3) PORTA0
DMAAK1 PORTA2
DMAAK2 PORTA4
DMAAK3 PORTA6
TC DMA transfer end output STOPAK
TO10 Timer 1 output INTP10
TO11 INTP12
TCLR Input Timer 1 clear, start input PORTB1
TI Timer 1 count clock input PORTB0
RXD Schmitt input UART data input PORT3
TXD Output UART data output PORT4
SCLK Schmitt I/O CSI clock I/O PORT0
SI Schmitt input CSI data input PORT2
SO Output CSI data output PORT1
DCK Schmitt input Debug clock input —
DDI Input Debug data input —
DDO Output Debug data output —
DMS Input Debug mode select —
DRST DCU reset input —
TRCDATA0 to Output Trace data output —
TRCDATA3
VDD_I — Positive power supply (2.5 V) —
VDD_O Positive power supply (3.3 V) —
GND_I Ground (2.5 V) —
GND_O Ground (3.3 V) —
VDD_PLL PLL (internal clock generator) positive power supply (2.5 V) —
GND_PLL PLL (internal clock generator) ground potential (2.5 V) —
2. INTERNAL UNITS
3. CPU FUNCTION
Remark n = 0H to FH
Type Classifi- Group In-Group Interrupt Source Exception Handler AddressNote 3 Restore
cation Priority Note 1
Name Cause Unit Code HCCW.IHA=0 HCCW.IHA=1 PC
Mask- Interrupt GR3 3 RESERVED Reserved — FEF0H FFFFFEF0H FE0000F0H next
able Note 2
2 INTOV1 Timer 1 overflow RPU FEE0H FFFFFEE0H FE0000E0H PC
1 INTSER UART receive error UART FED0H FFFFFED0H FE0000D0H
0 INTP03 INTP03 pin input External FEC0H FFFFFEC0H FE0000C0H
GR2 3 INTSR UART receive end UART FEB0H FFFFFEB0H FE0000B0H
2 INTST UART transmit end UART FEA0H FFFFFEA0H FE0000A0H
1 INTCSI CSI transmit/receive end CSI FE90H FFFFFE90H FE000090H
0 INTP02 INTP02 pin input External FE80H FFFFFE80H FE000080H
GR1 3 INTDMA DMA transfer end DMAC FE70H FFFFFE70H FE000070H
2 INTP10/ INTP10 pin input/ External/ FE60H FFFFFE60H FE000060H
INTCC10 coincidence of CC10 RPU
1 INTP11/ INTP11 pin input/ External/ FE50H FFFFFE50H FE000050H
INTCC11 coincidence of CC11 RPU
0 INTP01 INTP01 pin input External FE40H FFFFFE40H FE000040H
GR0 3 INTCM4 Coincidence of CM4 RPU FE30H FFFFFE30H FE000030H
2 INTP12/ INTP12 pin input/ External/ FE20H FFFFFE20H FE000020H
INTCC12 coincidence of CC12 RPU
1 INTP13/ INTP13 pin input/ External/ FE10H FFFFFE10H FE000010H
INTCC13 coincidence of CC13 RPU
0 INTP00 INTP00 pin input External FE00H FFFFFE00H FE000000H
Caution The exception codes and handler addresses of the maskable interrupts shown above are the
values if the default priority (IGP = E4H) is used. The correspondence between the interrupt
source and the handler address is changed from Table 4-2 if the priority of the group (GR0 to
GR3) is changed according to the value of the interrupt group priority register (IGP).
The BCU generates RAS, CAS, WE, CS0, CS1, CKE, LLDQM, LUDQM, ULDQM, and UUDQM signals and controls
access to the SDRAM. Addresses are output to the SDRAM from the address pins by multiplexing row and column
addresses.
The connected SDRAM must be of ×8 bits or more.
The refresh mode is a CAS-before-RAS (CBR) mode, and the refresh cycle can be arbitrarily set.
Self refresh is performed in the STOP mode.
Table 7-1. Output of Row Address and Column Address (32-bit data width)
Table 7-2. Output of Row Address and Column Address (16-bit data width)
The BCU controls page access to the Page-ROM. Page access to the Page-ROM is valid during burst access.
The page size (8 bytes/16 bytes) and the number of wait states (0 wait/1 wait) during page access can be set by using
the Page-ROM configuration register (PRC).
8. DMA FUNCTION
DMAC
BCU
RAM
External bus
INTCM4
INTSR
INTST
INTCSI
TC
DMARQ0 to 3
DMAAK0 to 3
The following channels are provided for the serial interface function.
• Asynchronous serial interface (UART): 1 channel
• Clocked serial interface (CSI): 1 channel
• Baud rate generator (BRG): 1 channel
• Full duplex communication. Receive buffer (RXB) is provided (transmit buffer (TXB) is not provided).
• Two-pin configuration (The UART of the V832 does not have the SCLK and CTS pins.)
• TXD: Transmit data output pin
• RXD: Receive data input pin
• Transfer rate: 300 bps to 153600 bps (bus clock: 47.6 MHz, with BRG)
: 150 bps to 76800 bps (bus clock: 35.7 MHz, with BRG)
• Baud rate generator
Serial clock source can be selected from baud rate generator output or bus clock (φ)
• Receive error detection function
• Parity error
• Framing error
• Overrun error
• Three interrupt sources
• Receive error interrupt (INTSER)
The interrupt request is generated by ORing three types of receive errors.
• Receive end interrupt (INTSR)
The receive end interrupt request is generated after completion of receive data transfer from the shift register
to the receive buffer in the reception enabled status.
• Transmit end interrupt (INTST)
The transmit end interrupt request is generated after completion of serial transfer of transmit data (9, 8, or
7 bits) from the shift register. The character length of the transmit/receive data is specified by the ASIM00
and ASIM01 registers.
• Character length: 7 or 8 bits
: 9 bits (with extension bit appended)
• Parity function: Odd, even, 0, or none
• Transmit stop bit: 1 or 2 bits
16/8 8
Receive shift
RXD Status register ASIS0
register
Receive
INTSER
control parity
check
Transmit control
parity append INTST
INTSR
1/16
1/16
φ
1/2 SEL
Baud rate generator
CSIM0
Mode register
SO latch
SIO0
D Q
Shift register
SI
SO
Interrupt control
Serial clock counter INTCSI
circuit
• The serial clock can be used as the baud rate generator output or the divided value of φ (bus clock) can be used
as a baud rate.
• The serial clock source is specified by the following registers.
• In the case of UART: Specified by the SCLS0 bit of the ASIM00 register.
• In the case of CSI: Specified by the CLS02 through CLS00 bits of the CSIM0 register.
• The baud rate generator is shared by the UART and CSI.
Serial interface
(UART/CSI)
TMBRG0
Internal timer Prescaler 1/2 φ
Edge
TCLR1 detection
φ /2 φm φ m Note 1
φ φ /4 φ m/4
φ m/16
TM1 (16 bits) INTOV1
Note 2
TI Edge detection
INTCC10
INTCC11
INTCC12
INTCC13
φ /2 φ m φ m/16 Note
φ φ /8 φ m/32 TM4 (16 bits)
CM4 INTCM4
Mode register
PM
SCLK
Selector
PORT0
Port register
PORT
SCLK
Mode register
PM
SO (PORT1),
TXD (PORT4)
Selector
PORT1,
PORT4
Port register
PORT
Selector
Mode register
PM
Internal peripheral I/O bus
Selector
Port read enable
RXD (PORT3),
SI (PORT2)
Mode register
PAM
Internal peripheral I/O bus
PORTA6,
Port register PORTA4,
PORTA PORTA2,
PORTA0
Selector
DMARQ3 to
DMARQ0
Mode register
PAM
DMAAK3 to
DMAAK0 PORTA7,
Selector
PORTA5,
Port register PORTA3,
PORTA PORTA1
Mode register
PBM
Internal peripheral I/O bus
Selector
Port read enable
Note
Note INTP03 (PORTB7), INTP02 (PORTB6), INTP11 (PORTB5), INTP01 (PORTB4), INTP13 (PORTB3), INTP00
(PORTB2), TCLR (PORTB1), TI (PORTB0)
The clock generator generates and controls the CPU clock and bus clock that are supplied to the internal hardware
units.
PMC and frequencies in PLL/direct modes are shown in Table 12-1 and Table 12-2.
CMODE
PLL synthesizer
1/2
1/6 φ
X1 PMC
×1 PFD VCO Bus clock
OSC ×1/2
X2 ×1/4 1/8
fB
Phase comparator
1/2 CPU clock
142.8 MHz
Direct clock
PMR.DPM
• PLL mode
This is the mode normally used. In this mode, the oscillation clock of the external input clock/OSC, which is
expanded 6 or 8 times by the PLL synthesizer, is employed as the CPU clock.
• Direct mode
In this mode, the oscillation clock of the external input clock/OSC is employed as the CPU clock without passing
through the PLL synthesizer.
• HALT mode
In this mode, the clock generator (oscillator and PLL synthesizer) operates, but the operating clock of the CPU
is stopped. The other internal peripheral functions are supplied with the clock and continue operation. By using
this mode in combination with the normal mode, the power consumption of the entire system can be reduced.
• STOP mode
This mode stops supply of the clock to the CPU and peripheral I/O.
It can reduce the power consumption much more than the HALT mode.
Table 13-1 shows the operation of the clock generator in each mode.
Remark : Operates
×: Stops
∆: Operates or stops depending on setting
IORD, IOWR
MRD, MWR, LLBEN, LUBEN,
ULBEN, UUBEN
LLDQM, LUDQM, ULDQM, UUDQM 0Note 4 Self refreshNote 7
RAS, CAS, WE 1Note 5
CKE 1Note 6
R/W Retained Retained
HLDRQ Operates Not accepted
CLKOUT, SDCLKOUT Clock output (if clock output is not disabled) 0
STOPAK 1 0
Table 14-1 shows the status of the output pins during the system reset period and immediately after reset. This
status is retained during the reset period.
Note Pins with alternate functions as ports serve as port pins immediately after reset.
15. INSTRUCTIONS
The V832 uses two instruction formats: 16-bit and 32-bit. The 16-bit instructions include binary operation, control,
and conditional branch instructions, while the 32-bit instructions include load/store and I/O operation instructions,
instructions for handling 16 bits of immediate data, and jump-and-link instructions.
Some instructions contain unused fields, which must be fixed to 0, which are provided for future use. When an
instruction is actually loaded into memory, its configuration is as follows:
15 10 9 5 4 0
15 10 9 5 4 0
15 13 12 9 8 1 0
s = 0: Bcond
opcode cond disp 9 s s = 1: ABcond
s: sub-opcode
15 10 9 0 31 16
opcode disp 26 0
15 10 9 5 4 0 31 16
15 10 9 5 4 0 31 16
15 10 9 5 4 0 31 26 25 16
15 10 9 5 4 0 31 26 25 21 20 16
15 10 9 1 0
opcode RFU s
s: sub-opcode
Abbreviations of operands
Abbreviation Meaning
Cautions 1. Do not directly connect the output (or input/output) pins of an IC device to each other, and
do not connect them directly to the VDD, VCC or GND. However, these restrictions do not apply
to the high-impedance pins of an external circuit, whose timing has been specifically
designed to avoid output collision.
2. Product quality may suffer if the absolute maximum rating is exceeded even momentarily for
any parameter. That is, the absolute maximum ratings are rated values at which the product
is on the verge of suffering physical damage, and therefore the product must be used under
conditions that ensure that the absolute maximum ratings are not exceeded. For IC products,
normal operation and quality are guaranteed only when the ratings and conditions described
under the DC and AC characteristics are satisfied.
Operating Conditions
Parameter Symbol Conditions MIN. MAX. Unit
Caution V832 has two types of power supply, and there are no restrictions on the order that the voltage
is to be applied. However, be sure not to keep a status whereby only one power supply is applied
voltage for 1 second or more.
Notes 1. X2 pin, DCK pin, and SCLK pin at external clock input
2. PORT0/SCLK, PORT2/SI, PORT3/RXD
3. Supply current at input clock: 17.85 MHz with output pins open, PLL 8×
4. External clock mode when clock input is stopped.
Capacitance
Remark These parameters are sample values, not the value actually measured.
VDDO
2.0 V
0.5 VDDO Test point
0.6 V
0V
4 ns
(a) CS0, CS1, WE, RAS, UUDQM, ULDQM, LUDQM, LLDQM, CKE, CAS, SDCLKOUT, CLKOUT, A1 to A23,
D0 to D31
VDDO
0.85 VDDO
0.5 VDDO Test point
0.4 V
0V
VDDO
0.85 VDDO
1.4 V Test point
0.4 V
0V
Test load
CL = 50 pF
(1) Clock input (X2) timing (when external clock input used)
• µPD705102-143
Notes 1. TA = –40 to +85°C, when other than 1/4 is selected as the division ratio of the input clock (CPU
core frequency (when defaulted) = 100 to 143 MHz)
2. TA = –40 to +85°C, when 1/4 is selected as the division ratio of the input clock (CPU core frequency
= 33.3 to 35.8 MHz)
3. TA = –40 to +70°C, when other than 1/4 is selected as the division ratio of the input clock (CPU
core frequency (when defaulted) = 100 to 144 MHz)
4. TA = –40 to +70°C, when 1/4 is selected as the division ratio of the input clock (CPU core frequency
= 33.3 to 36 MHz)
Remark The stability of the input clock is 0.1% of tCYX or lower.
• µPD705102-133
Notes 1. TA = –40 to +85°C, when other than 1/4 is selected as the division ratio of the input clock (CPU
core frequency (when defaulted) = 100 to 133 MHz)
2. TA = –40 to +85°C, when 1/4 is selected as the division ratio of the input clock (CPU core frequency
= 33.3 MHz)
Remark The stability of the input clock is 0.1% of tCYX or lower.
<1>
0.8 VDDO
X2 (input) 1.4 V
0.2 VDDO
<3>
<6>
<10> <9>
<7>
0.8 VDDO
CLKOUT (output) 1.4 V
SDCLKOUT (output) 0.2 VDDO
<8>
Notes 1. At power on or when returned from STOP mode, and the internal clock is generated.
2. At power on or when returned from STOP mode, and the external clock is generated, after clock
has stabilized.
3. When clock has stabilized under conditions other than Notes 1 and 2.
Remark It is not necessary to satisfy tSRK and tHKR if reset during the period of tHVR. In such a case, however,
the reset acknowledge timing may be shifted.
0.9 VDDI
VDDI
<11> <12>
CLKOUT (output)
<13> <12>
RESET (input)
<14>
SDRAM single read cycle (off-page) (TRP = 0, TRCD = 0): with 32-bit data bus
SDCLKOUT (output)
BCYST (output)
CKE (output) H
<19> <19> <19>
RAS (output)
CAS (output)
<20> <20> <20>
WE (output)
<16> <16> <16>
A12 (output) RA
<16> <16> <16> <16> <16>
Address (output) RA CA
<24> <25>
D0 to D31 (input)
<21> <21>
R/W (output)
<22> <22>
××DQM (output)
SDCLKOUT (output)
Command RD
BCYST (output)
H
CKE (output) <19> <19> <19>
<17>
RAS (output)
<18> <18>
<18>
CAS (output)
<20> <20>
WE (output)
<16>
<16> <16>
<16>
<16> <16>
A12 (output)
<16>
<16> <16>
Address (output) CA
<24> <25>
D0 to D31 (input)
<21>
<21>
R/W (output)
<22> <22>
××DQM (output)
SDRAM burst read cycle (off-page) (TRP = 0, TRCD = 0): with 32-bit data bus
SDCLKOUT (output)
BCYST (output)
CKE (output) H
<19> <19> <19>
RAS (output)
CAS (output)
WE (output)
A12 (output) RA
A1 to A23 (output) RA CA CA CA CA
D0 to D31 (input) 1 2 3 4
R/W (output)
××DQM (output) L
SDCLKOUT (output)
Command RD RD RD RD
<15>
<15> <15>
BCYST (output)
CKE (output) H
<19> <19> <19>
<17>
RAS (output)
<18> <18>
<18>
CAS (output)
<20> <20>
WE (output)
<16>
<16> <16>
Bank address (output) BA
D0 to D31 (input)
<21> <21>
<24> <25> <24> <25>
R/W (output)
××DQM (output)
L
SDRAM single write cycle (off-page) (TRP = 0, TRCD = 0): with 32-bit data bus
SDCLKOUT (output)
BCYST (output)
H
CKE (output) <19> <19>
RAS (output)
<18> <18>
<18> <18>
CAS (output)
WE (output)
<16> <16>
<16>
A12 (output) RA
Address (output) RA CA
<27> <28>
D0 to D31 (output)
<21> <21>
R/W (output)
<22> <22>
××DQM (output)
Tw1s Twi
SDCLKOUT (output)
Command WR
<15> <15>
<15>
BCYST (output)
H
CKE (output) <19> <19>
<17>
RAS (output)
<18> <18>
<18>
CAS (output)
<20> <20>
<20>
WE (output)
<16> <16>
<16>
<16> <16>
<16>
A12 (output)
<16> <16>
<16>
Address (output) CA
<27> <28>
D0 to D31 (output)
<21> <21>
R/W (output)
<22> <22>
××DQM (output)
SDRAM burst write cycle (off-page) (TRP = 0, TRCD = 0): with 32-bit data bus
SDCLKOUT (output)
BCYST (output)
H
CKE (output) <19>
<19>
RAS (output)
CAS (output)
<20>
<20> <20> <20>
WE (output)
<16> <16>
<16> <16>
<16> <16>
A12 (output) RA
Address (output) RA CA CA CA CA
D0 to D31 (output) 1 2 3 4
<21>
<21>
R/W (output)
××DQM (output) L
SDCLKOUT (output)
Command WR WR WR WR
<15> <15>
BCYST (output)
H
CKE (output)
<19> <19>
<17>
RAS (output)
<18>
<18>
CAS (output)
<20> <20>
WE (output)
<16> <16>
<16> <16>
A12 (output)
Address (output) CA CA CA CA
D0 to D31 (output)
<21> <21>
R/W (output)
××DQM (output) L
Tap Trf
SDCLKOUT (output)
<15>
BCYST (output)
H
CKE (output)
<19> <19>
<17> <17>
RAS (output)
CAS (output)
WE (output)
<16> <16>
A12 (output)
<16> <16>
Address (output)
××DQM (output)
L
SDCLKOUT (output)
BCYST (output)
<23> <23>
CKE (output)
<19> <19>
<19>
<17>
<17> <17>
RAS (output)
<18>
<18> <18> <18>
CAS (output)
<20> <20>
<20>
WE (output)
<16> <16>
<16>
A12 (output)
Address (output)
××DQM (output) L
Note CSn indicates CS1 through CS7. Depending on the n value, a different area is used.
n = 1 to 7: When SRAM (ROM) is selected
n = 7: When Page-ROM is selected
n = 3 to 6: When I/O is selected
Ta Ts Ts Ti
CLKOUT (output)
BCYST (output)
<16> <16>
A1 to A23 (output)
<19> <19>
CSn (output)
<33> <33>
××BEN (output)
<29>
<29>
IORD (output)
<30>
<30>
MRD (output)
<34> <35>
D0 to D31 (input)
<21> <21>
R/W (output)
READY (input)
Ta Ts Ts
CLKOUT (output)
BCYST (output)
<16> <16>
A1 to A23 (output)
<19> <19>
CSn (output)
<33> <33>
××BEN (output)
<31> <31>
IOWR (output)
<32> <32>
MWR (output)
<26> <26>
D0 to D31 (output)
<27> <28>
D0 to D31 (output)
<21> <21>
R/W (output)
READY (input)
CLKOUT (output)
BCYST (output)
A1 to A23 (output)
CS7 (output)
××BEN (output) H
MRD (output)
D0 to D31 (input)
<21> <21>
R/W (output)
READY (input)
CLKOUT (output)
2.0 V
NMI (input) 0.5 VDDO
0.6 V
<43> <42>
<40> <41>
INTP00 to INTP03,
INTP10 to INTP13 (input)
Ti Tih Th Th Th Th Ti
CLKOUT (output)
<44> <44>
<45>
HLDRQ (input)
<46> <46>
HLDAK (output)
<47> <48>
Note 1 (output)
<47> <48>
Note 2 (output)
<47> <48>
Note 3 (output)
<47> <48>
A1 to A23 (output)
<28> <27>
D0 to D31 (output)
Notes 1. BCYST, WE, CS0 to CS7, RAS, CAS, MRD, MWR, CKE
2. R/W, LLBEN, LUBEN, ULBEN, UUBEN
3. LLDQM, LUDQM, ULDQM, UUDQM
CLKOUT (output)
<51> <51>
<52> <52>
TC (output)
<53>
<56> <57>
<54> <55>
0.8 VDDO
SCLK (input) 0.5 VDDO
0.2 VDDO
<58> <59>
SI (input)
<60>
SO (output)
<61>
<64> <65>
<62> <63>
0.8 VDDO
SCLK (output) 0.5 VDDO
0.2 VDDO
<66> <67>
SI (input)
<68>
SO (output)
<69>
<70> <71> <72> <73>
2.0 V
TI (input) 0.5 VDDO
0.6 V
<74> <75>
2.0 V
TCLR (input)
0.6 V
120 81
121 80
Q R
160 41
1 40
F
G H I M J
P K
M
N L
I 0.10 0.004
J 0.5 (T.P.) 0.020 (T.P.)
K 1.0±0.2 0.039 +0.009
–0.008
M 0.145+0.055
–0.045 0.006±0.002
N 0.10 0.004
P 1.4±0.1 0.055±0.004
Q 0.125±0.075 0.005±0.003
R 3° +7° 3° +7°
–3° –3°
S 1.7 MAX. 0.067 MAX.
S160GM-50-8ED-2
This product should be soldered and mounted under the following recommended conditions.
For the details of the recommended soldering conditions, refer to the document Semiconductor Device Mounting
Technology Manual (C10535E).
For soldering methods and conditions other than those recommended below, contact your NEC sales represen-
tative.
Note After opening dry pack, store it at 25°C or less and 65% RH or less for the allowable storage period.
Caution Do not use different soldering methods together (except for partial heating).
[MEMO]
Regional Information
Some information contained in this document may vary from country to country. Before using any NEC
product in your application, please contact the NEC office in your country to obtain a list of authorized
representatives and distributors. They will verify:
• Device availability
• Ordering information
• Development environment specifications (for example, specifications for third-party tools and
components, host computers, power plugs, AC supply voltages, and so forth)
• Network requirements
In addition, trademarks, registered trademarks, export restrictions, and other legal issues may also vary
from country to country.
NEC Electronics Inc. (U.S.) NEC Electronics (Germany) GmbH NEC Electronics Hong Kong Ltd.
Santa Clara, California Benelux Office Hong Kong
Tel: 408-588-6000 Eindhoven, The Netherlands Tel: 2886-9318
800-366-9782 Tel: 040-2445845 Fax: 2886-9022/9044
Fax: 408-588-6130 Fax: 040-2444580
800-729-9288 NEC Electronics Hong Kong Ltd.
NEC Electronics (France) S.A. Seoul Branch
NEC Electronics (Germany) GmbH Velizy-Villacoublay, France Seoul, Korea
Duesseldorf, Germany Tel: 01-30-67 58 00 Tel: 02-528-0303
Tel: 0211-65 03 02 Fax: 01-30-67 58 99 Fax: 02-528-4411
Fax: 0211-65 03 490
NEC Electronics (France) S.A. NEC Electronics Singapore Pte. Ltd.
NEC Electronics (UK) Ltd. Spain Office United Square, Singapore 1130
Milton Keynes, UK Madrid, Spain Tel: 65-253-8311
Tel: 01908-691-133 Tel: 91-504-2787 Fax: 65-250-3583
Fax: 01908-670-290 Fax: 91-504-2860
NEC Electronics Taiwan Ltd.
NEC Electronics Italiana s.r.l. NEC Electronics (Germany) GmbH Taipei, Taiwan
Milano, Italy Scandinavia Office Tel: 02-2719-2377
Tel: 02-66 75 41 Taeby, Sweden Fax: 02-2719-5951
Fax: 02-66 75 42 99 Tel: 08-63 80 820
Fax: 08-63 80 388 NEC do Brasil S.A.
Electron Devices Division
Rodovia Presidente Dutra, Km 214
07210-902-Guarulhos-SP Brasil
Tel: 55-11-6465-6810
Fax: 55-11-6465-6829
J99.1
The related documents indicated in this publication may include preliminary versions. However, preliminary
versions are not marked as such.
• The information in this document is subject to change without notice. Before using this document, please
confirm that this is the latest version.
• No part of this document may be copied or reproduced in any form or by any means without the prior written
consent of NEC Corporation. NEC Corporation assumes no responsibility for any errors which may appear in
this document.
• NEC Corporation does not assume any liability for infringement of patents, copyrights or other intellectual
property rights of third parties by or arising from use of a device described herein or any other liability arising
from use of such device. No license, either express, implied or otherwise, is granted under any patents, copyrights
or other intellectual property rights of NEC Corporation or others.
• Descriptions of circuits, software, and other related information in this document are provided for illustrative
purposes in semiconductor product operation and application examples. The incorporation of these circuits,
software, and information in the design of the customer's equipment shall be done under the full responsibility
of the customer. NEC Corporation assumes no responsibility for any losses incurred by the customer or third
parties arising from the use of these circuits, software, and information.
• While NEC Corporation has been making continuous effort to enhance the reliability of its semiconductor devices,
the possibility of defects cannot be eliminated entirely. To minimize risks of damage or injury to persons or
property arising from a defect in an NEC semiconductor device, customers must incorporate sufficient safety
measures in its design, such as redundancy, fire-containment, and anti-failure features.
• NEC devices are classified into the following three quality grades:
"Standard", "Special", and "Specific". The Specific quality grade applies only to devices developed based on a
customer designated “quality assurance program“ for a specific application. The recommended applications of
a device depend on its quality grade, as indicated below. Customers must check the quality grade of each device
before using it in a particular application.
Standard: Computers, office equipment, communications equipment, test and measurement equipment,
audio and visual equipment, home electronic appliances, machine tools, personal electronic
equipment and industrial robots
Special: Transportation equipment (automobiles, trains, ships, etc.), traffic control systems, anti-disaster
systems, anti-crime systems, safety equipment and medical equipment (not specifically designed
for life support)
Specific: Aircraft, aerospace equipment, submersible repeaters, nuclear reactor control systems, life support
systems or medical equipment for life support, etc.
The quality grade of NEC devices is "Standard" unless otherwise specified in NEC's Data Sheets or Data Books.
If customers intend to use NEC devices for applications other than those specified for Standard quality grade,
they should contact an NEC sales representative in advance.
M7 98.8